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ABSTRACT

Video prediction models combined with planning algorithms have shown promise
in enabling robots to learn to perform many vision-based tasks through only self-
supervision, reaching novel goals in cluttered scenes with unseen objects. How-
ever, due to the compounding uncertainty in long horizon video prediction and
poor scalability of sampling-based planning optimizers, one significant limitation
of these approaches is the ability to plan over long horizons to reach distant goals.
To that end, we propose a framework for subgoal generation and planning, hi-
erarchical visual foresight (HVF), which generates subgoal images conditioned
on a goal image, and uses them for planning. The subgoal images are directly
optimized to decompose the task into easy to plan segments, and as a result, we
observe that the method naturally identifies semantically meaningful states as sub-
goals. Across four simulated vision-based manipulation tasks, we find that our
method achieves more than 20% absolute performance improvement over plan-
ning without subgoals and model-free RL approaches. Further, our experiments
illustrate that our approach extends to real, cluttered visual scenes.

1 INTRODUCTION

Developing robotic systems that can complete long horizon visual control tasks, while generalizing
to novel scenes and objectives, remains an unsolved and challenging problem. Generalization to
unseen objects and scenes requires robots to be trained across diverse environments, meaning that
detailed supervision during data collection in not practical to provide. Furthermore, reasoning over
long-horizon tasks introduces two additional major challenges. First, the robot must handle large
amounts of uncertainty as the horizon increases. And second, the robot must identify how to reach
distant goals when only provided with the final goal state, a sparse indication of the task, as opposed
to a shaped cost that implicitly encodes how to get there. In this work, we aim to develop a method
that can start to address these challenges, leveraging self-supervised models learned using only
unlabeled data, to solve novel temporally-extended tasks. ||

Model-based reinforcement learning has shown promise in generalizing to novel objects and tasks,
as learned dynamics models have been shown to generalize to new objects (Finn & Levinel |2016;
Ebert et al., |2018b)), and can be used in conjunction with planning to reach goals unseen during
training. However, planning to reach temporally distant goals is difficult. As the planning horizon
increases model error compounds, and the cost function often provides only a noisy or sparse signal
of the objective. Both of these challenges are exacerbated when planning in visual space.

In this work, the key insight that we leverage is that while model error and sparse cost signals can
make long horizon planning difficult, we can mitigate these issues by learning to break down long-
horizon tasks into short horizon segments. Consider, for example, the task of opening a drawer
and putting a book in it, given supervision only in the form of the final image of the open drawer
containing the book. The goal image provides nearly no useful cost signal until the last stage of
the task, and model predictions are likely to become inaccurate beyond the first stage of the task.
However, if we can generate a sequence of good subgoals, such as (1) the robot arm grasping the

TWork completed at Google Brain
Videos and code are available at: https://sites.google.com/stanford.edu/hvf


https://sites.google.com/stanford.edu/hvf

Published as a conference paper at ICLR 2020

drawer handle, (2) the open drawer, and (3) the robot arm reaching for the book, planning from
the initial state to (1), from (1) to (2), from (2) to (3), and from (3) to the final goal, the problem
becomes substantially easier. The subgoals break the problem into short horizon subsegments each
with some useful cost signal coming from the next subgoal image.

Our main contribution is a self-supervised hierarchical planning framework, hierarchical visual fore-
sight (HVF), which combines generative models of images and model predictive control to decom-
pose a long-horizon visual task into a sequence of subgoals. In particular, we propose optimizing
over subgoals such that the resulting task subsegments have low expected planning cost. However,
in the case of visual planning, optimizing over subgoals corresponds to optimizing within the space
of natural images. To address this challenge, we train a generative latent variable model over im-
ages from the robot’s environment and optimize over subgoals in the latent space of this model.
This allows us to optimize over the manifold of images with only a small number of optimization
variables. When combined with visual model predictive control, we observe that this subgoal op-
timization naturally identifies semantically meaningful states in a long horizon tasks as subgoals,
and that when using these subgoals during planning, we achieve significantly higher success rates
on long horizon, multi-stage visual tasks. Furthermore, since our method outputs subgoals condi-
tioned on a goal image, we can use the same model and approach to plan to solve many different
long-horizon tasks, even with previously unseen objects. We first demonstrate our approach in sim-
ulation on a continuous control navigation task with tight bottlenecks, and then evaluate on a set of
four different multi-stage object manipulation tasks in a simulated desk environment, which require
interacting with up to 3 different objects. In the challenging desk environment, we find that our
method yields at least a 20% absolute performance improvement over prior approaches, including
model-free reinforcement learning and a state of the art subgoal identification method. Finally, we
show that our approach generates realistic subgoals on real robot manipulation data.

2 RELATED WORK

Developing robots that can execute complex behaviours from only pixel inputs has been a well
studied problem, for example with visual servoing (Mohta et al., 2014; [Espiau et al., 1992} |Wilson
et al., [1996; [Yoshimi & Allen, [1994; [Jagersand et al.| [1997; |[Lampe & Riedmiller, 2013} |Sadeghi
et al.l 2018} Sadeghi, [2019). Recently, reinforcement learning has shown promise in completing
complex tasks from pixels (Ghadirzadeh et al.,[2017; [Levine et al.| 2015} [Kalashnikov et al.| 2018;
Lange et al.l 2012; OpenAl et al.l 2018; |Schenck & Fox| [2016; [Matas et al., 2018 James et al.,
2017; Singh et al.l 2019), including in goal-conditioned settings (Kaelbling, |1993; [Schaul et al.,
2015} |Andrychowicz et al.| [2017; [Sadeghi et al., 2018} |Sadeghil 2019} Nair et al., 2018a). While
model-free RL approaches have illustrated the ability to generalize to new objects (Kalashnikov
et al.l 2018)) and learn tasks such as grasping and pushing through self-supervision (Pinto & Gupta,
2015} Zeng et all |2018)), pure model-free approaches generally lack the ability to explicitly reason
over temporally-extended plans, making them ill-suited for the problem of learning long-horizon
tasks with limited supervision.

