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Abstract

In this paper we tackle the problem of recovering the phase of complex linear
measurements when only magnitude information is available and we control the
input. We are motivated by the recent development of dedicated optics-based
hardware for rapid random projections which leverages the propagation of light
in random media. A signal of interest ξ ∈ RN is mixed by a random scattering
medium to compute the projection y = Aξ, withA ∈ CM×N being a realization
of a standard complex Gaussian iid random matrix. Such optics-based matrix
multiplications can be much faster and energy-efficient than their CPU or GPU
counterparts, yet two difficulties must be resolved: only the intensity |y|2 can be
recorded by the camera, and the transmission matrix A is unknown. We show
that even without knowing A, we can recover the unknown phase of y for some
equivalent transmission matrix with the same distribution as A. Our method is
based on two observations: first, conjugating or changing the phase of any row
of A does not change its distribution; and second, since we control the input
we can interfere ξ with arbitrary reference signals. We show how to leverage
these observations to cast the measurement phase retrieval problem as a Euclidean
distance geometry problem. We demonstrate appealing properties of the proposed
algorithm in both numerical simulations and real hardware experiments. Not
only does our algorithm accurately recover the missing phase, but it mitigates the
effects of quantization and the sensitivity threshold, thus improving the measured
magnitudes.

1 Introduction

Random projections are at the heart of many algorithms in machine learning, signal processing and
numerical linear algebra. Recent developments ranging from classification with random features [16],
kernel approximation [25] and sketching for matrix optimization [24, 27], to sublinear-complexity
transforms [26] and randomized linear algebra are all enabled by random projections. Computing
random projections for realistic signals such as images, videos, and modern big data streams is
computation- and memory-intensive. Thus, from a practical point of view, any increase in the size
and speed at which one can do the required processing is highly desirable.

This fact has motivated work on using dedicated hardware based on physics rather than traditional
CPU and GPU computation to obtain random projections. A notable example is scattering of light
in random media (Figure 1 (left)) with an optical processing unit (OPU). The OPU enables rapid
(20 kHz) projections of high-dimensional data such as images, with input dimension scaling up to
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Figure 1: Left: The optical processing unit (OPU) is an example application of where the MPR
problem appears. A coherent laser beam spatially encodes a signal (xq − xr) via a digital micro-
mirror device (DMD) which is then shined through a random medium. A camera measures the
squared magnitude of the scattered light which is equivalent to the Euclidean distance between
complex numbers yq ∈ C and yr ∈ C. Furthermore the camera takes quantized measurements; Right:
yq and yr are points on the two-dimensional complex plane. We can measure the squared Euclidean
distance between points and use these distances to localize points on the complex plane and obtain
their phase. Note that transformations such as rotations and reflections do not change the distances.

one million and output dimension also in the million range. It works by “imprinting” the input data
ξ ∈ RN onto a coherent light beam using a digital micro-mirror device (DMD) and shining the
modulated light through a multiple scattering medium such as titanium dioxide white paint. The
scattered lightfield in the sensor plane can then be written as

y = Aξ

whereA ∈ CM×N is the transmission matrix of the random medium with desirable properties.

One of the major challenges associated with this approach is thatA is in general unknown. Though it
could in principle be learned via calibration [6], such a procedure is slow and inconvenient, especially
at high resolution. On the other hand, the system can be designed so that the distribution of A
is approximately iid standard complex Gaussian. Luckily, this fact alone is sufficient for many
algorithms and the actual values ofA are not required.

Another challenge is that common light sensors are only sensitive to intensity, so we can only
measure the intensity of scattered light, |y|2, where | · | is the elementwise absolute value. The
phase information is thus lost. While the use of interferometric measurements with a reference could
enable estimating the phase, the practical setup is more complex, sensitive, and it does not share the
convenience and simplicity of the one illustrated in Figure 1 (left).

