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Abstract
In this work, we present a general formulation
for decision making in human-in-the-loop planning
problems where the human’s expectations about
an autonomous agent may differ from the agent’s
own model. We show how our formulation for such
multi-model planning problems allows us to cap-
ture existing approaches to this problem and also be
used to generate novel explanatory behaviors. Our
formulation also reveals a deep connection between
multi-model planning and epistemic planning and
we show how we can leverage classical planning
compilations designed for epistemic planning for
solving multi-model planning problems. We empir-
ically show how this new compilation provides a
computational advantage over previous approaches
that separate reasoning about model reconciliation
and identifying the agent’s plan.

1 Introduction
As automated agents and users start working closely together,
it becomes increasingly important that the agents are capable
of acting in a manner that is intuitive and explicable to users
in the loop. A major challenge to achieving such fluent col-
laboration is the fact that the human’s expectations regarding
the agent’s capabilities and preferences may differ from re-
ality. Such knowledge asymmetry implies that even in cases
where the human teammate is a passive observer, the agent
can no longer solely reason with their individual models to
generate desirable plans. Instead, the agent needs to explic-
itly take into account the user’s expectations about the agent
when coming up with its plans. Previous works have mostly
focused on two strategies to handle such scenarios, (a) ex-
planation - the agent chooses to perform its optimal plan and
explain the effectiveness of the chosen plan; (c.f [Chakraborti
et al., 2017]) (b) explicable planning - the agent chooses to
follow viable plans that are closest to user’s expectations (c.f
[Zhang et al., 2017]).

In the end, we would want an approach that is able to com-
bine the strengths of these two strategies. This would require
the agent to move away from standard notions of decision
making where the agent is solely trying to optimize the cost
of the plan it will follow, but also take into account the ease

of explaining the plan as one of the criteria for choosing its
actions. We will refer to the problem of generating such plans
as multi-model planning.

In this work, we will present a general characterization of
the problem of multi-model planning and discuss how we
could view the solutions to such multi-model planning prob-
lems as self-explaining plans, where explanations are them-
selves provided through robot actions. These actions could
be purely communicative actions that are meant to update the
human’s mental model or task level actions that could also
have epistemic side effects. The contributions of this paper
include,

• Presenting a formalization of multi-model planning that
allows us to characterize solutions identified by earlier
works (Section 2).

• We look at two additional problem considerations; the
phase of interaction (is the explanation occurring during
plan selection or is it happening during plan execution);
the attentiveness of the user (Section 5) and discuss how
such considerations poses both new challenges and pro-
vides us with opportunities to generate novel behaviors.

• We present a new planning compilation to solve such
planning problems that allows for a uniform treatment of
explanation and task level actions. We empirically show
how such a compilation could provide a computational
advantage (Sections 6 and 7).

We will use Urban Search and Rescue domain as a running
example to motivate and illustrate the discussions.

2 Multi-Model Planning and Explanation as
Model Reconciliation

The planning models used by both the human and the robot
are described by the tupleM = 〈F,A, I,G〉. In this formula-
tion, F is the set of propositional fluents used to describe the
planning task states,A the set of actions, I the initial state and
G the goal. Each action a ∈ A is further defined as a tuple of
the form a = 〈preca, addsa, delsa〉, where preca lists the pre-
conditions of the action and addsa and delsa provides the add
and delete effects of the action. In general, the precondition
can be some logical formula defined over state fluents and an
action a can only be executed in a state S if S |= preca. The
effects are generally of the form c→ e, where the antecedent



Figure 1: An overview of planning in multi-model planning
settings.

represents the condition under which the effect e should be
applied (where the fluent corresponding to e is set true in the
state if c → e is part of the add effects and if it is part of the
delete it is set to false).

Each action is also associated with a cost (represented
as CM(a)). A plan in this setting is defined as a sequence
of actions (π = 〈a1, ..., an〉) and is said to be valid (de-
noted as π(I) |=M G) for a model M if G ⊆ π(I). Each
plan is additionally associated with a cost CM(π) such that
CM(π) =

∑n
i=1 CM(ai). A plan π is said to be optimal if

there exist no valid plan π′ such that CM(π′) < CM(π). We
will use Π∗M to represent the set of all plans optimal forM.

In this setting we will assume that the robot uses a model
MR = 〈F,AR, IR, GR〉 and the human evaluates the plan
using a modelMH = 〈F,AH , IH , GH〉. For ease of discus-
sion, we concentrate on the specific case where conditions
for actions only consist of conjunction of positive literals and
with no action cost difference between models.