Video prediction and planning have also shown promise in enabling robots to complete a diverse
set of visuomotor tasks while generalizing to novel objects (Finn & Levine, |2016; Kalchbrenner
et al.l 2016} Boots et al., 2014; [Byravan & Fox) |2016). Since then, a number of video predic-
tion frameworks have been developed specifically for robotics (Babaeizadeh et al.,|2017; [Lee et al.,
2018; [Ebert et al.|, [2017), which combined with planning have been used to complete diverse behav-
iors (Nair et al., 2018b; |[Ebert et al.l 2018b} [Paxton et al., 2018} Xie et al.l 2019). However, these
approaches still struggle with long horizon tasks, which we specifically focus on.

One approach to handle long horizon tasks is to add compositional structure to policies, either from
demonstrations (Krishnan et al., [2017; |[Fox et al., [2018)), with manually-specified primitives (Xu
et al., 2017 Huang et al., 2018)), learned temporal abstractions (Neitz et al., 2018)), or through
model-free reinforcement learning (Sutton et al.l [1999; Barto & Mahadevan, 2003} |Bacon et al.,
2016; [Nachum et al.| [2018; [Levy et al, [2019). These works have studied such hierarchy in grid
worlds (Bacon et al.| 2016) and simulated control tasks (Nachum et al. 2018} [Eysenbach et al.,
2018; [Levy et al., [2019) with known reward functions. In contrast, we study how to incorporate
compositional structure in learned model-based planning with video prediction models. Our ap-
proach is entirely self-supervised, without motion primitives, demonstrations, or shaped rewards,
and scales to vision-based manipulation tasks.
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Classical planning methods have been successful in solving long-horizon tasks (LaValle, 2006}
Choset et al., 2005), but make restrictive assumptions about the state space and reachability between
states, limiting their applicability to complex visual manipulation tasks. Similarly, completing long
horizon tasks has also been explored with symbolic models (Toussaint et al., [2019) and Task and
Motion Planning (TAMP) (Kaelbling & Lozano-Perez, 2011} |Srivastava et al.,|2014). However, un-
like these approaches our method requires no additional knowledge about the objects in the scene nor
any predefined symbolic states. Recently, there have been several works that have explored planning
in learned latent spaces (Kurutach et al., 2018; Ichter & Pavone| [2018}; |Watter et al., [2015 [Srinivas
et al., [2018). This has enabled planning in higher dimensional spaces, however these methods still
struggle with long-horizon tasks. Furthermore, our hierarchical planning framework is agnostic to
state space, and could directly operate in one of the above latent spaces.

A number of recent works have explored reaching novel goals using only self-supervision (Finn
& Levine, |2016}; [Eysenbach et al.| 2019; Kurutach et al.| 2018} [Wang et al., [2019; Jayaraman et al.,
2019; Nair et al.,2018a)). In particular, time-agnostic prediction (TAP) (Jayaraman et al.,2019) aims
to identify bottlenecks in long-horizon visual tasks, while other prior works (Nair et al., 2018a; [Finn
& Levine}, 2016) reach novel goals using model-free or model-based RL. We compare to all three of
these methods in Section [5|and find that HVF significantly outperforms all of them.

3 PRELIMINARIES

We formalize our problem setting as a goal-conditioned Markov decision process (MDP) defined by
the tuple (S, A, p, G, C, \) where s € S is the state space, which in our case corresponds to images,
a € Ais the action space, p(s;+1]|S¢, a;) governs the environment dynamics, G C S represents the
set of goals which is a subset of possible states, C(s;, s,) represents the cost of being in state s, € S
given that the goal is s, € G, and )\ is the discount factor. In practice, acquiring cost functions that
accurately reflect the distance between two images is a challenging problem (Yu et al.| |2019). We
make no assumptions about having a shaped cost, assuming the simple yet sparse distance metric of
{5 distance in pixel space in all of our experiments. Approaches that aim to recover more shaped
visual cost functions are complementary to the contributions of this work.

In visual foresight, or equivalently, visual MPC (Finn & Levine, [2016; [Ebert et al.
2018b), the robot collects a data set of random interactions [(s1,a1),(s2,a2),...,(s1,ar)]
from a pre-determined policy. This dataset is used to learn a model of dynamics
Sfo(Sta1, St42, vy Strn|St, Aty G4a1, vy Gpyp—1) through maximum likelihood supervised learning.
Note the states are camera images, and thus fy is an action-conditioned video prediction model.
Once the model is trained, the robot is given some objective and plans a sequence of actions that op-
timize the objective via the cross entropy method (CEM) (Rubinstein & Kroese, 2004). In this work,
we will assume the objective is specified in the form of an image of the goal s, while CEM aims to
find a sequence of actions that minimize the cost C between the predicted future frames from fy and
the goal image. While standard visual foresight struggles with long-horizon tasks due to uncertainty
in fy as the prediction horizon h increases and sparse C for CEM to optimize, in the next section we
describe how our proposed approach uses subgoal generation to mitigate these issues.

