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Abstract

Clustering algorithms play a pivotal role in various societal applications, where fairness is
paramount to prevent adverse impacts on individuals. In this study, we revisit the robust-
ness of fair clustering algorithms against adversarial attacks, affirming previous research
findings that highlighted their susceptibility and the resilience of the Consensus Fair Clus-
tering (CFC) model. Beyond reproducing these critical results, our work extends the original
analysis by refining the codebase for enhanced experimentation, introducing additional met-
rics and datasets to deepen the evaluation of fairness and clustering quality, exploring novel
attack strategies, including targeted attacks on new metrics and a combined approach for
balance and entropy as well as an ablation study. These contributions validate the origi-
nal claims about the vulnerability and resilience of fair clustering algorithms and broaden
the research landscape by offering a more comprehensive toolkit for assessing adversarial
robustness in fair clustering.

1 Introduction

Clustering algorithms play an important role in the analysis and interpretation of the vast amounts of
data generated by automated data collection systems across various sectors (Rodriguez et al., 2019; Xu &
Wunsch, 2005). While these algorithms are useful, they raise critical issues like privacy (Schneier, 2015; Song
et al., 2022) and accountability in data use (Oppold & Herschel, 2020), while requiring transparency in their
clustering performance (Selbst et al., 2019). In addition, clustering algorithms are widely used in a variety of
societal applications, such as loan disbursement, medical treatment strategy, and recruitment (Tsai & Chen,
2010; Zitnik et al., 2019; Roy et al., 2020), highlighting the critical issue of fairness. Several fair clustering
methods have been proposed to mitigate algorithmic bias and increase fairness (Backurs et al., 2019).

However, fair clustering has not yet been explored from an adversarial attack perspective. This aspect is
crucial, as adversarial attacks aim to compromise the utility of fairness in these models (Chhabra et al., 2021;
Mehrabi et al., 2021), potentially reversing the benefits of fair clustering. To tackle this gap, the authors
of the reviewed study experimented with a black-box adversarial attack to assess the vulnerability of fair
clustering algorithms. Their work also proposes a novel model, Consensus Fair Clustering (CFC), designed
to be highly resilient to the proposed fairness attack (Chhabra et al., 2023).

This work aims to address the following goals:

• [Reproducibility Study] Reproducing the results from the original paper: We successfully
reproduced the three main claims of the original paper. Firstly, our findings partially confirm that the
black-box adversarial attack can reduce the fairness performance by perturbing a small percentage
of protected group memberships. Secondly, we reproduced the claim that existing fair clustering
algorithms lack robustness against adversarial influence. Lastly, our results validate the third claim
that the CFC model exhibits high resilience against the proposed fairness attack.
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• [Extended Work] Improvement of the original code: One of the contributions of our work
involved transforming the code into a script format and integrating argument parsing for more
streamlined experimentation. Moreover, we systematically structured repetitive code segments into
distinct functions.

• [Extended Work] Additional Metrics and Datasets: To enhance our comprehension of clus-
tering performance, particularly concerning fairness and clustering quality, this study integrated
additional metrics. Moreover, we expanded the scope of our research by including two further
datasets, enriching the depth and breadth of our analysis.

• [Extended Work] Additional Attack Methods: We experimented with the implementation
of new attack methods, attacking some of the newly proposed metrics, as well as creating a dual-
optimization problem for a combined Balance and Entropy attack.

• [Extended Work] Ablation Study: As part of our efforts to evaluate and improve the CFC
model, we conducted an ablation study on focusing on the hyperparameters alpha (α) and beta (β).
We experimented with various values of α and β, and the impact of these hyperparameters on the
model’s performance was measured in terms of both clustering utility and fairness utility. We have
included the results of our ablation study in Section 4.3 of our report and discussed the insights and
implications of our findings.

2 Scope of reproducibility

This work investigates the reproducibility of the original paper by Chhabra et al. 2023, which addresses
the problem of the vulnerability of fair clustering algorithms to adversarial attacks aimed at degrading
fairness utility. The concerns about algorithmic fairness have led to growing interest in the literature on
defining, evaluating, and improving fairness in Machine Learning algorithms (Pessach & Shmueli, 2022).
The authors investigate the robustness of clustering models, namely Fair K-Center (KFC), Fair Spectral
Clustering (FSC), and Scalable Fairlet Decomposition (SFD), to adversarial influence by using a black-box
attack approach. Furthermore, they propose the Consensus Fair Clustering (CFC) model to achieve truly
robust fair clustering. An explanation of the methodology, datasets, and metrics employed by the authors
can be seen in Section 3.