We start with the assumption that the robot is aware ofMH

and hence knows whether a given plan πR (that is optimal
in MR) is explicable or not, i.e, whether or not the human
would identify πR to be one of the optimal plans for the given
planning problem. In cases where the given plan may appear
inexplicable, one way the robot could resolve the confusion
would be by informing the human about its own model so
they can correctly evaluate the current plan. Thus an explana-
tion (E) for this setting can be represented by a set of model
updates (where E represents the set of all possible model up-
dates). The different types of model updates include –
(1) Turn a fluent p true or false in initial state (represented by
the operator {add/remove}-p-from-I)
(2) Add or remove a fluent p from the precondition (also
add or delete) list of an action a (represented by the opera-

tor {add/remove}-p-from-prec-of-a)
(3) Add or remove a fluent p from the goal list (represented
by the operator {add/remove}-p-from-G)

We will use the function T : M × E → M to represent
the transition function induced by the model update messages
(where M represents the set of all possible models). A set of
model updates (E) explains a given plan if in the model re-
sulting from applying the model updates (M̂ = T (MH , E)) ,
the current plan is optimal (i.e., πR ∈ Π∗M̂). Unless otherwise
mentioned, when we refer to updated model, we are refer-
ring to this new human model obtained by applying the expla-
nations. Once we have such a set of model updates, the final
explanation (presented to the explainee) can be generated by
converting the model updates to corresponding natural lan-
guage statements [Tellex et al., 2014] or through some ap-
propriate visualization [Chakraborti, Sreedharan, and Kamb-
hampati, 2018a].

Among the valid explanations for a given plan, we refer to
the shortest explanation as the minimally complete explana-
tion or MCE. The original work [Chakraborti et al., 2017] on
model reconciliation viewed the problem of generating MCE
explanation as a problem of searching over the space of possi-
ble model updates that can be performed on the human model
and the validity of each possible explanation was measured by
checking the optimality of the plan in the corresponding plan-
ning problem. Before we go into more details, let us briefly
look at the urban search and rescue (USAR) domain that will
act as the running example for the rest of the paper.

3 Urban Search and Rescue
USAR presents an ideal testbed for research on explainable
planning as it looks at cases where the decision to follow sub-
optimal or in-executable plan can be potentially disastrous,
yet limitations in communications capability could prevent
the agents from providing detailed explanations.

The basic scenario consists of an autonomous agent that
has been deployed to the disaster scene and an external com-
mander who is monitoring the activities of the robot. Both
agents start with the same model of the world (i.e the map of
the building before the disaster) but the models diverge over
time owing to the fact that robot has access to more accu-
rate information about the current status of the building. This
model divergence could lead to the commander incorrectly
evaluating valid robot plans as sub-optimal or unsafe. One
way to satisfy the commander would be to point out possible
changes to it’s model that led the robot to come up with the
plan in the first place.

Figure 2 illustrates a typical scenario where the robot needs
to travel from P1 to its goal at P15. Here the human be-
lieves the robot should be moving to waypoint P6 and follow
that corridor to go to P15, while the robot knows it should
be moving to P7. This disagreement rises from the fact that
the human incorrectly believes that the path from P6 to P5
is clear while that from P8 to P12 is blocked. If the robot
were to follow the explanation scheme that was established
in [Chakraborti et al., 2017] then the robot would stick to its
own plan and provide the following explanation –

> remove- ( c l e a r p6 p5 ) -from- I



Figure 2: The basic robot and human maps. The robot starts at P1 and needs to go to P15. The human incorrectly believes that
the path from P6 to P5 is clear and the one from P8 to P12 is blocked. Both agents know that there are some movable rubble
between P9 and P10 that can be moved with the help of a costly clear passage action.

( i . e . , Pa th from P6 t o P5 i s b l o c k e d )
> add- ( c l e a r p8 p12 ) - t o - I

( i . e . , Pa th from P8 t o P12 i s c l e a r )

4 Multi-Model Planning
In this work, we will be looking at the more general case
where we are interested in identifying both the agent plan and
the relevant explanation, and we will refer to this problems as
multi-model planning
Definition 1. A multi-model planning problem is defined by
the tuple Ψ = 〈MR,MH , T 〉, where MH is the human
model,MR the robot model and T is the transition function.
A solution to the problem Ψ is given by the tuple 〈EΨ, πΨ〉,
where EΨ is set of model updates and πΨ a plan, such that
πΨ(IMR

) |=MR
GMR

and πΨ(I(T (MH ,EΨ)) |=T (MH ,EΨ)

GT (MH ,EΨ).
The above problem only deals with cases where we care

about establishing the validity of a robot plan in the human
model. The above problem is already PSPACE-complete 1,
but we need to go beyond just finding valid solutions to find-
ing explanations that establish the optimality of a robot plan
in the human model.
Definition 2. The tuple 〈EΨ, πΨ〉 is said to be a complete
solution for the problem Ψ if πΨ ∈ Π∗MR

and πΨ ∈
Π∗T (MH ,EΨ).