4 HIERARCHICAL VISUAL FORESIGHT

Overview: We propose hierarchical visual foresight (HVF), a planning framework built on top
of visual foresight (Finn & Levinel 2016} [Ebert et al., 2018b) for long horizon visuomotor tasks.
We observe that when planning to reach a long horizon goal given only a goal image, standard
planning frameworks struggle with (1) sparse or noisy cost signals and (2) compounding model
error. Critically, we observe that if given the ability to sample possible states, there is potential
to decompose a long horizon planning task into shorter horizon tasks. While this idea has been
explored in classical planning (Betts| [2010), state generation is a significant challenge when dealing
with high dimensional image observations.

One of our key insights is that we can train a deep generative model, trained exclusively on self-
supervised data, as a means to sample possible states. Once we can sample states, we also need
to evaluate how easy it is to get from one sampled state to another, to determine if a state makes
for a good subgoal. We can do so through planning: running visual MPC to get from one state to
another and measuring the predicted cost of the planned action sequence. Thus by leveraging the
low-dimensional space of a generative model and the cost acquired by visual MPC, we can optimize
over a sequence of subgoals that lead to the goal image. In particular, we can explicitly search in
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Figure 1: Hierarchical visual foresight: Our method takes as input the current image, goal image, an action
conditioned video prediction model fg, and a generative model g, (z). Then, it samples sets of possible states
from g4(z) as sub-goals. It then plans between each sub-goal, and iteratively optimizes the sub-goals to min-
imize the worst case planning cost between any segment. The final set of sub-goals that minimize planning
cost are selected, and finally the agent completes the task by performing visual model predictive control with
the sub-goals in sequence. In this example the task is to push a block off the table, and close the door. Given
only the final goal image, HVF produces sub-goals for (1) pushing the block and reaching to the handle and (2)
closing the door.

Visual MPC
with fy

S1

Optimize subgoals with CEM
Visual planning with fy to minimize planning cost

latent image space for subgoals, such that no segment is too long-horizon, mitigating the issues
around sparse costs and compounding model error.

In the following sections, we will describe more formally how HVF works, how we learn the gener-
ative model, how we learn the dynamics model, how goal-conditioned planning with visual MPC is
executed, and lastly how subgoals are optimized.

Hierarchical visual foresight: Formally, we assume the goal conditioned MDP setting in Section
E| where the agent has a current state so, goal state s, cost function C, and dataset of environment
interaction {(s1, a1, $2, @z, ..., ST, ar)}. This data can come from any exploration policy; in prac-
tice, we find that interaction from a uniformly random policy in the continuous action space of the
agent works well. From this data, we train both a dynamics model fy using maximum likelihood
supervised learning, as well as a generative model s ~ gg.

Now given sg and s, the objective is to find K subgoals s, 52, ..., sk that enable easier completion
of the task. Our hope is that the subgoals will identify steps in the task such that, for each sub-
segment, the planning problem is easier and the horizon is short. While one way to do this might
be to find subgoals that minimize the total planning cost, we observe that this does not necessarily
encourage splitting the task into shorter segments. Consider planning in a straight line: using any
point on that line as a subgoal would equally minimize the total cost. Therefore, we instead optimize
for subgoals that minimize the worst expected planning cost across any segment. This corresponds
to the following objective:

SI{r_}_igK max{Cpian (50, 51)s Cplan (51, 52), --s Cptan (S, Sg) } (1)
where Cpian(si, s;) is the cost achieved by the planner when planning from s; to s;, which we
compute by planning a sequence of actions to reach s; from s; using fs and measuring the predicted
cost achieved by that action sequenceﬂ Once the subgoals are found, then the agent simply plans
using visual MPC (Finn & Levine] 2016} [Ebert et al [2018b) from each si_; to s until a cost
threshold is reached or for a fixed, maximum number of timesteps, then from s} to sp41, until

planning to the goal state, where s}, is the actual state reached when running MPC to get to s;,. For a
full summary of the algorithm, see Algorithm 1. Next, we describe individual components in detail.

Generative model: To optimize subgoals, directly optimizing in image space is nearly impossible
due to the high dimensionality of images and the thin manifold on which they lie. Thus, we learn a

"We compare max/mean cost in Section
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Algorithm 1 Hierarchical Visual Foresight HVF( fg, g4(2), s¢, s4)
1: Receive current state s; and goal state sq
2: Initialize ¢ = M(0,1), M = 200, M™* = 40, number of subgoals K
3: while (o > 1le — 3) or (iterations < 5) do

4 form =1,2,..., M do
5: 80", 8K 11 = St, Sg
6: 2M ~q # Sample latent subgoal lists
7: fork=1,2,..., K do
8 st = ge(z™[k], s0") # Map latent to image subgoal
9: plan.k> Cplan,k = MPC(fa, s 1, s%") # Optimal actions and planning cost
10: end for
11: gllan,kvcgllan,K-&-l = MPC(f978717(L75%+1)
12: Cost™ = maxk {Cplan.0s - Cplan,k+1} # Max planning cost across segments
13:  end for
14:  Zgore = Sort(K : [Cost!, .., Cost™], V : [}, .., 2M]) # Rank by Cost™

15:  Refit q to {Zsort[1], ..., Zsort[M*]} with low cost
16: end while

17: fork =1,2,..., K do

18:  Set final subgoal sk = g4 (Zsorteall]x)

