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ABSTRACT

Deep learning approaches usually require a large amount of labeled data to gen-
eralize. However, humans can learn a new concept only by a few samples. One
of the high cogntition human capablities is to learn several concepts at the same
time. In this paper, we address the task of classifying multiple objects by seeing
only a few samples from each category. To the best of authors’ knowledge, there
is no dataset specially designed for few-shot multiclass classification. We design a
task of mutli-object few class classification and an environment for easy creating
controllable datasets for this task. We demonstrate that the proposed dataset is
sound using a method which is an extension of prototypical networks.

1 INTRODUCTION

Deep learning approaches are usually capable of solving a classification problem when a large la-
beled dataset is available during the training (Krizhevsky et al., 2012; Sutskever et al., 2014; Deng
et al., 2013). However, when a very few samples of a new category is shown to a trained classifier, it
either fails to generalize or overfit on the new samples. Humans, however, can easily generalize their
prior knowledge to learn a new concept even with one sample. Few-shot learning approaches are
proposed to address this gap between human capablity of learning a new concept with only a very
few labled samples and machine capablity in generalizing to a new concept. mini-ImageNet (Vinyals
et al., 2016) and tiered-Imagenet (Ren et al., 2018) are two main datasets that are developed to help
the research community addressing the problem of few-shot classification.
Although that human are capable of learning a new concept with only a very few samples. Learning
a few new concepts at the same time, and with only a very few samples of each is considered as a
high cognition task (Carey & Bartlett, 1978) and very challenging even for humans.

It is yet an active area of study to know how human are capable of doing this. There could be many
factors involved in this high cognition process, and there are many hypothesis around this. One
popular hypothesis is that the brain is able to learn a good representation that has high capacity and
can generalize well (Goodfellow et al., 2016). Studying the reasons behind human high cognitive
capablity of learning a few new concepts in paralell and with only a very few samples, is out of the
scope of this paper. However, in this paper, we propose to extend the few shot learning problem to
multi-class few shot classification problem and moving a step towards filling the gap between human
cognitive capablity of learning multiple new concepts in paralel and with only a few samples, and
machine learning approaches.

To do so, our first step is to define a dataset and a setup to address this problem, and an evaluation
metric to measure our progression towards solving this problem.

We argue that the existing datasets are not desirable for this task. Omniglot (Lake et al., 2015),
mini-ImageNet, tiered-ImagaNet, are designed for single object classification. Such datasets as,
MS COCO (Lin et al., 2014) and Pascal VOC (Everingham et al., 2015) have multiple object classes
but they are not well suited for few-shot learning. The issue is the high imbalance of class co-
occurrence (for example, ‘human’ label occures with all other classes). Therefore it is hard to
prevent the learner from “sneak peeking” new concepts.

To sum it up, this work’s contribution is two-fold:
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Figure 1: 3-dense samples from the dataset. Right two images demonstrate different degrees of
occlusion.

1. We propose the new task of mutli-object few-shot classification to test model’s ability to
disentagle and represent several object on an image (see Section 3) and propose an exten-
sion to prototypical-style models to efficiently solve the task (Section 3.1);

2. We construct a new dataset which provides clean and controlled environment of multi-
object images (see Section 4) and provide the framework, benchmarks and the code for the
community to explore controlled scenarios and alternative few-shot classification tasks.

2 RELATED WORK

The problem of learning new concepts with small number of labeled data is usually referred to as
few-shot learning (Larochelle, 2018). Two of the most famous datasets to address the problem of few
shot classification are mini-Imagenet (Vinyals et al., 2016) and tiered-Imagenet (Ren et al., 2018).
Both of these datasets address the problem of few shot classification of single objects.

Kang et al. (2018) addresses the problem of few shot object detection in natural images. There are
two main groups of approaches addressing this problem (i) optimization-based frameworks and (ii)
metric-based frameworks. Optimization-based framework (Andrychowicz et al., 2016; Finn et al.,
2017; Rusu et al., 2018), is a class of algorithms that learn how to quickly learn new concepts. Other
notable performant approaches that do not fall into these two categories is SNAIL (Mishra et al.,
2017).

Meta-learning approaches work by learning a parameterized function that maps labeled training sets
into classifiers.