The use of the term complete here is in accordance with it’s
use in [Chakraborti et al., 2017]. EΨ constitutes an MCE for a
plan πΨ when there exists no solution of the form 〈EΨ

2 , πΨ〉,
such that CE(EΨ

2 ) < CE(EΨ), where CE is the cost of pro-
viding an explanation. The use of complete solutions are best
suited for cases, where the agents choose to stick to a plan
that is optimal and explain away any confusion an observer
may have regarding the chosen plan. While the agent could
choose to follow the optimal plan that is easiest to explain,

1We can compile plan existence problems into a model reconcil-
iation problem and as shown in section 6 we can compile the prob-
lem of finding a solution to plan existence in a conditional planning
problem which is again PSPACE hard [Nebel, 2000]

in many scenario, communicating the explanation could still
constitute a considerable expense on the agent’s part. It may
in fact be more desirable for the agent to follow a sub-optimal
plan if the choice of plan results in lower cost for transmitting
the explanations. This is a trade-off we make frequently in
our day-to-day life and it would be desirable for an explicable
agent to be capable of balancing these two sources of cost (i.e
the cost of the plan being followed and the cost of communi-
cating the corresponding explanations) [Chakraborti, Sreed-
haran, and Kambhampati, 2018b].
Definition 3. For a problem Ψ, the tuple 〈EΨ, πΨ〉 is said to
be the optimal balanced explicable solution if,

1. πΨ(IR) |= GR.
2. πΨ ∈ Π∗T (MH ,EΨ).

3. @〈Ê , π̂〉, such that the tuple satisfies (1.) and (2.), and
C(Ê) + CMR

(π̂) < C(EΨ) + CMR
(πΨ).

In the USAR domain, to choose a balanced plan the robot
can follow the path through P9 that also involves clearing the
movable rubble between P9 and P10. In this case the robot
only needs to provide a single explanation.

> remove- ( c l e a r p6 p5 ) -from- I
( i . e . , Pa th from P6 t o P5 i s b l o c k e d )

The original work that studied the problem of balancing
(c.f [Chakraborti, Sreedharan, and Kambhampati, 2018b])
used an additional hyperparameter α, that captures the agent’s
relative preference to providing explanations versus follow-
ing a costlier explicable plan. In our formulation, we assume
that such preferences are automatically captured by the cost
of the explanation. This formulation allows us to better cap-
ture the fact that certain aspects of the model may be harder
to communicate than others. Conceptually, this formulation
should also allow us to include the effort required at the user’s
end into the explanation cost, but capturing such considera-
tions faithfully would require us to go beyond simple additive
models cost explanation cost and so we will ignore them in
the current work.

Note that the above formulation looks for solutions where
the given plan is completely explicable to the user. In fact



the above formulation doesn’t allow for the generation of
purely explicable plans of the type discussed in [Kulkarni et
al., 2019; Zhang et al., 2017], which tries to identify plans
closest to the human optimal plan without relying on any ex-
planations. In many cases, generating such plans that may just
be “good-enough” may be more desirable to the agent than
always trying to stick to completely explainable plans (at the
cost of providing more explanation). We can do this by en-
suring that the agent could include the extend of inexplica-
bility of a given plan as yet another metric to consider when
generating its plans rather than holding it as hard constraint.
Assuming that the degree of inexplicability of the plan is di-
rectly proportional the degree of suboptimality of the plan in
the human model, we can define an optimal balanced solution
as follows.

Definition 4. For a problem Ψ, the tuple 〈EΨ, πΨ〉 is said to
be the optimal balanced solution if,

1. πΨ(IR) |= GR.

2. @〈Ê , π̂〉, such that the tuple satisfy (1.) and
(C(Ê) + CMR

(π̂) + β ∗ (CT (MH ,Ê)(π̂) −
CT (MH ,Ê)(π

∗
1))) < (C(EΨ) + CMR

(πΨ) + β ∗
(CΨ
T (MH ,E)(π̂)− CΨ

T (MH ,E)(π
∗
2)))

where π∗1 ∈ Π∗T (MH ,Ê)
and π∗1 ∈ Π∗T (MH ,EΨ) and β

captures the degree of penalty imposed by inexplicability
of the given plan.

While the current work uses the difference of cost as the
measure of inexplicability, one could have use other plan dis-
tances (or a combination) as standin for this measure. This is
especially helpful when the user’s model/preferences are not
completely known.

5 Additional Considerations
Now that we have defined some of the problems and solu-
tion concepts that have been covered in earlier works, we will
now cover some additional problem considerations related to
multi-model planning that has been previously ignored.