This motivates us to consider the measurement phase retrieval (MPR) problem. The MPR sensor data
is modeled as

b = |y|2 + η = |Aξ|2 + η, (1)

where b ∈ RM , ξ ∈ RN , A ∈ CM×N , y ∈ CM , and η ∈ RM is noise. The goal is to recover the
phase of each complex-valued element of y, yi for 1 ≤ i ≤M , from its magnitude measurements
b when ξ is known and the entries ofA are unknown. The classical phase retrieval problem which
has received much attention over the last decade [15, 4] has the same quadratic form as (1) but with
a known A and the task being to recover ξ instead of y. While at a glance it might seem that not
knowingA precludes computing the phase ofAξ, we show in this paper that it is in fact possible via
an exercise in distance geometry.

The noise η is primarily due to quantization because standard camera sensors measure low precision
values, 8-bit in our case (integers between 0 and 255 inclusive). Furthermore, cameras may perform
poorly at low intensities. This is another data-dependent noise source which is modelled in (2) by
a binary mask vector w ∈ RM which is zero when the intensity is below some threshold and one
otherwise; � denotes the elementwise product.

b = w �
(
|y|2 + η

)
= w �

(
|Aξ|2 + η

)
(2)

The distribution of A follows from the properties of random scattering media [14, 6]. It has iid
standard complex Gaussian entries, amn ∼ N (0, 1) + jN (0, 1) for all 1 ≤ m,n ≤M,N .
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The usefulness of phase is obvious. While in some applications having only the magnitude of the
random projection is enough (see [17] for an example related to elliptic kernels), most applications
require the phase. For example, with the phase one can implement a more diverse range of kernels as
well as randomized linear algebra routines like randomized singular value decomposition (SVD). We
report the results of the latter on real hardware in Section 3.1.

Our contributions. We develop an algorithm based on distance geometry to solve the MPR
problem (1). We exploit the fact that we control the input to the system, which allows us to mix ξ
with arbitrary reference inputs. By interpreting each pixel value as a point in the complex plane, this
leads to a formulation of the MPR problem as a pure distance geometry problem (see Section 2.2
and Figure 1 (right)). With enough pairwise distances (corresponding to reference signals) we can
localize the points on the complex plane via a variant of multidimensional scaling (MDS) [23, 5],
and thus compute the missing phase.

As we demonstrate, the proposed algorithm not only accurately recovers the phase, but also improves
the number of useful bits of the magnitude information thanks to the multiple views. Established
Euclidean distance geometry bounds imply that even with many distances below the sensitivity
threshold and coarse quantization, the proposed algorithm allows for accurate recovery. This fact,
which we verify experimentally, could have bearing on the design of future random projectors by
navigating the tradeoff between physics and computation.

1.1 Related work

The classical phase retrieval problem looks at the case whereA is known and ξ has to be recovered
from b in (1) [7, 21, 10]. A modified version of the classical problem known as holographic phase
retrieval is related to our approach: a known reference signal is concatenated with ξ to facilitate the
phase estimation [1]. Interference with known references for classical phase retrieval has also been
studied for known (Fourier) operators [3, 11] .

An optical random projection setup similar to the one we consider has been used for kernel-based
classification [17], albeit using only magnitudes. A phaseless approach to classification with the
measured magnitudes fed into a convolutional neural network was reported by Satat et al. [18].

An alternative to obtaining the measurement phase is to measure, or calibrate, the unknown trans-
mission matrix A. This has been attempted in compressive imaging applications but the process
is impractical at even moderate pixel counts [6, 14]. Estimating A can take days and even the
latest GPU-accelerated methods take hours for moderately sizedA [20]. Other approaches forego
calibration and use the measured magnitudes to learn an inverse map of x 7→ |Ax|2 for use with the
magnitude measurements [9].

Leaving hardware approaches aside, there have been multiple algorithmic efforts to improve the speed
of random projections [12, 25] for machine learning and signal processing tasks. Still, efficiently
handling high-dimensional input remains a formidable challenge.