19:  Execute Ay, — = MPC(fo, Sk—1, Sk)
20: end for
21: Execute Ax, — = MPC(fo, sk, Sg)

generative model s ~ g4(z) such that samples represent possible futures in the scene, and optimize
in the low-dimensional latent space z. In settings where aspects of the scene or objects change across
episodes, we only want to sample plausible future states, rather than sampling states corresponding
to all scenes. To handle this setting, we condition the generative model on the current image, which
contains information about the current scene and the objects within view. Hence, in our experiments,
we use either a variational autoencoder (VAE) or a conditional variational autoencoder (CVAE), with
a diagonal Gaussian prior over z, i.e. z ~ N(0,I). In the case of the CVAE, the decoder also takes
as input an encoding of the conditioned image, i.e. s ~ g4(2, so). In practice, we use the inital state
so as the conditioned image. We train the generative model on randomly collected interaction data.
The architecture and training details can be found in Appendix

Dynamics model: The forward dynamics model fy can be any forward dynamics model that
estimates p(Sty1, St42, .- St-+h|St, Gty At 41, -, Gt+h—1). In our case states are images, so we
use an action conditioned video prediction model, stochastic variational video prediction (SV2P)
(Babaeizadeh et al, [2017) for fy. We train the dynamics model on randomly collected interaction
data. Architecture and training parameters are identical to those used in (Babaeizadeh et al., [2017);
details can be found in Appendix

MPC & planning with subgoals: When optimizing subgoals, we need some way to measure the
ease of planning to and from the subgoals. We explicitly compute this expected planning cost
between two states s, Sy+1 by running model predictive control A, C' = MPC( fy, sk, S]H_lﬁ as
done in previous work (Finn & Levine, |2016; Nair et al., | 2018b; [Ebert et al.,[2018b)). This uses the
model fp to compute the optimal trajectory between s; and sy, and returns the optimal action
A and associated cost C. Note this does not step any actions in the real environment, but simply
produces an estimated planning cost. Details on this procedure can be found in Appendices[A.T|and
Once the subgoals have been computed, the same procedure is run MPC( fy, sx_1, i) until si
is reached (measured by a cost threshold) or for a fixed, maximum number of timesteps, then from
MPC(fo, s}, Sk+1), ... MPC(fg, %, s4) (Alg. 1 Lines 17:21), where s}, represents the state actually
reached after trying to plan to si. In this case, the best action at each step is actually applied in the
environment until the task is completed, or the horizon runs out. Note we only compute subgoals
once in the beginning calling HVF(fy, 94(2), so, 5¢), the plan with those subgoals. In principle
HVF can be called at every step, but for computational efficiency we only call HVF once.

Subgoal optimization: Since we need to search in the space of subgoals to optimize Equation[I| we
perform subgoal optimization using the cross entropy method (CEM) (Rubinstein & Kroese, [2004)
in the latent space of our generative model g,(z). Note this subgoal optimization CEM is distinct

?Pseudocode for MPC can be found in Appendix
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Figure 3: Qualitative Results for Maze Navigation. Here we show some of the generated subgoals from
HVF for the Maze Navigation task. On the left we observe samples for K = 1 and on the right we observe
samples for K = 2. We see in the “Medium” difficulty and K = 1, the generated subgoal is very close to
the intuitive bottleneck in the task. Similarly, in the “Hard” case with K = 2 we observe that the discovered
subgoals are close to the gaps in the walls, which represent the bottlenecks in the task.

from the CEM used for computing the planning cost, which we use as a subroutine within this outer
level of CEM. At a high-level, the subgoal optimization samples a list of subgoals, evaluates their
effectiveness towards reaching the goal, and then iteratively refines the subgoals through resampling
and reevaluation. We begin by drawing M samples from a diagonal Gaussian distribution ¢ =
N(0,T) where the dimensionality of ¢ is K * L, where K is the number of subgoals and L is the
size of the latent dimension z of the generative model g4(z) (Alg. 1 Line 6). Thus, one sample z
from g gives us K latents each of size L, each of which is decoded into a subgoal image (Alg. 1 Line
8). Then, as described in Equation|[] the cost for one sample (one set of K subgoals) is computed as
the maximum planning cost across the subsegments (Alg. 1 Lines 9:12). The M samples are ranked
by this cost, and then q is refit to the latents z of the best M * samples (Alg. 1 Lines 14:15). In all of
our experiments we use M = 200, M* = 40 and L = 8.

5 EXPERIMENTS

In our experiments, we aim to evaluate (1) if, by using HVF, robots can perform challenging
goal-conditioned long-horizon tasks from raw pixel observations more effectively than prior self-
supervised approaches, (2) if HVF is capable of generating realistic and semantically significant
subgoal images, and (3) if HVF can scale to real images of cluttered scenes. To do so, we test on
three domains: simulated visual maze navigation, simulated desk manipulation, and real robot ma-
nipulation of diverse objects. The simulation environments use the MuJoCo physics engine

et al, 2012). We compare against three prior methods: (a) visual foresight (Finn & Levine, 2016;
Ebert et al.,2018b), which uses no subgoals, (b) RIG which trains a model-free

policy to reach generated goals using latent space distance as the cost, and (c) visual foresight with
subgoals generated by time-agnostic prediction (TAP) (Jayaraman et al.| 2019), a state-of-the-art

method for self-supervised generation of visual subgoals, which generates subgoals by predicting
the most likely frame between the current and goal state.

First, we study HVF in a 2D maze with clear 90 ’

bottleneck states, as it allows us to study how 80

HVF compares to oracle subgoals. In the the ol

maze navigation environment, the objective is

for the agent (the green block) to move to a ’ I

goal position, which is always in the right- a d
most section. To do so, the agent must navi- mmm VF (No Subgoals)

. mmm HVF, 1 Subgoal (Ours)
gate through narrow gaps in walls, where the mm HVF. 2 Subgoals (Ours)
position of the gaps, goal, and initial state of . Ground Truth Bottleneck
the agent are randomized within each episode. 20
The agent’s action space is 2D Cartesian move-
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We consider three levels of difficulty, “Easy” o041, HVF subgoals, and ground truth hand specified
where the agent spawns in the rightmost sec-  subgoals. We observe that HVF significantly improves
tion, “Medium” where the agent spawns in the performance on the “Medium” and “Hard” difficulty
middle, and “Hard” where the agent spawns in compared to not using subgoals. Computed over 100
the leftmost section. Details in Appendix[B.I] ~ randomized trials.