5.1 The Stage of Interaction
An important factor we have more or less ignored in previous
sections (and for that matter most of the previous works in
model reconciliation) is whether the system is providing an
explanation for a plan that has it has proposed or is the sys-
tem providing post-hoc explanation for some plan that it has
just executed (we will refer to such scenarios as explaining
behaviors). One may be tempted to argue that this distinc-
tion is unnecessary if we are limiting our attention to com-
pletely specified sequential plans in deterministic domains,
but the fact that the user is viewing a plan being executed
gives us opportunities to simplify explanation that may just
not be available when the user and the system are deliber-
ating over a proposed plan. In particular, we could use the
agents actions (the fact they were successfully executed and
their effects) to help shape the user’s perception about the task
and the agent’s capabilities. For example, the robot opening
a door is enough to inform the human that the door was not

locked in the first place and does not require a separate com-
munication action or the robot could go through a passage to
show to the human that the passage was not blocked. Thus in
these multi-model settings, we need to allow for the fact that
these actions not only have an effect on the task level state (i.e
ontic effects) but may also have epistemic effects on the user’s
mental models. We could go one further step and treat all ex-
planations as executing actions with epistemic effects. This
means that model-reconciliation planning is in fact an epis-
temic planning problem. Previous works such as [Muise et al.,
2015] have shown how certain subsets of epistemic planning
problem can be compiled to classical planning problems. In
the following sections, we will discuss how we can leverage
similar compilation schemes to capture multi-model planning
problems and show how such methods provide us with com-
putational advantages over methods that separate reasoning
about explanations and the task level plans.

5.2 User’s Attention
An assumption made by many of the earlier works is the fact
that the human observer is a perfect listener. Which means
that once the explanation is provided she will definitely in-
clude it in her reasoning. Unfortunately, this is not true in
most cases. The human’s ability to understand the explana-
tion may depend on factors like the hardness of the concept
being explained (for eg: explaining the robot’s reach in terms
of motion constraints vs the ability for the robot to pick up
heavy objects) and the mode of explanation (a simple visual-
ization vs natural language) and even the cognitive load of the
listener. A more realistic approach would require us to model
the fact that the user may not necessarily consider some in-
formation even when it is presented to them. The system may
need to repeat its explanatory messages or use simpler expla-
nations. Computing such strategies would require us to move
to formulations that allows for non-deterministic or stochas-
tic transitions for explanatory messages. In subsection 6.4, we
discuss how our new formulation can be extended to support
such scenarios.

6 Compilation
To support planning with explanatory actions, we will adopt
a formulation that is similar to the one introduced in [Muise
et al., 2015] to compile reasoning about epistemic states into
a classical planning problem.In our setting, each explanatory
actions can be viewed as an action with an epistemic effect.
One interesting distinction to make here is the fact that the
human’s belief state now not only includes their belief about
the task state but also their belief about the robot’s model.
This means that the planning model will need to separately
keep track of (1) the current robot state, (2) the human’s belief
regarding the current state, (3) how actions would effect each
of these (as humans may have differing expectations about the
effects of each action) and (4) how those expectations change
with explanations.

Given the model reconciliation planning problem Ψ =
〈MR,MH〉, we will generate a new planning modelMΨ =
〈FΨ, AΨ, IΨ, GΨ〉 as follows FΨ = F ∪ FB ∪ Fµ ∪ {G, I},
where FB is a set of new fluents that will be used to capture



the human’s belief about the task state and Fµ is a set of meta
fluents that we will use to capture the effects of explanatory
actions and G and I are special goal and initial state propo-
sitions. We will use the notation B(p) to capture the human’s
belief about the fluent p. We are able to use a single fluent to
capture the human belief as we are specifically dealing with
a scenario where the human’s belief about the robot model is
fully known. In this case, we also do not require any of the
additional rules that were employed in [Muise et al., 2015]
to ensure that the state captures the deductive closure of the
agent beliefs.
Fµ will contain an element for every part of the human

model that can be changed by the robot through explanations.
A meta fluent corresponding to a literal φ from the precon-
dition of an action a takes the form of µ+(φpreca), where the
superscript + refers to the fact that the clause φ is part the pre-
condition of the action a in the robot model (for cases where
the fluent represents an incorrect human belief we will be us-
ing the superscript −).

For every action a = 〈preca, addsa, delsa〉 ∈ AR and its
human counterpart ah = precah , addsah , delsah ∈ AH , we
define a new action aΨ = 〈precaΨ , addsaΨ , delsaΨ〉 ∈ MΨ

whose precondition is given as –

precaΨ = precaR∪{µ+(φpreca)→ B(φ)|φ ∈ precaR\precaH}
∪ {µ−(φpreca)→ B(φ)|φ ∈ precaH \ precaR}

∪ {B(φ)|φ ∈ precaH ∩ precaR}

The important point to note here is that at any given state, an
action in the augmented model is only applicable if the ac-
tion is executable in robot model and the human believes the
action to be executable. Unlike the executability of the action
in the robot model (captured through unconditional precondi-
tions) the human’s beliefs about the action executability can
be manipulated by turning the meta fluents on and off.