The main claims that the paper made are as follows:

• Claim 1: The black-box adversarial attack outlined in the original paper is capable of degrading
the fairness performance by perturbing a small percentage of protected group memberships in the
examined fair clustering models: KFC, FSC, and SFD.

• Claim 2: KFC, FSC, and SFD demonstrate a lack of robustness to adversarial influence, exhibiting
significant volatility in terms of fairness utility metrics such as Balance and Entropy.

• Claim 3: CFC exhibits high resilience against the proposed fairness attack, offering a robust solution
for achieving fair clustering.

In addition to replicating the findings presented in the original paper, we conduct additional experiments to
further evaluate the performance of the algorithms.

3 Methodology

The author’s implementation of their code is publically available in their GitHub repository.3 However,
some implementation details for the Fair K-Center algorithm were missing, considering the attack used
and the assigned budget4 parameter for the optimization problem; therefore, we had to make some minor
adjustments.

3https://github.com/anshuman23/CFC
4Number of calls to the objective function
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3.1 Fairness Attack

In the original paper, the authors propose a novel black-box attack that aims to reduce the fairness utility of
fair clustering algorithms by perturbing a small percentage of samples’ protected group memberships. This
is defined as a Fairness Attack. The threat model is defined as an adversary who can control a subset of
the protected attributes, denoted as GA ⊆ G, and observe the cluster outputs of a fair clustering algorithm
F , where F is unknown to the adversary. The goal is to find the optimal perturbations that minimize the
fairness utility for the remaining samples, denoted as GD = G/GA ⊆ G, by perturbing GA. This problem
is formulated as a two-level hierarchical optimization problem (Anandalingam & Friesz, 1992), where the
lower-level problem is the fair clustering problem and the upper-level problem is the attack problem. The
attack optimization problem can be defined analytically using two mapping functions:
η : Takes GA and GD as inputs and gives output G = η(GA, GD), which is the combined group memberships
for the entire dataset.
θ : Takes GD and an output cluster labeling from a clustering algorithm for the entire dataset as input,
returns the cluster labels for only the subset of samples with group memberships in GD.

Based on these notations, the optimization problem for the attacker is defined as: minGA
ϕ(θ(O, GD), GD)

s.t. O = F(X, K, η(GA, GD)). The authors solve this problem using a zeroth-order optimization algorithm.

3.2 Model descriptions

The paper uses three state-of-the-art fair clustering algorithms, namely Fair K-Center (KFC) (Harb & Lam,
2020), Fair Spectral Clustering (FSC) (Kleindessner et al., 2019), and Scalable Fairlet Decomposition (SFD)
(Backurs et al., 2019).

Fair K-Center. The algorithm aims to achieve fair clustering by using the k-center objective. The goal is
to minimize the traditional clustering objective while ensuring that no protected group is unfairly over or
under-represented within any cluster. This is achieved by partitioning a set of N data points, each belonging
to at least one of l protected groups, into k clusters.

Fair Spectral Clustering. The algorithm is a constrained version of Spectral Clustering (SC) and is
a popular method for partitioning graph data with an incorporated fairness notion. This notion defines
clustering as fair if each demographic group is proportionally represented in every cluster.

Scalable Fairlet Decomposition. The algorithm is a practical approximation of the fairlet decomposition
algorithm, introduced in Chierichetti et al. (2018), that runs in nearly linear time.

In addition, the authors introduced a novel robust fair clustering algorithm, Contrastive Fair Clustering
(CFC), which aims to learn fair and transferable representations for clustering. It employs a contrastive
learning framework to ensure that the learned representations are not only discriminative for clustering, but
also fair with respect to protected attributes.

SFD influences CFC to ensure balanced micro-level representation. FSC informs CFC’s aim for proportional
demographic balance across clusters. KFC lays the foundation for CFC’s fairness by modifying cluster-
ing objectives to protect against group bias. CFC integrates these insights through a contrastive learning
framework, embedding fairness directly into its clustering process.

3.3 Datasets

The authors provided download links for the MNIST-USPS and Office-31 (Saenko et al., 2010) datasets.
Since the link for the cropped version of Extended Yale face B (Yale) (Lee et al., 2005) was not working, a
torrent was used to download the Yale dataset. Additionally, the Inverted UCI DIGITS (DIGITS) (Xu et al.,
1992) dataset was included in the author’s repository. Furthermore, Multi-task Facial Landmark (MTFL)
(Zhang et al., 2014) and uncropped Yale were utilized as additional datasets. Further information on the
datasets, including characteristics, protected attributes, and descriptions, are provided in Table 1.