2 The measurement phase retrieval problem

We will denote the signal of interest by ξ ∈ RN , and the K reference anchor signals by rk ∈ RN
for 1 ≤ k ≤ K. To present the full algorithm we will need to use multiple signals of interest
which we will then denote ξ1, . . . , ξS ; each ξs is called a frame. We set the last, Kth anchor to be
the origin, rK = 0. We ascribe ξ and the anchors to the columns of the matrix X ∈ RN×Q, so
that X = [ξ, r1, r2, · · · , rK ] and let Q = K + 1. The qth column of X is denoted xq. For any
1 ≤ q, r ≤ Q, we let yq = Axq and yqr := A(xq − xr), with yqr,m being its mth entry. Finally,
the mth row ofA will be denoted by am so that yqr,m = 〈am,xq − xr〉.

2.1 Problem statement and recovery up to a reference phase and conjugation

Since we do not knowA, it is clear that recovering the absolute phase ofAξ is impossible. On the
other hand, many algorithms do not require any knowledge ofA except that it is iid standard complex
Gaussian, and that it does not change throughout the computations.
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Let R be an operator which adds a constant phase to each row of its argument (multiplies it by
diag(ejφ1 , . . . , ejφm) for some φ1, . . . , φm) and conjugates a subset of its rows. Since a standard
complex Gaussian is circularly symmetric, R(A) has the same distribution asA. Therefore, since
we do not knowA, it does not matter whether work withA itself or with R(A) for some possibly
unknown R. As long as the same effective R is used for all inputs during algorithm operation, the
relative phases between the frames will be the same whether we use R(A) orA.1

Problem 1. Given a collection of input frames ξ1, . . . , ξS to be randomly projected and a device
illustrated in Figure 1 (left) with an unknown transmission matrixA ∈ CM×N and a b-bit camera,
compute the estimates of projections ŷ1, . . . , ŷS up to a global row-wise phase and conjugation; that
is, so that there exists some R such that ŷs ≈ R(ys) for all 1 ≤ s ≤ S.

2.2 MPR as a distance geometry problem

Since the rows ofA are statistically independent, we can explain our algorithm for a single row and
then repeat the same steps for the remaining rows. We will therefore omit the row subscript/superscript
m except where explicitly necessary.

Instead of randomly projecting ξ and measuring the corresponding projection magnitude |Aξ|2,
consider randomly projecting the difference between ξ and some reference vector, or more generally
a difference between two columns inX , thus measuring | 〈a,xq − xr〉 |2 = |yq − yr|2. Interpreting
yq and yr as points in the complex plane, we see that the camera sensor measures exactly the squared
Euclidean distance between them. Since we control the input to the OPU, we can indeed set it to
xq − xr and measure |yq − yr|2 for all 1 ≤ q, r ≤ Q.

This is the key point: as we can measure pairwise distances between a collection of two-dimensional
vectors in the two-dimensional complex plane, we can use established distance geometry algorithms
such as multidimensional scaling (MDS) to localize points and get their phase. This is illustrated in
Figure 1 (right). The same figure also illustrates the well known fact that rigid transformations of a
point set cannot be recovered from distance data. We need to worry about three things: translations,
reflections and rotations.

The translation ambiguity can be easily dealt with if one notes that for any column xq of X ,
|yq| = | 〈a,xq〉 | gives us the distance of yq to the origin which is a fixed point, ultimately resolving
the translation ambiguity. There is, however, no similar simple way to do away with the rotation and
reflection ambiguity, so it might seem that there is no way to uniquely determine the phase of 〈a, ξ〉.
This is where the discussion from the preceding subsection comes to the rescue. Since R is arbitrary,
as long as it is kept fixed for all the frames, we can arbitrarily set the orientation of any given frame
and use it as a reference, making sure that the relative phases are computed correctly.

2.3 Proposed algorithm

As defined previously, the columns ofX ∈ RN×Q list the signal of interest and the anchors. Recall
that all the entries ofX are known. Using the OPU, we can compute a noisy (quantized) version of

|yqr|2 = | 〈a,xq − xr〉 |2 = |yq − yr|2, (3)

for all (q, r), which gives us Q(Q− 1)/2 squared Euclidean distances between points {yq ∈ C}Qq=1

on the complex plane. These distances can be used to populate a Euclidean (squared) distance matrix
D ∈ RQ×Q as D = (d2qr)

Q
q,r=1 = (|yqr|2)Qq,r=1, which we will use to localize all complex points

yq .