The effects of these actions can also be defined similarly.
In addition to these task level actions (represented by the set
Aτ ), we can also define explanatory actions (Aµ) that either
add µ+(∗) fluents or delete µ−(∗).

Special actions a0 and a∞ that are responsible for setting
all the initial state conditions true and checking the goal con-
ditions are also added into the domain model. a0 has a single
precondition that checks for I and has the following add and
delete effects –

addsa0 = {> → p | p ∈ IR} ∪ {> → B(p) | p ∈ IH}
∪ {> → p | p ∈ Fµ−}

delsa0 = {I}
where Fµ− is the subset of Fµ that consists of all the fluents
of the form µ−(∗). Similarly, the precondition of action a∞
is set using the original goal and adds the proposition G.

preca∞ = GR ∪ {µ+(pG)→ B(p) | p ∈ GR \GH}∪
{µ−(pG)→ B(p) | p ∈ GH \GR} ∪ {B(p) | GH ∩GR}

Finally the new initial state and the goal specification be-
comes IE = {I} and GE = {G} respectively. To see how
such a compilation would look in practice, consider an action
(move from p1 p2) that allows the robot to move from point
p1 to p2 only if the path is clear. The action is defined as
follows in the robot model.

( : a c t i o n move from p1 p2
: p r e c o n d i t i o n ( and ( a t p 1 )

( c l e a r p 1 p 2 ) )
: e f f e c t ( and ( n o t ( a t p 1 ) )

( a t p 2 ) ) )

Let’s assume the human is aware of this action but doesn’t
know that they need to care about the status of the path (as
they assume the robot can move through any debris filled
path). In this case, the corresponding action in the augmented
model and the relevant explanatory action will be

( : a c t i o n move from p1 p2
: p r e c o n d i t i o n
( and

( a t p 1 ) (B ( ( a t p 1 ) ) ) ( c l e a r p 1 p 2 )
( i m p l i e s

(µ+
prec ( move from p1 p2 ,

( c l e a r p 1 p 2 ) ) )
(B ( ( c l e a r p 1 p 2 ) ) ) ) )

: e f f e c t
( and ( n o t ( a t p 1 ) ) ( a t p 2 )

( n o t B ( a t p 1 ) )
B ( a t p 2 ) ) ) )

( : a c t i o n e x p l a i n µ+
prec m o v e f r o m c l e a r

: p r e c o n d i t i o n
( and )
: e f f e c t
( and µ+

prec ( move from p1 p2 ,
( c l e a r p 1 p 2 ) ) ) )

We will refer to an augmented model that contains an ex-
planatory action for each possible model update and has no
actions with effects on both the human’s mental model and
the task level state as the canonical augmented model.

Given an augmented model, let πE be some plan that is
valid for this model (πE(IΨ) ⊆ GΨ). From πE , we extract
two types of information – the model updates induced by the
actions in the plan (represented as E(πE)) and the sequence of
actions that have some effect of the task state (henceforth re-
ferred to as actions with ontic effects) represented as D(πE).
Note that E(πE) may contain effects from action in D(πE).
This brings us to the following proposition –

Proposition 1. Given a multi-model planning problem Ψ and
the corresponding augmented modelMΨ, then for any plan
π(IΨ) |=Ψ GΨ, the tuple 〈E(π),D(π)〉 is a valid solution for
Ψ.

This result can be trivially shown to be true given the above
formulation. Unfortunately, the compilation on it’s own only
takes care of generating plans along with the justifications for
correctness of the plan. In many cases, the user would also be
interested in understanding why the given plan is optimal.



Claim 1. Given a multi-model planning problem Ψ and the
corresponding augmented model MΨ, then there exists a
plan π(IΨ) |=Ψ GΨ, such that the tuple 〈E(π),D(π)〉 is a
complete solution for Ψ but π may not be optimal forMΨ.

The first part of the claim comes from the fact that the space
of valid plans forMΨ spans the entire set of valid plans for
the robot model and the set of all possible model updates. On
the other hand, due to the structure of the preconditions, for a
given a set of model updates, there may be plans that are valid
in the human model that never gets expanded. This means
when the search comes up with a plan π∗ that is optimal for
MΨ, it is possible thatMH+E(π∗) could have plans cheaper
than D(π∗), that were not expanded as they were invalid in
the robot model.