The Office-31 dataset consists of three source domains: Amazon, Webcam, and DSLR, where we used DSLR
and Webcam. In the case of DIGITS, we modified the images by inverting their pixel values.
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Dataset Num. samples Num. categories Protected attribute Description
MNIST-USPS 3,800 10 Sample source Handwritten digits
Office-31 1,293 31 Domain source Office objects
DIGITS 3,594 10 Source of image Handwritten digits
Yale 2,414 38 Azimuth and elevation Frontal-face
uncropped Yale 2,414 38 Azimuth and elevation Full-body & Background
MTFL 2,000 2 Glasses usage Face

Table 1: Summary of the datasets used in our experimentation. We followed the code of the authors to select
the number of samples used for MNIST-USPS, Office-31, DIGITS, and Yale (cropped and uncropped). For
MTFL, we balanced the dataset by randomly selecting 2,000 images (each with and without glasses).

3.4 Hyperparameters

To reproduce the results of the paper, we primarily adhered to the same hyperparameters as those specified
in the original study, whenever they were specified in the article. The hyperparameters used in this study
are detailed in Appendix A.

3.5 Experimental setup and code

The reproduction of the results was based on the jupyter notebooks of the original authors. One of our
contributions was restructuring the code into a script format, introducing argument parsing for easier ex-
perimentation, and organizing repeated code into functions. All experiments shown in this paper can easily
be reproduced using our code, which is publicly available on GitHub.5

For the attack, we maintained consistency with the original study by using the same setup, including seeds,
hyperparameters, and pre-computed labels. However, due to missing code for the KFC algorithm in the
jupyter notebooks, we arbitrarily selected the budget for the optimization function. Additionally, as the
type of attack used for the KFC algorithm was unspecified, we conducted experiments for both Balance and
Entropy (Appendix B). Furthermore, since no code was provided to reproduce the figures, we attempted to
approximate the partitions present in the baseline research using specific values ranging from 0 to 0.3.

For the defense, we employed three manual seeds (42, 46, and 48) for torch randomization. Additionally, the
CFC model was trained using the Adam optimizer with a learning rate of 0.01.

The original paper uses four metrics along two dimensions, namely fairness utility and clustering utility, for
performance evaluation. For clustering utility, we consider to use Normalized Mutual Information (NMI)
(Strehl & Ghosh, 2002) and Unsupervised Accuracy (ACC) (Li & Ding, 2006). For fairness utility, we
consider Balance (Chierichetti et al., 2018) and Entropy (Li et al., 2020). The definitions for these metrics
are provided in Appendix C.

3.6 Computational requirements

We conducted all experiments on a computer cluster, utilizing an NVIDIA A100 GPU and an Intel Xeon
Platinum 8360Y CPU, except for those related to the KFC algorithm, which were performed locally on an
AMD Ryzen 7 4800H CPU with 16 threads. Since the zoopt package runs exclusively on the CPU, no
GPU was necessary for the attack experiments. The total computational cost for running all experiments
amounted to roughly 80 CPU hours and 130 GPU hours.

4 Results

4.1 Results reproducing original paper

As stated in Section 2, three claims were identified in the original paper, and we were able to partially
reproduce the first claim and entirely reproduce the second and third claims. In this section, we elaborate

5https://github.com/iasonsky/FACT-2024
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on our reproduction results: first, in section 4.1.1 and 4.1.2, we show the results of the proposed black-box
and random attack (Claims 1 and 2). In section 4.1.3, we show the results of the defense (Claim 3).

4.1.1 Claim 1: The black-box adversarial attack results in substantial degradation of fairness
performance in Fair K-Center (KFC), Fair Spectral Clustering (FSC), and Scalable Fairlet
Decomposition (SFD) by perturbing a small % of protected group memberships. [Partially
Reproduced]

To validate Claim 1, we compared the attack with the random attack and present the results when 15%
group memberships are switched for MNIST-USPS and Office-31 in Table 2 and for Inverted UCI DIGITS
(DIGITS) and Extended Yale face B (Yale) in Appendix E, Table 9.

Contrasting with the findings of the original paper, our results showed a slight increase, rather than a sig-
nificant reduction, in fairness utility for SFD in terms of Balance/Entropy on the MNIST-USPS dataset
(+6.382%/+1.339%). Similarly, for FSC in terms of Entropy on the Office-31 dataset, we observed a modest
increase (+2.390%). Interestingly, the random attack sometimes led to increased fairness utility, notably a
+100.0% increase in FSC Balance on Office-31. However, for KFC on Office-31, Balance/Entropy metrics
remained unchanged at -0.000%/-0.000% (as discussed in Section 4.2.1). Despite these individual varia-
tions, a consistent reduction in fairness was noted across the other datasets post-attack, indicating a partial
reproduction of the original claim.