We start by defining the matrix of all the complex points in R2 which we want to recover as

Υ =

[
Re(y1) Re(y2) · · · Re(yQ)
Im(y1) Im(y2) · · · Im(yQ)

]
∈ R2×Q.

Denoting the qth column of Υ by υq, we have d2qr = ‖υq − υr‖
2
2 = υTq υq − 2υTq υr + υ

T
r υr so

that

D = diag (G)1TQ − 2G+ 1Q diag (G)
T
=: K (G) , (4)

1Up to a sign.
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where diag(G) ∈ RQ is the column vector of the diagonal entries in the Gram matrixG := ΥTΥ ∈
RQ×Q and 1Q ∈ RQ is the column vector of Q ones. This establishes a relationship between the
measured distances inD and the locations of the complex points in R2 which we seek. We denote by
J the geometric centering matrix, J := I − 1

Q1Q1TQ so that

Ĝ = − 1
2JDJ = JGJ = (ΥJ)T (ΥJ) (5)

is the Gram matrix of the centered point set in terms of Υ. Ĝ and J are know as the Gram matrix of the
centered point set and the geometric centering matrix because ΥJ is the points in Υ with their mean
subtracted. An estimate Υ̂ of the centered point set, ΥJ , is then obtained by eigendecomposition as
Ĝ = V diag(λ1, . . . , λQ)V

T and taking Υ̂ = [
√
λ1v1,

√
λ2v2]

T where v1 and v2 are the first and
second column of V and assuming that the eigenvalue sequence is nonincreasing. This process is the
classical MDS algorithm [23, 5]. Finally, the phases can be calculated via a four-quadrant inverse
tangent, φ(yq) = arctan(υq2, υq1).

Procrustes analysis. As we recovered a centered point set via MDS with a geometric centering
matrix J , the point set will have its centroid at the origin. This is a consequence of the used algorithm,
and not the “true” origin. As described above, we know that |yq|2 defines squared distances to the
origin and yQ = 〈a,xQ〉 = 0 + 0j (as xQ was set to the origin), meaning that we can correctly
center the recovered points by translating the point set, Υ̂, by −υQ.

The correct absolute rotation and reflection cannot be recovered. However, since we only care about
working with some effective R(A) with the correct distribution, we only need to ensure that the
relative phases between the frames are correct. We can thus designate the first frame as the reference
frame and set the rotation (which directly corresponds to the phase) and reflection (corresponding to
conjugation) arbitrarily. Once these are chosen, the anchors r1, . . . , rK are fixed, which in turn fixes
the phasing–conjugation operator R.

SinceA is unknown, R is also unknown, but fixed anchors allow us to compute the correct relative
phase with respect to R(A) for the subsequent frames. Namely, upon receiving a new input ξs to
be randomly projected, we now localize it with respect to a fixed set of anchors. This is achieved
by Procrustes analysis. Denoting by Υ̃1 our reference estimate of the anchor positions in frame 1
(columns 2, . . . , Q of Υ̂ above which was recovered from Ĝ in (5)), and by Υ̃s the MDS estimate

of anchor positions in frame s, adequately centered. Let Υ̃sΥ̃
T

1 = UΣV T be the singular value

decomposition of Υ̃sΥ̃
T

1 . The optimal transformation matrix in the least squares sense is then
R = V UT so thatRΥ̃s ≈ Υ̃1 [19].

Finally, we note that with a good estimate of the anchors, one can imagine not relocalizing them in
every frame. The localization problem for ξ then boils down to multilateration, cf. Section C in the
supplementary material.

2.4 Sensitivity threshold and missing measurements

As we further elaborate in Section A of the supplementary material, in practice some measurements
fall below the sensitivity threshold of the camera and produce spurious values. A nice benefit
of multiple “views” of ξ via its interaction with reference signals is that we can ignore those
measurements. This introduces missing values inD which can be modeled via a binary mask matrix
W . The recovery problem can be modeled as estimating Υ fromW � (D+E) whereW ∈ RN×N

contains zeros for the entries which fall below some prescribed threshold, and ones otherwise.