6.1 Planning For Complete Solutions Using
Augmented Model

A way to generate complete solutions would be by updating
the goal test used by the search. In addition to checking if
the goal facts are indeed met in the resultant state, we would
now also need to check that the plan is in fact optimal in the
updated model. Note that this is an inversion of the search
in [Chakraborti et al., 2017] with the added advantage that
we are explicitly reasoning with explanatory actions and only
check for plan optimality in human models that are guaran-
teed to support at least one robot executable plan. Further-
more, if we memoize the results of each secondary search
with respect to E(π), we can guarantee that the number of
optimality tests will be less than or equal to the number of
tests required by the earlier approach. Given the nature of this
suboptimality test, it should be possible to leverage methods
like search space reuse to speed up search, but since our focus
here is on establishing the properties of the simplest formula-
tion we will focus on cases that use a simple optimality test.

The next question to ask would be, under what conditions
can this new encoding be guaranteed to generate explanations
that are minimally complete. Before we formally state the
conditions, let us define a new concept called optimality gap
(denoted as ∆πM) for a planning model, which captures the
cost difference between the optimal plan and the second most
optimal plan. ∆πM can be defined as –

∆πM = max{v | v ∈ R∧ 6 ∃π1, π2((0 < (C(π1)−C(π2)) < v)

∧ π1(IM) |=M GM ∧ π2(IM) ∈ Π∗M}

Theorem 1. Given a canonical augmented model MΨ for
a multi-model planning problem Ψ = 〈MR,MH , T 〉, if the
sum of costs of all explanatory actions is less than or equal to
∆πMR

and if π is the cheapest valid plan forMΨ such that
D(π) ∈ Π∗T (MΨ,D(π)), then

(1) D(π) is optimal forMR

(2) E(π) is the MCE for D(π)

(3) There exists no plan π̂ ∈ Π∗R such that MCE for D(π̂)
is cheaper than E(π) ,i.e, the search will find an optimal ex-
plicable plan if one exists.

Proof Sketch. We observe that there exists no valid plan π′
for the augmented model (MΨ) with a cost lower than that
of π and where the ontic fragment (D(π′)) is optimal for the
human model. Let’s assume D(π) 6∈ Π∗R (i.e current plan’s
ontic fragment is not optimal in robot model) and let π̂ ∈ Π∗R.
Now let’s consider the augmented plan corresponding to π̂,
π̂E , i.e, E(π̂E) is the MCE for the plan π̂) and D(π̂E) = π̂.
Then the given augmented plan π̂E is a valid solution for our
augmented planning problem MΨ (since the π̂E consists of
the MCE for π̂, the plan must be valid and optimal in the
human model), moreover the cost of π̂E must be lower than
π. This contradicts our earlier assumption hence we can show
that D(π) is in fact optimal for the robot model.

Using a similar approach we can also show that no cheaper
explanation exists for πE and there exists no other plan with
a cheaper explanation.

Also note, that while it is hard to find the exact value for
the optimality gap, we are guaranteed that the optimality gap
is greater than or equal to one for domains with only unit
cost actions or is guaranteed to be greater than or equal to
(C2−C1), where C1 is the cost of the cheapest action and C2

is the cost of the second cheapest action (i.e ∀a, (CM(a) <
C2 → CM(a) = C1))

6.2 Balanced Plans
We can use the above formulation directly to obtain balanced
explicable plans, we just no longer need to put any specific
restriction on the cost of explanatory action. To generate opti-
mal balanced plans, we need to relax the requirement that the
final plan is optimal in the human model. Instead we can in-
corporate the inexplicability penalty into the reasoning about
the plan, by assigning the cost of a∞ (the goal action) to be
β times the difference between the optimal plan in the human
model and the current plan. When β is set to zero the prob-
lem would just identify the optimal plan corresponding to the
original robot model and when β is set high enough the for-
mulation just generates explicable balanced plans. This can
be guaranteed if beta is set higher that κ, where κ is some up-
per bound on plan length for the robot (that includes explana-
tory actions). On the other hand, if the cost of any explanatory
actions is also higher than κ then the formulation will try to
find the plan that is closest to an optimal plan in the original
human model and is still executable in the robot model.

To see the use of balanced plans, lets revisit the urban
search and rescue case. Here, the optimal path for the robot
to follow would be to go through P7, P8 and P12. The human
thinks the path should be the one through P6 and P5. Explain-
ing the optimality of the path requires explaining that the path
from P6 to P5 is blocked (which can be explained through the
action explain obstructed P6 P5) and the path from P8 to P12
is clear (explained by explain away obstructed P8 P12). Let
us assume that the application of each of these explanatory
actions increases the total cost by ten. The balanced explica-
ble plan in this setting would be

e x p l a i n o b s t r u c t e d P 6 P 5→INIT ACT→
move from p1 p9→ c l e a r p a s s a g e p 9 p 1 0→
move from p9 p10→move from p10 p11→
move from p11 p16→move from p16 p15→