In Appendix D, Table 8, we present a detailed comparison of the Change (%) values between our study and
the baseline research. This analysis highlights the disparities in the impact of adversarial attacks on fairness
and clustering metrics, offering insight into the relative robustness of the algorithms examined.

Algorithm Metrics
MNIST-USPS

Pre-Attack Post-Attack Change (%) Match Origi-
nal Findings

Random-
Attack

Change (%) Match Origi-
nal Findings

SFD

Balance 0.282 ± 0.001 0.300 ± 0.001 (+)6.382 0.330 ± 0.001 (+)17.02
Entropy 3.063 ± 0.151 3.104 ± 0.001 (+)1.339 3.147 ± 0.000 (+)2.742
NMI 0.315 ± 0.000 0.358 ± 0.000 (+)13.65 0.346 ± 0.000 (+)9.841
ACC 0.419 ± 0.000 0.473 ± 0.000 (+)12.89 0.456 ± 0.000 (+)8.831

FSC

Balance 0.000 ± 0.000 0.000 ± 0.000 (-)100.0 ✓ 0.000 ± 0.000 (-)100.0 ✓
Entropy 0.327 ± 0.000 0.241 ± 0.001 (-)26.30 ✓ 0.301 ± 0.001 (-)7.951 ✓
NMI 0.549 ± 0.000 0.543 ± 0.000 (-)1.093 ✓ 0.538 ± 0.000 (-)2.004 ✓
ACC 0.450 ± 0.000 0.454 ± 0.000 (+)0.889 ✓ 0.443 ± 0.000 (-)1.556 ✓

KFC

Balance 0.557 ± 0.324 0.350 ± 0.299 (-)37.16 ✓ 0.724 ± 0.117 (+)30.20 ✓
Entropy 1.355 ± 0.374 1.202 ± 0.351 (-)11.29 ✓ 1.417 ± 0.417 (+)4.576 ✓
NMI 0.000 ± 0.000 0.000 ± 0.000 (-)100.0 ✓ 0.000 ± 0.000 (-)100.0 ✓
ACC 0.147 ± 0.000 0.146 ± 0.000 (-)0.680 ✓ 0.145 ± 0.000 (-)1.361 ✓

Algorithm Metrics
Office-31

Pre-Attack Post-Attack Change (%) Match Origi-
nal Findings

Random -
Attack

Change (%) Match Origi-
nal Findings

SFD

Balance 0.546 ± 0.000 0.158 ± 0.000 (-)71.06 ✓ 0.359 ± 0.120 (-)34.25 ✓
Entropy 10.00 ± 0.000 9.783 ± 0.001 (-)2.170 ✓ 9.903 ± 0.001 (-)0.970 ✓
NMI 0.888 ± 0.000 0.861 ± 0.000 (-)3.041 ✓ 0.860 ± 0.000 (-)3.153 ✓
ACC 0.841 ± 0.000 0.765 ± 0.000 (-)9.037 ✓ 0.769 ± 0.000 (-)8.561 ✓

FSC

Balance 0.000 ± 0.000 0.000 ± 0.000 (-)100.0 ✓ 0.211 ± 0.211 (+)100.0 ✓
Entropy 9.164 ± 0.119 9.383 ± 0.301 (+)2.390 ✓ 9.628 ± 0.213 (+)5.063 ✓
NMI 0.652 ± 0.000 0.682 ± 0.000 (+)4.601 ✓ 0.685 ± 0.000 (+)5.061 ✓
ACC 0.390 ± 0.000 0.438 ± 0.000 (+)12.31 ✓ 0.436 ± 0.000 (+)18.72 ✓

KFC

Balance 0.971 ± 0.001 0.971 ± 0.001 (-)0.000 0.971 ± 0.001 (-)0.000
Entropy 0.401 ± 0.135 0.401 ± 0.135 (-)0.000 0.401 ± 0.135 (-)0.000
NMI 0.000 ± 0.000 0.000 ± 0.000 (-)100.0 0.000 ± 0.000 (-)100.0
ACC 0.001 ± 0.000 0.001 ± 0.000 (-)0.000 0.001 ± 0.000 (-)0.000

Table 2: Results for pre-attack, post-attack (black-box), random attack, change between pre- and post-attack
/ random attack, when 15% group membership labels are switched for fair clustering algorithms SFD, FSC,
and KFC and datasets MNIST-USPS and Office-31. Results show the impact on fairness utility (Balance and
Entropy) and clustering utility (NMI and ACC). The checkmarks indicate that for the specified dataset and
algorithm combination the performance matches the findings in the baseline research.