Videos/code are available at: https://sites.google.com/stanford.edu/hvf
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Door 2 Block

Figure 5: Qualitative Results for Desk Manipulation. Example generated subgoals from HVF for the desk
manipulation tasks with one or two subgoals. We observe interesting behavior: in the Door Closing + Block
Pushing task with one subgoal, the subgoal is to slide the door then push the block, while in the Door Closing
+ 2 Block Pushing the first subgoal is to push the blocks, then grasp the door handle, then slide the door.

Results: In Figure 2] we observe that using HVF subgoals consistently improves success rate over
visual foresight (Finn & Levine), 2016) without subgoals, indicating that it is able to find subgoals
that make the long-horizon task more manageable. Additionally, we compare to the “Ground Truth
Bottleneck” that uses manually-designed subgoals, where the subgoal is exactly at the gaps in the
walls (or the midpoint between states in the “easy” case). We find that while using the oracle
subgoals tends to yield the highest performance, the oracle subgoals do not perform perfectly, sug-
gesting that a non-trivial amount of performance gains are to be had from improving the consistency
of the video prediction model and cost function for short-horizon problems, as opposed to the sub-
goals. We also show that HVF outperforms time agnostic prediction (TAP) (Jayaraman et al.,[2019)

in Appendix[C.3]

We next qualitatively examine the subgoals discovered by HVF in Figure[3] and find empirically that
they seem to correspond to semantically meaningful states. In this task there are clear bottlenecks -
specifically reaching the gaps in the walls and find that HVF outputs close to these states as subgoals.
For example, when the agent starts in the leftmost section, and has to pass through two narrow gaps
in walls, we observe the first subgoal goal corresponds to the agent around the bottleneck for the
first gap and the second subgoal is near the second gap.

5.2 SIMULATED DESK MANIPULATION

. s VF (No Subgoals) mmm HVF, 1 Subgoal (Ours)
We now study the performance improvement | == 1Subgoal TAP  mEE HVF, 2 Subgoals (Ours)

and subgoal quality of HVF in a challeng- %) - 2subgoal TP e RIG
ing simulated robotic manipulation domain.
Specifically, a simulated Franka Emika Panda
robot arm is mounted in front of a desk (as used

in (Cynch et al 2019)). The desk consists of

3 blocks, a sliding door, three buttons, and a

o
o
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drawer. We explore four tasks in this space: 20|
door closing, 2 block pushing, door closing +
block pushing, and door closing + 2 block push- ol

Door 2 Block Door+Block Door+2 Block

ing. Example start and goal images for each
task are visualized in Figure [5] and task de- Figure 4: Quantitative Results for Desk Manipu-
tails are in Appendix@ The arm is controlled lation: Using HVF drastically improves performance.
with 3D Cartesian velocity control of the end- Across all 4 tasks, HVF with two subgoals leads to

effector position. Across the 4 different tasks @ Mmore th‘lmf 20% ﬁbsgme geliforman%p?/z;m
in this environment, we use a single dynamics °VCL ViSua. loresig t (Finn evme". ’ (la-
model f, and generative model gf(z).yExperi- yaraman et al 2019), and RIG (Nair et al} 2018a).

. X ; Computed over 100 trials with random initial scenes.
mental details are in the Appendix P

Results: As seen in Figure[d] we find that using HVF subgoals dramatically improves performance,
providing at least a 20% absolute improvement in success rate across the board. In the task with the
longest horizon, closing the door and sliding two blocks off the table, we find that using no subgoals
or 1 subgoal has approximately 15% performance, but 2 subgoals leads to over 42% success rate. We
compare to subgoals generated by time agnostic prediction (TAP) (Jayaraman et al., 2019) and find
that while it does generate plausible subgoals, they are very close to the start or goal, leading to no
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benefit in planning. We also compare against RIG [2018a)), where we train a model free
policy in the latent space of the VAE to reach “imagined” goals, then try and reach the unseen goals.

However, due to the complexity of the environ-
ment, we find that RIG struggles to reach even
the sampled goals during training, and thus fails
on the unseen goals. Qualitatively, in Figure 5]
we observe that HVF outputs meaningful sub-
goals on the desk manipulation tasks, often pro-
duces subgoals corresponding to grasping the
handle, sliding the door, or reaching to a block.

5.3 REAL ROBOT MANIPULATION

Lastly, we aim to study whether HVF can ex-
tend to real images and cluttered scenes. To do
so, we explore the qualitative performance of
our method on the BAIR robot pushing dataset
(Ebert et al., 2018a). We train fy and g4 (2, so)
on the training set, and sample current and goal
states from the beginning and end of test trajec-
tories. We then qualitatively evaluate the sub-
goals outputted by HVF. Further implementa-
tion details are in the Appendix Results:
Our results are illustrated in Fig. We ob-
serve that even in cluttered scenes, HVF pro-
duces meaningful subgoals, such grasping ob-
jects which need to be moved. For more exam-
ples, see Figure We observe that in both
the BAIR dataset and the desk manipulation ex-

1 Sub Goal
Current State Sub Goal 1 Goal State

2 Sub Goals
Current State  Sub Goal 1 Sub Goal 2 Goal State

Figure 6: BAIR Dataset Qualitative Results. The
subgoals generated by HVF on the BAIR dataset, which
we find correspond to meaningful states between the
start and goal. For example, when moving objects we
see subgoals corresponding to reaching/grasping.

periments, the most common failure cases corresponded to the subgoal prediction and model ignor-
ing the objects and focusing exclusively on the arm. Cost functions which can more effectively
capture objects and their poses would be a step towards addresing this.