We can predict the performance of the proposed method when modeling the entries of W as iid
Bernoulli random variables with parameter p, where 1− p is the probability that an entry falls below
the sensitivity threshold and E as uniform quantization noise distributed as U

(
− κ

2(2b−1)
, κ
2(2b−1)

)
,

where b is the number of bits, and κ an upper bound on the entries ofD (in our case 28 − 1 = 255).

Adapting existing results on the performance of multidimensional scaling [28] (by noting that E is
sub-Gaussian), we can get the following scaling of the distance recovery error with the number of
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Algorithm 1 MPR algorithm for S frames.

Input: Squared distances
[
|yjQ,m − ylQ,m|2

]
s

for all 1 ≤ j, l ≤ Q for frames 1 ≤ s ≤ S and rows
1 ≤ m ≤M ; [ · ]s denotes frame s

Output: Y ∈ CM×S containing all localized points such that ys = R(A)ξs for some fixed R.
1: Y ← 0M×S . Initialize Y
2: m← 1
3: while m ≤M do . Solve each row separately
4: Populate all frame s = 1 distances into distance matrixD .D ∈ RQ×Q

5: [Υ]1 ← MDS(D) . [Υ]1 ∈ R2×Q

6: [Υ]1 ← GradientDescent(D, [Υ]1)
7: [Υ]1 ← [Υ]1 − [υQ]11

T . Translate to align with origin
8: s← 2
9: while s ≤ S do

10: Populate all frame s distances into distance matrixD
11: [Υ]s ← MDS(D)
12: [Υ]s ← GradientDescent(D, [Υ]s)
13: [Υ]s ← [Υ]s − [υQ]s1

T

14: R← Procrustes([υ2, . . . ,υQ]1, [υ2, . . . ,υQ]s) .R aligns frames 1 and s anchors
15: [Υ]s ← Align([Υ]s,R, [υ2, . . . ,υQ]1) . Align anchors
16: s← s+ 1
17: end while
18: U ←

[
[υ1]1, [υ1]2, . . . , [υ1]S

]
. U ∈ R2×S

19: ym ← u1 + ju2 . Multiply second row of U with j and add to first row
20: m← m+ 1
21: end while

anchors K (for K sufficiently large),

1

K
E
[∥∥∥D̂ −D∥∥∥

F

]
.

κ√
pK

, (6)

where . denotes inequality up to a constant which depends on the number of bits b, the sub-
Gaussian norm of the entries in E, and the dimension of the ambient space (here R2). An important
implication is that even for coarse quantization (small b) and for a large fraction of entries below the
sensitivity threshold (small p), we can achieve arbitrarily small amplitude and phase errors per point
by increasing the number of reference signals K.

Refinement with gradient descent. The output of the classical MDS method described above can
be further refined via a local search. A standard differentiable objective called the squared stress is
defined as follows,

min
Z

f (Υ) = min
Z

∥∥∥W �
(
D −K

(
ZTZ

))∥∥∥2
F
, (7)

where K(·) is as defined in (4) and Z ∈ R2×Q is the point matrix induced by row m of A. In our
experiments we report the result of refining the classical MDS results via gradient descent on (7).

Note that the optimization (7) is nonconvex. The complete procedure is thus analogous to the usual
approach to nonconvex phase retrieval by spectral initialization followed by gradient descent [15, 4].
Algorithm 1 summarizes our proposed method.

3 Experimental verification and application

We test the proposed MPR algorithm via simulations and experiments on a real OPU. For hardware
experiments, we use a scikit-learn interface to a publicly available cloud-based OPU.2

2https://www.lighton.ai/lighton-cloud/.
Reproducible code available at https://github.com/swing-research/opu_phase under the MIT License.
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Evaluation metrics. The main challenge is to evaluate the performance without knowing the
transmission matrixA. To this end, we propose to use the linearity error. The rationale behind this
metric is that with the phase correctly recovered, the end-to-end system should be linear. That is, if we
recover y and z from |y|2 = |Aξ1|

2 and |z|2 = |Aξ2|
2, then we should get (y + z) when applying

the method to |v|2 = |A(ξ1 + ξ2)|
2. With this notation, the relative linearity error is defined as

linearity error =
1

M

M∑
m=1

|(ym + zm)− vm|
|vm|

. (8)

The second metric we use is the number of “good” or correct bits. This metric can only be evaluated in
simulation since it requires the knowledge of the ground truth measurements. Letting |y|2 = | 〈a, ξ〉 |2
and ŷ be our estimate of y, the number of good bits is defined as

good bits = − 20
6.02 log

(
||y|2 − |ŷ|2| / |y|2

)
.