4.1.2 Claim 2: KFC, FSC, and SFD demonstrate a lack of robustness to adversarial influence.
[Reproduced]

In order to validate Claim 2, we replicated the experiment conducted by the authors, showcasing the pre-
attack and post-attack results for MNIST-USPS and Office-31 datasets using both the black-box attack and
random attack, as illustrated in Figure 1. The results for DIGITS and Yale are shown in Appendix E, Figure
3.
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We found that the fairness attack consistently outperforms the random attack baseline across both Balance
and Entropy fairness metrics. However, contrary to the original claim, our findings revealed an exception
for Entropy on the FSC algorithm applied to the Office-31 dataset (Figure 1, Row 4, Column 2).

Additionally, the random attack does not consistently lead to lower fairness metric values. For instance, we
observed an increase in both Balance and Entropy on the FSC algorithm applied to the Office-31 dataset
(Figure 1, Row 4, Column 1-2), which is consistent with the original paper’s findings.

Figure 1: Pre-attack, post-attack (black-box) and random attack results on fairness utility (Balance
and Entropy) and clustering utility (ACC and NMI) for MNIST-USPS and Office-31 (x-axis: %
of samples attacker can poison).

4.1.3 Claim 3: Contrastive Fair Clustering (CFC) exhibits high resilience against the proposed
fairness attack. [Reproduced]

In order to validate Claim 3, we replicated the experiment conducted by the authors, showcasing the efficacy
of the CFC algorithm in Table 3. This table provides a clear overview of the changes in fairness and clustering
metrics before and after the application of the black-box adversarial attack, specifically when 15% of group
membership labels are altered. It highlights the variations in fairness utility, measured by Balance and
Entropy, and clustering utility, represented by NMI and ACC.

The analysis following the attack reveals that the CFC algorithm sustained its performance levels effectively.
Notably, the fairness metrics demonstrated stability, with a minor exception observed in the Balance metric
for the MNIST-USPS dataset, which decreased by 10.35%. Furthermore, clustering metrics either remained
consistent or showed improvement post-attack. This improvement was particularly prominent in the NMI
and ACC metrics for the MNIST-USPS dataset, which increased by 19.34% and 13.41%, respectively. In
contrast, other fair clustering algorithms exhibited notable declines in fairness utility following the attack.
Specifically, the FSC algorithm showed a significant reduction in the Balance and Entropy metrics for
the MNIST-USPS dataset, dropping by 100.0% and 26.30%, respectively. Similarly, the SFD algorithm
experienced a substantial decrease of 71.06% in the Balance metric for the Office-31 dataset.
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For an in-depth exploration of the CFC algorithm’s resilience to adversarial challenges, readers are referred
to Appendix G, Figure 4, which delves deeper into the robustness of the CFC model under adversarial
conditions. Additionally, the findings related to the DIGITS and Yale datasets are detailed in Appendix
F, Table 10, which also contrasts the percentage changes between our findings and those from the baseline
research, further illustrating the comparative robustness of the CFC algorithm.

Algorithm Metric
MNIST-USPS Office-31

Pre-Attack Post-
Attack

Change
(%)

Match
Original
Findings

Pre-Attack Post-
Attack

Change
(%)

Match
Original
Findings

CFC

Balance 0.470±0.041 0.421±0.027 (-)10.35 ✓ 0.620±0.001 0.637±0.000 (+)2.742 ✓
Entropy 2.622±0.128 2.689±0.126 (+)2.555 ✓ 6.116±0.000 5.821±0.152 (-)4.823 ✓
NMI 0.243±0.000 0.290±0.000 (+)19.34 ✓ 0.693±0.000 0.681±0.000 (-)1.732 ✓
ACC 0.358±0.000 0.406±0.000 (+)13.41 ✓ 0.503±0.000 0.466±0.000 (-)7.356 ✓

SFD

Balance 0.282±0.001 0.300±0.001 (+)6.382 0.546±0.000 0.158±0.000 (-)71.06 ✓
Entropy 3.063±0.151 3.104±0.001 (+)1.339 10.00±0.000 9.783±0.001 (-)2.170 ✓
NMI 0.315±0.000 0.358±0.000 (+)13.65 0.888±0.000 0.861±0.000 (-)3.041 ✓
ACC 0.419±0.000 0.473±0.000 (+)12.89 0.147±0.000 0.146±0.000 (-)9.037 ✓

FSC

Balance 0.000±0.000 0.000±0.000 (-)100.0 ✓ 0.000±0.000 0.000±0.000 (-)100.0 ✓
Entropy 0.327±0.000 0.241±0.001 (-)26.30 ✓ 9.164±0.119 9.383±0.301 (+)2.390 ✓
NMI 0.549±0.000 0.543±0.000 (-)1.093 ✓ 0.652±0.000 0.682±0.000 (+)4.601 ✓
ACC 0.450±0.000 0.454±0.000 (+)0.889 ✓ 0.390±0.000 0.438±0.000 (+)12.31 ✓