Metric-based framework learn a representation that minimize intra-class distances while maximize
the distance between variant classes. These approaches usually rely on an episodic training frame-
work: the model is trained with sub-tasks (episodes) in which there are only a few training samples
for each category. Matching networks (Vinyals et al., 2016) trains a similarity function between
images. In each episode, it uses an attention mechanism (over the encoded support) as a similarity
measure for one-shot classification.

In prototypical networks (Snell et al., 2017), a metric space is learned where embeddings of queries
of one category are close to the centroid (or prototype) of support of the same category, and far away
from centroids of other classes in the episode. Due to simplicity and performance of this approach,
many methods extended this work. For instance, Ren et al. (2018) propose a semi-supervised few-
shot learning approach and show that leveraging unlabeled samples outperform purely supervised
prototypical networks. Wang et al. (2018) propose to augment the support set by generating hal-
lucinated examples. Task-dependent adaptive metric (TADAM) (Oreshkin et al., 2018) relies on
conditional batch normalization (Perez et al., 2018) to provide task adaptation (based on task repre-
sentations encoded by visual features) to learn a task-dependent metric space.

3 MULTI-OBJECT FEW-SHOT CLASSIFICATION TASK

In order to test the ability to disentangle unseen objects on a given image, we propose a task of
multi-object few-shot classification.

Few-shot classification First, we briefly summarize the single object few-shot classifica-
tion (Larochelle, 2018). While a dataset for supervised learning is comprised of a number of input-
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label pairs, a dataset D for meta-learning is comprised of a number of tasks. In a common K-shot
N -way classification every task has a support set S = {(xi, yi)}i of the size KN and a query set
Q = {(xi, yi)}i. The learner is given a number of support-query pairs for training. For testing,
the learner is given am unseen support set S and asked to predict labels for a certain query Q = x,
which label is one of the labels in the support. Usually, prototypes are computed in the following
way. First, the images from the support set ei = CNN(xi) are embedded, the prototype for each
class is computed as an average embeding pn = meani:yi=nei for all n ∈ 1 . . . N .

Multi-object classification In this work, we propose to extend this task for a multi category case.
We define a K-shot N -way D-dense task to have the support set S = {(xi, y

d
i )}i of the size KN

D

where every image xi contains D objects and yi = (y1i . . . y
D
i ) is a tuple of D labels corresponding

the objects. This way, the learner is exposed to every object class exactly K times, therefore our
methods can be easier compared among varying D. Similarly, the query Q = {(xi, Yi)}i is a set of
images each containing D objects with ground truth labels yi.

3.1 MULTI-PROTOTYPE NETWORKS

A naı̈ve aproach requires exponential in D pseudo-label to represent all possible combinations.
The learner can only be exposed to a limited number of possible combinations of objects. The
exponential size of the label quickly overpasses few shots (commonly from 5 to 20) available for
training.

We propose multi-prototype networks to tackle aforementioned exponential explosion. For simplic-
ity, in this work we assume that the labels yi are given in the order that objects appear on the image xi

from left to right. This is a major simplification and we will lift it in the near future work. To extend
the proto-net setup, we train a model to produce D embeddings for every image edi = CNN(xi). The
prototype is computed as the average embedding per class pn = meani,d:yd

i =ne
d
i . The rest of the

procedure is identical to the proto-net – every query is compared to the prototypes and the distance
to the correct prototype is pushed down, all the rest are pushed up.

4 CEMOL: CONTROLLED ENVIRONMENT FOR MULTIPLE OBJECT
LEARNING

We aim to have a controlled environment for reliable experiments. To achieve this, we develop a
dataset based on Shapenet 3D models renderred with Blender in the setup similar to CLEVR. This
provides us flexibility to construct single or multiple object tasks and change the task parameters
– number of shots and ways. The dataset along with the generation tools will be made publically
available.

In the next sections we describe in the detail the dataset generation procedure. Then, to compare the
complexity of the dataset to existing ones, we run a popular model TADAM (Oreshkin et al., 2018)
for a traditional single-object-per-image setup. Then, we increase the number of objects per image
and report results with our proposed model.