5.4 ABLATIONS

In our ablations, we explore three primary ques-
tions: (1) What is the optimal number of sub-
goals?, (2) Is there a difference between HVF
using the max and mean cost across subseg-

# subgoals | 0 1 2 3 5110
success | 33% | 47% | 54% | 39% | 2% | 0%

Table 1: Number of Subgoals. With a fixed sampling
budget, as the number of subgoals increases beyond 2,
performance drops as the subgoal search is challenging.

ments?, and (3) Is HVF as valuable when the samples used for visual MPC is significantly increased?
We evaluate these questions in the maze navigation task on the “Hard” difficulty. All results report
success rates over 100 trials using random initialization/goals. Additional ablations on planning
horizion and latent space cost can be found in Appendix[C.1]

Number of Subgoals: We explore how HVF performs as we in- #subgoals | 1 2
crease the number of subgoals in Table[I] Interestingly, we observe mean cost | 0.45 | 0.53
that as we scale the number of subgoals beyond 2, the performance max cost | 0.47 | 0.54

starts to drop, and with 5 or more subgoals the method fails. We Table 2: Max vs Mean. Suc-
conclude that this is due to the increasing complexity of the sub- cess rates for minimizing mean
goal search problem: the sampling budget allocated for subgoal op-  vs. max cost across subsegments.
timization is likely insufficient to find a large sequence of subgoals. Max is marginally better.

Max vs Mean: In our HVF formulation, we define the
subgoal optimization objective as finding the subgoals that
minimize the max cost across subsegments. Table 2] com-
pares to using the mean cost. We find that using the max

cost is marginally better.

# subgoals 0 1 2
200 samples | 0.33 | 0.47| 0.54
1000 samples | 0.35 | 0.54 | 0.55

Table 3: Sample Quantity. Success using
visual MPC with 200 vs. 1000 samples at

Sample Quantity: In Table 3] we examine how the num-  ¢,c CEM iteration. Using more samples is
ber of action samples affects the relative improvement of  petter, but HVF still outperforms standard
HVF. Using more samples should also mitigate the chal-  visual foresight by a wide margin.

lenges of sparse costs, so one might suspect that HVF would be less valuable in these settings. On
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the contrary, we find that HVF still significantly outperforms no subgoals, and the improvement
between using 0 and 1 subgoals is even more significant.

6 CONCLUSION AND LIMITATIONS

We presented an self-supervised approach for hierarchical planning with vision-based tasks, hier-
archical visual foresight (HVF), which decomposes a visual goal into a sequence of subgoals. By
explicitly optimizing for subgoals that minimize planning cost, HVF is able to discover semanti-
cally meaningful goals in visual space, and when using these goal for planning, perform a variety
of challenging, long-horizon vision-based tasks. Further, HVF learns these tasks in an entirely self-
supervised manner without rewards or demonstrations.

While HVF significantly extends the capabilities of prior methods, a number of limitations remain.
First, HVF assumes access to an exploration policy which can cover enough of the state space to
learn a good model. While the random policy used works for our environments, more complex
environments may require better exploration techniques, such as intrinsic motivation methods.

Another limitation of the current framework is its computational requirements, as the nested op-
timization procedure requires many iterations of MPC with expensive video prediction models.
Specifically, assume that the horizon of the task is 7, one iteration of visual MPC has com-
putational cost C, and HVF is using K subgoals, and searching in a space of N subgoal se-
quences. Then normal visual foresight or TAP would have cost 7' x C', while HVF would have
cost (T x C) + (K x N x C). However note - the computation of (K x N x C) can be heavily
parallelized because it is done completely offline (without environment interaction). We also expect
that this can be mitigated by reformulating the subgoal prediction problem as policy inference, and
training a subgoal generation policy in the loop of training, an interesting direction for future work.

Further, while the development of accurate visual cost functions and predictive models were not the
main aim of this work, the performance with oracle subgoals suggests this to be a primary bottle-
neck in furthering the performance of HVF. Specifically, learning dynamics models and cost func-
tions which can more effectively capture the state of all the objects in the scene would significantly
improve the performance of HVFE.

Lastly, development of better generative models that can capture the scene and generate possible
futures remains an open and challenging problem. Work in generative models that enable better
generation of cluttered scenes with novel objects could improve the applicability of HVF in real-
world settings.
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A METHOD DETAILS
A.1 VIsuAL MPC

In HVF, evaluating the cost of potential subgoals, as well as actually taking actions given computed
subgoals uses visual MPC. One step of visual MPC is described in Algorithm 1. Given the current
state and goal state, MPC samples action trajectories of length H, then feeds them through the model
fo. Then the cost of the output images are computed relative to the goal image, which is then used
to sort the actions and refit the action distribution. After 5 iterations or convergence the best action
is returned.