KFC

Balance 0.557±0.324 0.350±0.299 (-)37.16 ✓ 0.971±0.001 0.971±0.001 (-)0.000
Entropy 1.355±0.374 1.202±0.351 (-)11.29 ✓ 0.401±0.135 0.401±0.135 (-)0.000
NMI 0.000±0.000 0.000±0.000 (-)100.0 ✓ 0.000±0.000 0.000±0.000 (-)100.0
ACC 0.147±0.000 0.146±0.000 (-)0.680 ✓ 0.001±0.000 0.001±0.000 (-)0.000

Table 3: Results for pre-attack, post-attack (black-box), change between pre- and post-attack, when 15% group
membership labels are switched for fair clustering algorithms CFC, SFD, FSC, and KFC and datasets MNIST-
USPS and Office-31. Results show the impact on fairness utility (Balance and Entropy) and clustering utility
(NMI and ACC). The checkmarks indicate that for the specified dataset and algorithm combination the per-
formance matches the findings in the baseline research.

4.2 Results beyond original paper

4.2.1 Additional Metrics and Datasets

Motivation: In our study, we enhanced the original set of metrics - Balance, Entropy, NMI, and ACC
- with additional metrics for a more comprehensive clustering analysis. First, the Adjusted Rand Index
(ARI) complements ACC by evaluating clustering similarity without relying on label information. Next, the
Silhouette Score measures cluster quality, while the Minimum Cluster Ratio evaluates group representation
within clusters, a dimension overlooked by Balance. Metrics such as Cluster Distribution KL and Cluster
Distribution Total Variation provide a deeper understanding of group distribution across clusters. The
Silhouette Difference metric highlights disparities in clustering quality among groups. Additionally, separate
calculations for Minority Cluster Distribution Entropy for Group A (sensitive attribute label = 0) and Group
B (sensitive attribute label = 1) enrich our fairness assessment by analyzing the distributional homogeneity
of each group. Furthermore, we included the Multi-task Facial Landmark (MTFL) and uncropped Yale
datasets to broaden the scope of our analysis, adding complexity with diverse facial features and landmark
annotations. This choice complements the existing DIGITS and cropped Yale datasets, enriching the study
with real-world applicability and a more comprehensive assessment of clustering algorithm fairness and
adaptability.

The results for the additional metrics on the MNIST-USPS and Office-31 datasets are presented in Table
4, while results for the DIGITS and Yale datasets can be found in Appendix H, Table 11. To calculate the
fairness metrics, we utilized the holisticai library while scikit-learn (Pedregosa et al., 2011) was used
to assess the quality of clustering. The results for the two new datasets are shown in Table 5, where we see
an increase in fairness utility for CFC in terms of Balance on the uncropped Yale dataset ((+)1.304%).

Our extended analysis revealed a unique pattern in the KFC algorithm, which consistently grouped all
data points into a single cluster, an issue first identified through errors in calculating Silhouette Scores and
Differences. This led to ‘N/A’ entries for these metrics in Table 4 and Appendix H, Table 11. Furthermore,
we observed instances of infinite KL divergence, especially when Balance was 0, highlighting significant group
distribution discrepancies across clusters. The remaining metrics, except for the Minimum Cluster Ratio,
did not have significant variations pre- and post-attack.
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In the uncropped Yale dataset, our findings highlighted the superior performance of the CFC algorithm,
which exhibited a notable 130% increase in Balance post-attack. On the other hand for MTFL the results
before and after showed no significant changes for all the tested algorithms.

Algorithm Metric
MNIST-USPS Office-31

Pre-Attack Post-Attack Random —-
Attack

Pre-Attack Post-Attack Random —-
Attack

SFD

Min. Cluster Ratio 0.425 ± 0.094 0.500 ± 0.022 0.466 ± 0.156 0.269 ± 0.015 0.065 ± 0.010 0.138 ± 0.065
Cluster L1 0.276 ± 0.077 0.270 ± 0.034 0.276 ± 0.122 0.170 ± 0.008 0.180 ± 0.006 0.178 ± 0.011
Cluster KL 0.294 ± 0.134 0.235 ± 0.053 0.269 ± 0.300 0.082 ± 0.006 0.100 ± 0.005 0.098 ± 0.008
Silhouette diff −0.015 ± 0.008 −0.020 ± 0.009 −0.019 ± 0.006 −0.006 ± 0.001 −0.008 ± 0.002 −0.008 ± 0.002
Entropy Group A 2.264 ± 0.006 2.266 ± 0.010 2.173 ± 0.290 3.363 ± 0.002 3.292 ± 0.014 3.305 ± 0.024
Entropy Group B 2.004 ± 0.160 2.070 ± 0.069 2.127 ± 0.074 3.353 ± 0.005 3.357 ± 0.008 3.354 ± 0.010
ARI 0.201 ± 0.037 0.264 ± 0.017 0.248 ± 0.046 0.752 ± 0.009 0.687 ± 0.022 0.683 ± 0.019
Silhouette score 0.021 ± 0.011 0.035 ± 0.003 0.039 ± 0.011 0.172 ± 0.002 0.158 ± 0.005 0.159 ± 0.004