GOAL ACT

If we try to identify an optimal balanced plan for β = 1 and a
cost of 5 for the clear passage action, then the plan that would
be generated would be –

INIT ACT→
move from p1 p9→ c l e a r p a s s a g e p 9 p 1 0→
move from p9 p10→move from p10 p11→
move from p11 p16→move from p16 p15→
GOAL ACT

6.3 Plans with Epistemic Side-effects
As mentioned earlier, in cases where the user is observing
a plan being executed, even the agent’s non-explanatory ac-
tions could have effects on user’s mental model. We can eas-
ily incorporate this requirement by associating effects involv-
ing meta-fluents into our task specific actions. Such effects
may be specified by domain experts or could be generated
using heuristic rules. For example, if an action is executed in
a state where a precondition believed by the user is not met
then that precondition should be removed from the human’s
perceived model.

To illustrate the use of such explanatory actions in our en-
coding let us visit the USAR scenario and assume that the
human thinks that the path from P8 to P12 is blocked and the
one from P6 to P5 is free. Also in this setting, for explain-
ing the status of passages (whether they are blocked or not)
the robot can now use two actions, one a rather expensive ex-
plicit communication action, that sends the updated map in-
formation to the human or the robot can just visit the blocked
passage and the human who is watching a video feed of robot
actions will learn that the passage is blocked or clear. Thus
the action descriptions for the move action will be –

( : a c t i o n move from P7 P8
: p r e c o n d i t i o n ( and ( r o b o t a t P 7 )

. . .
(B ( r o b o t a t P 7 ) ) )

: e f f e c t ( and ( r o b o t a t P 8 )
. . .
(B ( c l e a r P 8 P 1 2 ) )
( i n c r e a s e ( t o t a l −c o s t ) 1 ) ) )

With this new action the robot knows that as soon as it
reaches P8 the human would know that the path from P8 to
P12 is clear so it can continue on that path. So the new robot
plan will be –

INIT ACT→move from p1 p7→move from p7 p8→
move from p8 p12→move from p12 p13→
e x p l a i n o b s t r u c t e d p 6 p 5→
move from p12 p13→move from p13 p14→
move from p14 p15→GOAL ACT

6.4 Plans for Inattentive Users
In this scenario, we can no longer assume that explanatory
actions would have deterministic effects on user’s model and
that means considering planning models that allow for non-
deterministic or stochastic effects.

Domain
New Compilation Model Space Search
cov. runtime cov. runtime

Blocksworld 13/15 569.38 13/15 2318.73
Elevator 15/15 59.20 1/15 3382.462
Gripper 5/15 2301.90 6/15 2093.54
Driverlog 4/15 2740.38 2/15 3158.59
Satellite 2/15 3186.93 0/15 3600

Figure 3: Table showing average runtime (sec) and coverage for
explanations generated for standard IPC domains.

To see a simple example of how this would look, consider
the USAR domain and look at the ability of the move ac-
tion to inform the commander about the status of the pas-
sage from P8 to P12. The robot can not always guarantee that
the commander would be looking at the screen and there is
a chance that the commander won’t be looking at the screen
when the path is presented. Thus in the new definition of ac-
tion (move from P7 P8) we will replace the effect that adds
B(clear P8 P12) with the effect (one-off (B(clear P8 P12))
(and)) Which means that the action’s ability to update the hu-
man model is a non-deterministic effect. In this case, we can
look for a conformant plan by converting the earlier search
into a search over belief space. A search node only passes the
goal test if the goal condition are met in every state in the
belief space. Thankfully, this particular problem does have a
conformant solution –

e x p l a i n o b s t r u c t e d p 6 p 5→
e x p l a i n c l e a r p 8 p 1 2→INIT ACT→
move from p1 p7→move from p7 p8→
move from p8 p12→move from p12 p13→
move from p13 p14→move from p14 p15→
GOAL ACT

7 Empirical Comparison of Model-Space
Search and Planning with Explanatory
Actions

The focus of this section is to see how our compilation com-
pares with the approaches that separate the reasoning about
explanations and plan generation. In particular, we will con-
sider the approaches discussed in [Chakraborti, Sreedharan,
and Kambhampati, 2018b] as a point of comparison. Note
that in order for the model space search to always identify the
optimal balanced explicable plan, generating an optimal plan
at each possible model is not enough. The approach would re-
quire iterating over the space of all possible optimal plans at
a given node to find one that is executable in the robot model
or require involved compilations that only produce optimal
plans that are executable in robot model. To avoid changing
the method too much, we used an optimistic version of the
model space search that only identifies one optimal plan per
search node and the search ends as soon as it find a node
where the optimal plan produced has the same cost as the
robot’s plan and is executable in the robot model.