It is proportional to the signal-to-quantization-noise ratio if the distances uniformly cover all quanti-
zation levels.3

3.1 Experiments

In all simulations, intensity measurements are quantized to 8 bits and all signals and references are
iid standard (complex) Gaussian random vectors.

We first test the phase recovery performance by evaluating the linearity error. In simulation, we
draw random frames ξ1, ξ2, and A ∈ C100×642 . We apply Algorithm 1 to |Aξ1|2, |Aξ2|2 and
|A(ξ1 + ξ2)|2 and calculate the linearity error (8). We use classical MDS and MDS with gradient
descent (MDS-GD). Figure 2a shows that the system is indeed approximately linear and that the
linearity error becomes smaller as the number of reference signals grows. In Figure 2b, we set the
sensitivity threshold to τ = 6 and zero the distances below the threshold per (2). Again, the linearity
error quickly becomes small as the number of anchors increases showing that the overall system is
robust and that it allows recovery of phase for small-intensity signals.

Next, we test the linearity error with a real hardware OPU. The OPU gives 8-bit unsigned integer
measurements. A major challenge is that the DMD (see Figure 1) only allows binary input signals.
This is a property of the particular OPU we use and while it imposes restrictions on reference design,
the method is unchanged as our algorithm does does not assume a particular type of signal. Section
A in the supplementary material describes how we create binary references and addresses other
hardware-related practicalities.

Figure 2c reports the linearity error on the OPU with suitably designed references and the same size
A. The empirically determined sensitivity threshold of the camera is τ = 6, and the measurements
below the threshold were not used. We ignore rows ofA which give points with small norms (less
than two) because they are prone to noise and disproportionately influence the relative error. Once
again, we observe that the end-to-end system with Algorithm 1 is approximately linear and that the
linearity improves as we increase the number of anchors.

Finally, we demonstrate the magnitude denoising performance. We draw a ∈ C100, a random signal
ξ ∈ R100 and a set of random reference anchor signals. We run our algorithm for number of anchors
varying between 2 and 15. For each number of anchors, we recover ŷ for |y|2 = | 〈a, ξ〉 |2 using
either classical MDS or MDS-GD. We then measure the number of good bits. The average results
over 100 trials are shown in Figure 3a. Figure 3b reports the same experiment with the sensitivity
threshold set to τ = 6 (that is, the entries below τ are zeroed in the distance matrix per (2)). Both
figures show that the proposed algorithm significantly improves the estimated magnitudes in addition
to recovering the phases. The approximately 1 additional good bit with gradient descent in Figure
3b corresponds to the relative value of 21/28 ≈ 0.8% which is consistent with the gradient descent
improvement in Figure 2b.

We also test a scenario where the anchor positions on the complex plane are known exactly and
we only have to localize a single measurement. We compare this to localizing the anchors and the

3Note that the quantity registered by the camera is actually the squared magnitude, hence the factor 20.
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Figure 2: Experiments in simulation and on real hardware to evaluate the linearity error as defined
in (8). The input signals are of dimension 642, M in (8) is 100 and the number of anchors signals
are increased. The classical MDS and MDS with gradient descent (MDS-GD) are used. In all cases
the error decreases as the number of anchors increases. (a) In simulation with Gaussian signals and
Gaussian reference signals; (b) In simulation with Gaussian signals and Gaussian reference signals
with sensitivity threshold τ = 6; (c) On a real OPU with binary signals and binary references.
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Figure 3: (a) Magnitude denoising performance of MDS and MDS-GD over 100 trials. Input signals
are Gaussian and of dimension 100; (b) Magnitude denoising performance of MDS and MDS-GD over
100 trials with 100-dimensional Gaussian signals and sensitivity threshold τ = 6; (c) Comparison
between recovering a single point and recovering the point and anchors at the same time. SR-LS is
used to locate a single point when anchors are known and MDS is used to locate all points when
anchors are unknown.