FSC

Min. Cluster Ratio 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.060 ± 0.092
Cluster L1 0.728 ± 0.001 0.846 ± 0.080 0.760 ± 0.063 0.112 ± 0.010 0.117 ± 0.014 0.113 ± 0.015
Cluster KL ∞∗ ± nan∗ ∞∗ ± nan∗ ∞∗ ± nan∗ 0.069 ± 0.004 0.064 ± 0.008 0.058 ± 0.009
Silhouette diff −0.069 ± 0.002 −0.068 ± 0.003 −0.070 ± 0.002 −0.009 ± 0.002 −0.004 ± 0.008 −0.007 ± 0.007
Entropy Group A 1.150 ± 0.002 1.150 ± 0.001 1.151 ± 0.003 2.299 ± 0.037 2.489 ± 0.091 2.471 ± 0.103
Entropy Group B 1.854 ± 0.031 1.862 ± 0.031 1.868 ± 0.032 2.385 ± 0.047 2.542 ± 0.110 2.569 ± 0.094
ARI 0.259 ± 0.010 0.275 ± 0.009 0.260 ± 0.017 0.207 ± 0.008 0.223 ± 0.033 0.235 ± 0.029
Silhouette score 0.036 ± 0.000 0.050 ± 0.009 0.040 ± 0.008 0.002 ± 0.004 0.021 ± 0.013 0.018 ± 0.010

KFC

Min. Cluster Ratio 0.603 ± 0.341 0.358 ± 0.351 0.696 ± 0.279 0.626 ± 0.018 0.626 ± 0.018 0.612 ± 0.061
Cluster L1 0.013 ± 0.008 0.018 ± 0.010 0.014 ± 0.009 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Cluster KL 0.003 ± 0.001 0.005 ± 0.002 ∞∗ ± nan∗ 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Silhouette diff 0.0262 ± 0.023 0.035 ± 0.029 0.022 ± 0.026 N/A∗ N/A∗ N/A∗
Entropy Group A 0.238 ± 0.143 0.201 ± 0.132 0.223 ± 0.143 0.007 ± 0.015 0.007 ± 0.015 0.006 ± 0.012
Entropy Group B 0.275 ± 0.164 0.254 ± 0.168 0.258 ± 0.170 0.007 ± 0.017 0.007 ± 0.017 0.007 ± 0.017
ARI 0.0 ± 0.002 0.0 ± 0.001 0.0 ± 0.002 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Silhouette score 0.099 ± 0.058 0.113 ± 0.058 0.101 ± 0.057 N/A∗ N/A∗ N/A∗

Table 4: Results for pre-attack, post-attack (black-box), and random attack, when 15% group membership
labels are switched for fair clustering algorithms SFD, FSC, and KFC and datasets MNIST-USPS and Office-
31. Results show the impact on additional metrics, where N/A corresponds to uniform clustering, ∞ to infinite
values, and nan to undefined values.

4.2.2 Additional Attack Methods

Motivation: We introduced new and combined attacks targeting various evaluation metrics to test the
model’s robustness. This approach aimed to uncover potential vulnerabilities, guiding improvements for
enhanced model generalization and defense.

We experimented with various attack strategies, focusing on the Office-31 dataset using the SFD algorithm.
Initially, our focus was to challenge one of the recently introduced fairness metrics, specifically the Minimum
Cluster Ratio. This attempt yielded identical results to those of the balance attack, suggesting a complete
correlation between these two metrics. Subsequently, we explored a dual-attack approach targeting both
Balance and Entropy, using a different optimization toolbox, namely Nevergrad (Rapin & Teytaud, 2018),
which uses a meta-optimizer named NGOpt.

In our study, we conducted a grid search across various weights for Balance and Entropy [1, 5, 10] and
different budget levels [20, 40, 60], utilizing three seeds [42, 123, 456]. This process identified an optimal
configuration with weights of 5 and 1 for Balance and Entropy, respectively, and a budget of 20. However,
the improvements observed in the attack performance with this configuration, as compared to the originally
proposed attack, were marginal. Detailed results of these comparisons are presented in Appendix I, Table
12. The new attacks on the Minimum Cluster Ratio and the combined attack were also tested with the CFC
defense algorithm. The CFC algorithm demonstrated robustness in countering these attacks. The details of
the results are shown in Appendix J, Table 13.