For comparison, we selected five IPC domains and for each
domain, we created three unique models by introducing 10



random updates in the model (except in the case of gripper
and driverlog where only 5 were removed). Each of these
three domains were paired with five problem instances and
then tested on each of the possible configurations. Each in-
stance was run with a limit of 30 minutes, all explanatory ac-
tions were restricted to the beginning of the plan and the cost
of explanatory actions were set to be twice the cost of original
action. Table 3 lists the time taken to solve each of these prob-
lems. For calculating the average runtime, we used 1800 secs
as the stand in for the runtime of all the instances that timed
out. We used h max as the heuristic for all the configurations.

As clearly apparent from the table, the new approach does
better than the original method for generating balanced plans
for most of the domains. Gripper seems to be the only do-
main, where model search seem to be doing better but this
is also a domain that had the smallest number of model dif-
ferences. This points to the fact that the ability to leverage
planning heuristics seems to make a marked difference in do-
mains with a large number of possible explanatory actions.

8 Related Work
It’s widely accepted in social sciences literature that explana-
tions must be generated while keeping in mind the beliefs of
the agent receiving the explanation [Miller, 2018; Slugoski et
al., 1993]. As such, epistemic planning makes for an excel-
lent framework for studying the problem of generating these
explanations. While the most general formulation of epis-
temic planning has been shown to be undecidable, many sim-
pler fragments have been identified [Bolander, Jensen, and
Schwarzentruber, 2015]. Recently, there have been a lot of in-
terest in developing efficient methods for planning in such do-
mains [Muise et al., 2015; Kominis and Geffner, 2015; 2017;
Le et al., 2018; Huang et al., 2018]. In our base scenario, we
will assume (1) a finite nesting of beliefs, (2) the human is
merely an observer, and (3) all actions are public. The spe-
cific problems discussed in our paper hardly exercises most
of the capabilities provided by epistemic planning. It’s im-
portant to note that given the epistemic nature of the explana-
tory actions, solving the general model reconciliation prob-
lem would require leveraging all those capabilities. Our hope
is that by presenting model reconciliation in this more general
setting, the community would be motivated to start looking at
more general and complex versions of these problems.

Our work also looks at the use of explanatory actions
as a means of communicating information to the human
observer. The most obvious types of such explanatory ac-
tion includes purely communicative actions such as speech
[Tellex et al., 2014] or the use of mixed reality projec-
tions [Chakraborti, Sreedharan, and Kambhampati, 2018a;
Ganesan, 2017], but recent works have shown that physical
agents could also use movements to relay information such as
intention [MacNally et al., 2018; Dragan, Lee, and Srinivasa,
2013] and incapability [Kwon, Huang, and Dragan, 2018].
Our framework could be easily adopted to any of these ex-
planatory actions and would naturally allow for a trade-off
between these different types of communication.

Many recent works dealing with explanation generation for
planning, have looked at characterizing explanation in terms

of the types of questions they answer (c.f [Fox, Long, and
Magazzeni, 2017; Smith, 2012] and contrastive explanations
in general). This characterization is orthogonal to the question
of what type of information constitutes valid explanations.
Putting aside questions regarding observability, the reason
why a user requests an explanation is either due to knowledge
asymmetry (incomplete or incorrect knowledge of the task) or
due to limitations of their inferential capabilities. Depending
on the context, the answer to any of the questions described
in these papers would require correcting human’s model of
the task and/or providing inferential assistance. Works that
have looked at model reconciliation explanations have mostly
focused on the former. Explanations discussed in this paper
can be viewed as an answer to the question “Why this plan?”
(which can also be viewed as a contrastive question of the
form “Why this plan and not any other plan?”). This is not to
say that in complex scenarios just the model reconciliation in-
formation would suffice but it would need to be supplemented
with information that can bridge the differences in inferential
capabilities. Use of abstractions [Sreedharan, Srivastava, and
Kambhampati, 2018], providing refutation of specific foils
[Sreedharan, Srivastava, and Kambhampati, 2018] and pro-
viding causal explanations [Seegebarth et al., 2012] could all
be used to augment model reconciliation explanations.

9 Conclusion and Discussion
The paper presents a more general formulation for the prob-
lem of planning with users in the loop with asymmetric mod-
els than any of the previous works. We discuss how this for-
mulation can be extended to capture novel explanatory be-
haviors and can be solved using approaches that are computa-
tionally more efficient than methods that rely on direct model
space search. One possible avenue for future work would be
investigating and implementing planning compilations that
capture extensions of the model reconciliation problem that
have previously been investigated like specific foils, uncertain
human models, state abstractions, differences in action costs,
disjunctive preconditions, etc... It would also be worth inves-
tigating if there are any specific considerations to be made
when choosing heuristics for such planning models.
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