Algorithm 2 MPC( fy, s¢, s4)

Receive current state s; and goal state s, from environment
Initialize N (1, 02) = N(0, 1), cost function C(s;, s;)
while (62 > le — 3) or (iterations < 5) do
ai,..-,ap ~ N(:“’? 02)
St4H 1y St+H,D = fo(81,a1,...,ap)
lla ceey ZD = [C(St+H,1> sg)7 sy C(St+H,D7 Sg)]
Asorted = Sort([ay, .., ap])
Refit N (p, 02) to asorted[l — D]
end while
Return lsorted[l]’ a‘sorted[l]
where D = 200, D* = 40

A.2 PLANNING WITH SUBGOALS

In the main text we describe how given, sy and s,, HVF produces subgoal images s1, 2, ..., Sk
Given these subgoals, planning with them is executed as follows. For an episode starting at sg
of maximum length 7', the agent plans using visual MPC from s( to s; until some cost threshold
C(st, 1) < x or for some maximum number of steps 7*. Once this criteria is reached, the agent
plans from its current state to the next subgoal so, again until the cost threshold C(s;, s2) < x or
some maximum number of steps 7™, and so until the agent is planning form s; to the true goal s,
at which point it simply plans until the environment returns that the task has been a success or the
total horizon 7T runs out.

A.3 GENERATIVE MODEL

The generative model we use is either a Variational Autoencoder s ~ g, (z) or a Conditional Varia-
tional Autoencoder s ~ g4 (2, So).

In the VAE, training is done by sampling images from the dataset, and each image is encoded using
an image encoder into the mean and standard deviation of a normal distribution of dimension 8.
Then a sample from the distribution are decoded back to the original input image. This is trained
with a maximum likelihood loss as well as a KL. penalty on the normal distribution restricting it to
be a unit gaussian A/(0, 1).

In the conditional VAE, training is done by sampling pairs of images from the dataset, specifically
images from random episodes s; as well as the corresponding first image of that episode so. Then
both sy and s; are encoded using the same image encoder, which are then flattened and concatenated.
This is then encoded into the mean and standard deviation of a normal distribution of dimension 8.
A sample from the resulting distribution is then fed through fully connected layers and reshaped into
the output shape of the encoder, concatenated with the spatial embedding of the conditioned image
from the encoder and then decoded. This is done to enable easier conditioning on the scene in the
decoding. The resulting image is trained with a maximum likelihood loss as well as a KL penalty
on the normal distribution restricting it to be a unit gaussian (0, 1).

In the Simulated Maze Navigation experiments, we use a Conditional VAE which encodes the 64x64
RGB image with 4 convolutional layers ([16, 32, 64, 128] filters, kernel size 3x3, stride 2), as well
as 3 fully connect layers of size 256 for the generated image and 3 fully connected layers of size
[512, 512, 256] for the conditioned image, and a decoder with the same architecture as the encoder
inverted. In the Simulated Desk Manipulation experiments, we use a VAE which encodes the 64x64

13



Published as a conference paper at ICLR 2020

RGB image with 7 convolutional layers ([8, 16, 32, 32, 32, 64, 128] filters, kernel size 3, stride
alternating between 1 and 2), as well as a single fully connected layer of size 512 before mapping
the latent distribution, which is decoded with the inverted encoder architecture. In the Real Robot
Manipulation experiments we use a Conditional VAE which encodes the 48x64 RGB image with 9
convolutional layers ([8, 16, 32, 64, 64, 128, 128, 256, 512] filters, with kernel size 3, and stride
sizes [1,1,1,1,1,1,2,2,2]), as well as 3 fully connect layers of size 256 for the generated image and 3
fully connected layers of size [512, 512, 256] for the conditioned image, and a decoder which is the
inverted architecture of the encoder. The three experiments use Adam optimizer with learning rate
le-4, le-3, 1e-4 respectively.

A.4 DYNAMICS MODEL

The dynamics model is an action conditioned video prediction model, stochastic variational video
prediction (SV2P) (Babaeizadeh et al2017). See architecture below:

Xo:T ’
Tx64x64x3 H(XOT)

32x32x32 16x16x64

I Deconv 2 Deconv 2 l

5x5 ::> 5x5 i> 5x5 ::> 5x5 ::> 56 5x6 i1> 5x5 W
-

Stride 2 Stride 2 Deconv 2 MASKS
. ~
16x1I6x64 16x16x64 8x8x128 16x16x64 32x32x32 64x64x11
\ 4
. 5
X5 Transformed
&8 CDNA * Images

64x64x10 64x64x3
Xt

Figure 7: Architecture of stochastic variational video prediction model (SV2P) (Babacizadeh et al.,[2017)
used for dynamics model fy (taken from (Babaeizadeh et al}[2017) with permission). The architecture has two
main sub-networks, one convolutional network which approximates the distribution of latent values give all the
frames, and a recurrent convolutional network which predicts the pixels of the next frame, given the previous
frame, sampled latent, and action (if available). The code is open sourced in Tensor2Tensor
library.

For all experimental settings the dynamics models are trained for approximately 300K iterations.
B EXPERIMENT DETAILS

B.1 MAZE NAVIGATION

Data Collection: For the maze navigation environment data is collected through random policy
interaction. That is, for each action we sample uniformly in the delta x, y action space of the green
block. We collect 10000 episodes, each with random initialization of the walls, block, and goal.
Each episode contains 100 transitions. The images are of size 64x64x3.

Cost Function: In this experiment, the cost function C(s;, s;) is simply the squared ¢, pixel dis-
tance between the images, that is ||s; — s;]|3

Planning Parameters: When planning in the maze navigation environment, MPC samples action
trajectories of length I = 5. Additionally, the cost of a sequence of 5 actions is the cost of the
last of the subsequent frames, where the cost of each frame is the temporal cost C' described above.
Lastly, we use 7' = 50 and 7" = 10 in these experiments.