measurements jointly. Localizing a single point via multilateration is performed by minimizing the
SR-LS objective (see (9) in the supplementary material). The input signal dimension is 642 and
we recover ŷ for |y|2 = | 〈a, ξ〉 |2. We perform 100 trials and calculate the SNR of the recovered
complex points. Figure 3c shows that although having perfect knowledge of anchor locations helps,
classical MDS alone does not perform much worse.

Optical randomized singular value decomposition. We use Algorithm 1 to implement random-
ized singular value decomposition (RSVD) as described in Halko et al. [8] on the OPU. We use 5
anchors in all RSVD experiments. The original RSVD algorithm and a variant with adaptations for
the OPU are described in Algorithms 2 and 3 in the supplementary material.

One of the steps in the RSVD algorithm for an input matrixB ∈ RM×N requires the computation
of BΩ where Ω ∈ RN×2K is a standard real Gaussian matrix, K is the target number of singular
vectors, and 2K may be interpreted as the number of random projections for each row of B. We
use the OPU to compute this random matrix multiplication. An interesting observation is that since
in Algorithm 1 we recover the result of multiplications by a complex matrix with independent real
and imaginary parts, we can halve the number of projections when using the OPU with respect to
the original algorithm. By treating each row of B as an input frame, we can obtain Y ∈ CK×M

via Algorithm 1 when |Y |2 = |ABT |2 withA as defined in Problem 1 with K rows. Then, we can
construct P = [Re(Y ∗) Im(Y ∗)] ∈ RM×2K which would be equivalent to computing BΩ for
real Ω. Section B in the supplementary material describes this in more detail.
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Figure 4 shows the results when the OPU is used to perform the random matrix multiplication of the
RSVD algorithm on a matrix B. Figure 4 (left) reports experiments with a random binary matrix
B ∈ R10×104 , different numbers of random projections (number of rows in A), and ten trials per
number of projections. We plot the average error per entry when reconstructingB from its RSVD
matrices and singular values. Next, we take 500 28 × 28 samples from the MNIST dataset [13],
threshold them to be binary, vectorize them, and stack them into a matrix B ∈ R500×282 . Figure
4 (right) shows the seven leading right singular vectors reshaped to 28 × 28. The top row shows
the singular vectors that are obtained when using the OPU with 500 projections and the bottom row
shows the result when using Python. The error is negligible.
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Figure 4: Left: Average RSVD error over 10 trials with varying number of projections on hardware
with an input matrix of size 10× 1000; Right: Reshaped leading right singular vectors of an MNIST
matrix of size 500 × 282. The top rows shows the leading right singular vectors after performing
RSVD with the OPU and using our algorithm. The bottom row shows the leading right singular
vectors from Python. The relative error is below each singular vector.

4 Conclusion

Traditional computation methods are often too slow for processing tasks which involve large data
streams. This motivates alternatives which instead use fast physics to “compute” the desired functions.
In this work, we looked at using optics and multiple scattering media to obtain linear random
projections. A common difficulty with optical systems is that off-the-shelf camera sensors only
register the intensity of the scattered light. Our results show that there is nevertheless no need to
reach for more complicated and more expensive coherent setups. We showed that measurement
phase retrieval can be cast as a problem in distance geometry, and that the unknown phase of random
projections can be recovered even without knowing the transmission matrix of the medium.

Simulations and experiments on real hardware show that the OPU setup combined with our algo-
rithm indeed approximates an end-to-end linear system. What is more, we also improve intensity
measurements. The fact that we get full complex measurements allows us to implement a whole new
spectrum of randomized algorithms; we demonstrated the potential by the randomized singular value
decomposition. These benefits come at the expense of a reduction in data throughput. Future work
will have to precisely quantify the smallest achievable data rate reduction due to allocating a part of
the duty cycle for reference measurements, though we note that the optical processing data rates are
very high to begin with.
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