4.1 DATASET GENERATION DETAILS

We generated a dataset using methods similarly to visual reasoning dataset CLEVR (Johnson et al.,
2017). To increase the variability of the object classes, we used 3D meshes from Shapenet (Chang
et al., 2015) dataset. Beforehand, we splitted 55 Shapenet classes into three subsets randomly for
training, validation and testing (see Appendix A). The sizes of the subsets are 35, 10, 10, respec-
tively. We render images task-by-task. We uniformly sample classes used in the task. Then, we
sample a mesh of each class K times. We distribute object over canvases. Finally, we render images
by randomly placing meshes on each canvas. In order to produce the representation of an object
independent of color, we strip the texture and apply random color random texture of either rubber or
metal. Figure 2 demonstrates some samples from the test split. The model should be able to tackle
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Table 1: Comparison of accuracy of the most prominent
models on mini-ImageNet. Single label version of our
dataset. All accuracies reported with 5-way task.

Dataset 1-shot 5-shot

miniImageNet
ProtoNet (Snell et al., 2017) 49.4% 68.2%
TADAM (Oreshkin et al., 2018) 58.5% 76.7%
LEO (Rusu et al., 2018) 61.8% 77.6%

CEMOL
resnet12 + protonet 63.6% 64.8%
resnet12 + TADAM 78.0% 80.6%

Table 2: Comparison of proto-net per-
formance with various density (number
of objects per image) for 5-shot 6-way
task.

Density Accuracy, %

1 68.6± 0.5

2 51.3± 0.3
3 48.2± 0.2

complex shapes as well as occlusions. We renderred 110,000 images for training, 35,000 for each
validation and testing splits and we provide the source code to generate extra data of any density.1

4.2 COMPARISON TO EXISTING DATASETS

First, we generate only images containing single object in order to place it among the exising ones.
We train a prototypical network and TADAM with 12-block residual feature extractor (He et al.,
2016). We summarize our results in the Table 1 and compare to performance on mini-ImageNet. As
it can be seen, our dataset is simpler than mini-ImageNet, but it cannot be trivially solved by close
to state-of-the-art methods even in the simpest single-object case. Therefore, we conclude that the
dataset is not trivial nor too hard.

4.3 MULTIPLE OBJECTS

Having shown that the proposed dataset is sound for single-object task, we increase the number of
objects per image and apply the proposed MultiProtoNet (see Section 3.1). In all experiments below,
we used 12-block residual network that produces a corresponding number of embeddings per image.
All networks are optimized with Adam (Kingma & Ba, 2014) with the Euclidian distance metric.

The experiments are summarized in the Table 2. We notice that while the accuracy accuracy drops
significantly when transitioning from single to multiple objects, it drop as much from 2 to 3 objects.

5 DISCUSSION AND FUTURE WORK

In this work we introduced a task of few-shot multi-object classification and an environment for
generating datasets for this task. We compared the proposed dataset to existing ones in single-
object case. Then, we used a simple extension of prototypical networks to conduct experiments
multi-object case. We believe that this task will help diagnosing metric-learning models that need to
disentangle several objects on an image.

One of the future directions we are taking is to lift the limitation of known object order (Section 3.1).
Then we plan to use stronger feature extractors (Oreshkin et al., 2018) and extend the work to more
natural data.
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A TRAIN-TEST SPLIT

Train split: ‘table’, ‘train’, ‘earphone’, ‘birdhouse’, ‘remote control’, ‘display’, ‘ashcan’, ‘car’,
‘lamp’, ‘camera’, ‘faucet’, ‘bottle’, ‘bench’, ‘washer’, ‘mug’, ‘microphone’, ‘knife’, ‘mailbox’,
‘rocket’, ‘guitar’, ‘sofa’, ‘laptop’, ‘basket’, ‘computer keyboard’, ‘loudspeaker’, ‘dishwasher’, ‘pi-
ano’, ‘rifle’, ‘microwave’, ‘bus’, ‘bowl’, ‘file’, ‘pillow’, ‘cabinet’, ‘helmet’

Valid split: ‘bed’, ‘cellular telephone’, ‘vessel’, ‘bathtub’, ‘pistol’, ‘bag’, ‘airplane’, ‘chair’, ‘jar’,
‘can’

Test split: ‘stove’, ‘clock’, ‘telephone’, ‘tower’, ‘cap’, ‘skateboard’, ‘bookshelf’, ‘motorcycle’,
‘pot’, ‘printer’
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Figure 2: T-SNE embeddings for 3-dense (left) and 2-dense (right) prototypes. Smaller density
allows better separation.
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