B.2 SIMULATED DESK MANIPULATION

Task Details: Door: The first task is reaching to and closing the sliding door. From the initialization
position of the arm, it needs to reach around the door handle into the correct position, then slide the
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door shut. The position of the door and distractor blocks on the table are randomized each episode.
The agent is given 50 timesteps to complete the task. 2 Block: The second task requires the agent to
push two different blocks off the table, one located on the left end of the table and one located in the
middle. It requires pushing first one block, then re positioning to push the other block off the table.
The agent is given 50 timesteps to complete the task. Door + Block: The agent must both slide the
door closed from a random position, as well as push a block off of the table. This requires both
grasping and sliding the door from the previous task, as well as positioning the end effector behind
the block to slide it off the table. The agent is given 100 timesteps to complete the task. Door + 2
Block: A combination of the 2 Block and Door + Block task. The agent must close the door and
slide both blocks off the table within 100 timesteps.

Data Collection: For the simulated desk manipulation environment data is again collected through
random policy interaction. That is, for each action we sample uniformly in the delta z, y, z action
space of the robot end effector. We collect 10000 episodes, each with random initialization of

the desk door/drawer and blocks. Each episode contains 100 transitions. The images are of size
64x64%3.

Cost Function: In this experiment, the cost function C(s;, s;) is simply the squared ¢, pixel dis-
tance between the images, that is ||s; — s;]|3

Planning Parameters: When planning in the desk manipulation environment MPC samples action
trajectories of length H = 15, which actually consists of 5 actions, each repeated 3 times. Addi-
tionally, the cost of a sequence of 15 actions is the ¢ pixel cost C' of the last frame only. Note
this is distinct from the maze environment. Lastly, we use 7' = 50 or 100 and 7" = 20 in these
experiments, depending on the task.

B.3 REAL ROBOT MANIPULATION

Data: We use the BAIR robot manipulation dataset from (Ebert et al., [2018a)), which consists of
roughly 15K trajectories split into a train/test split. We train fs and g4 on the train set and display
qualitative results on the test set.

Cost Function: Like the desk manipulation set up, the cost function C(s;, s;) is the squared /o
pixel distance between the images, that is ||s; — s;||3

Planning Parameters: When planning in the desk manipulation environment MPC samples ac-
tion trajectories of length I = 15, which actually consists of 5 actions, each repeated 3 times.
Additionally, the cost of a sequence of 15 actions is the /5 pixel cost C' of the last frame only.

C ADDITIONAL RESULTS

C.1 ADDITIONAL ABLATIONS

C.1.1 PLANNING HORIZON

#SG 0 1 2
In the maze environment, on the hard difficulty, 5 Step Planning | 0.33 | 0.47 | 0.54
we study how increasing the planning horizon 10 Step Planning | 0.46 | 0.55| 0.37
of visual MPC impacts the benefit of using 15 Step Planning | 0.31 | 0.39 | 0.24

HVF (See Table ). Interestingly, we find that
for longer planning horizons, performance does Table 4: Planning Horizon. Compares success rates
not necessarily improve (as a longer planning using visual MPC with planning horizon of 5,10,and 15.
horizon constitutes a harder search problem). Using subgoals always performs the best, but for larger
This supports the idea that simply using longer planning horizons 2 subgoals can hurt performance.
fo doing long-harizon tasks, Further, we find Easy [Medium [Hard
that even with longer planning horizons, HVF VAE -Latent {3 Cost| 0.62 049 | 0.23
outperforms standard visual foresight, but that Pixel ¢, Cost 0.93 0.68 | 0.33
performance with 2 subgoals is worse than with
1 subgoal.

Table 5: Latent vs Pixel /5 cost. Compares success
rates using visual MPC with either the squared ¢2 pixel

distance or squared /5 distance in the latent space of the
C.1.2 VAE LATENT SPACE COST VAE. The latent space cost is notably worse due to it

To address the sparsity of pixel cost, we explore ~ providing a weak signal at close distances.
using distance in the latent space of the VAE as
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a cost signal. However, we find that this cost actually performs worse across all difficulties. In Table
[5] we show the success rate of standard visual foresight for either pixel £ cost or VAE latent space
{5 cost. We find that the reason for the poor performance of the latent space cost is that it provides
close to zero cost anytime the green blocks are reasonably close together, leading to CEM often
getting stuck close to the goal but not actually at the goal.

C.2 REAL ROBOT MANIPULATION EXAMPLES

1 Sub Goal 2 Sub Goals
Current State  Sub Goal 1 Goal State Current State  Sub Goal 1 Sub Goal 2 Goal State

Figure 8: BAIR Dataset Additional Results.

C.3 TIME AGNOSTIC PREDICTION(JAYARAMAN ET AL., 2019) IN THE MAZE NAVIGATION
TASK

We observe that while TAP gets similar performance to HVF on the “Easy” and “Medium” cases, it
has significantly lower performance in the longest horizon “Hard” setting.

Additionally we see that Recursive TAP with 2
subgoals has lower performance across all diffi-

culties as the subgoals it outputs are very close ng‘:iuslg) EaS};)%QSG) M‘:]dglzm %a;‘;
to current/goal state (See Figure[9). : . :

£ ( £ E[) TAP (2 SG) 0.91 0.68 0.28

HVF (1 SG) 0.96 0.80 0.47

HVF (2 SG) 0.90 0.79 0.54

Table 6: TAP on Maze Environment. Compares suc-
cess rates of TAP vs HVF on the maze environment.
Computed over 100 randomized trials.
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1 Sub Goal 2 Sub Goals
Current State  Sub Goal 1 Goal State Current State  Sub Goal 1 Sub Goal 2 Goal State
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Figure 9: Qualitative examples of TAP. Notice it is prone to predicting very close to the current or goal state
for subgoals.
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