4.3 Ablation Study of Alpha and Beta Hyperparameters in the Consensus Fair Clustering Model

Motivation: The study mainly focused on two key hyperparameters, alpha (α) and beta (β), which were
tuned to optimize for training loss. Alpha controls the ratio of fair clustering loss, and beta controls the
ratio of structural preservation loss. The ablation study was conducted to understand the effects of these
two hyperparameters on the performance of the CFC model.

We trained the Consensus Fair Clustering (CFC) model on the Cora dataset (McCallum et al., 2000) This
dataset consists of 2708 scientific publications classified into seven classes and was balanced by randomly
sampling 1000 papers and using the binary feature ’w_1177’ as the sensitive attribute. We evaluated the

8



Published in Transactions on Machine Learning Research (April/2024)

CFC model’s clustering and fairness performance under different hyperparameter settings. Some of the
hyperparameters for the CFC model were kept constant, such as the number of basic partitions (r = 100),
the temperature parameter in the contrastive loss (τ = 1), dropout in hidden layers (0.6), the number of
training epochs (400), and the activation function (Gaussian Error Linear Unit). The dimension of the
hidden layer was set to 256. The experiment was run 10 times for each set with different random seeds, and
the average results are reported in Figure 2. We conclude that the α and β hyperparameters do not have a
large impact on the CFC model.

Figure 2: Results on on the effects of α and β hyperparameters on the CFC model. To measure performance,
the Balance, Entropy, Normalized Mutual Information (NMI) and Unsupervised Accuracy (ACC) metrics were
used.
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Algorithm Metric
MTFL uncropped Yale

Pre-Attack Post-Attack Change (%) Pre-Attack Post-Attack Change (%)

CFC
Balance 0.583 0.571 (-)2.058 0.191 0.440 (+)130.4
Entropy 0.639 0.635 (-)0.626 7.921 7.520 (-)5.062
NMI 0.007 0.007 (-)0.000 0.229 0.199 (-)13.10
ACC 0.600 0.606 (+)1.000 0.136 0.117 (-)13.97

SFD
Balance 0.971 ± 0.000 0.967 ± 0.000 (-)0.412 0.115 ± 0.116 0.031 ± 0.039 (-)73.04
Entropy 0.692 ± 0.000 0.692 ± 0.000 (-)0.000 12.00 ± 0.194 11.68 ± 0.195 (-)2.765
NMI 0.001 ± 0.000 0.000 ± 0.000 (-)100.0 0.693 ± 0.002 0.687 ± 0.005 (-)0.866
ACC 0.529 ± 0.000 0.512 ± 0.000 (-)3.214 0.404 ± 0.003 0.412 ± 0.008 (+)1.980

FSC
Balance 0.992 ± 0.000 0.986 ± 0.000 (-)0.605 0.000 ± 0.000 0.000 ± 0.000 (-)0.000
Entropy 0.693 ± 0.000 0.693 ± 0.000 (-)0.000 11.11 ± 0.030 11.07 ± 0.016 (-)0.360
NMI 0.000 ± 0.000 0.000 ± 0.000 (-)0.000 0.880 ± 0.000 0.879 ± 0.000 (-)0.114
ACC 0.546 ± 0.000 0.544 ± 0.000 (-)0.366 0.769 ± 0.001 0.769 ± 0.001 (-)0.000

KFC
Balance 0.870 ± 0.143 0.778 ± 0.108 (-)10.58 0.774 ± 0.295 0.728 ± 0.379 (-)5.943
Entropy 0.684 ± 0.019 0.678 ± 0.018 (-)0.877 0.503 ± 0.160 0.441 ± 0.147 (-)12.33
NMI 0.000 ± 0.001 0.000 ± 0.000 (-)0.000 0.002 ± 0.002 0.001 ± 0.002 (-)50.00
ACC 0.669 ± 0.011 0.670 ± 0.011 (+)0.149 0.032 ± 0.001 0.032 ± 0.001 (-)0.000

Table 5: Results for pre-attack, post-attack (black-box), change between pre- and post-attack, and relative
changes compared to the original study, when 15% group membership labels are switched for fair clustering
algorithms CFC, SFD, FSC, and KFC and datasets MTFL and uncropped Yale. Results show the impact
on fairness utility (Balance and Entropy) and clustering utility (NMI and ACC). Relative changes provide
insights into how our changes between pre-attack and post-attack differ from those of the paper. The pre- and
post-attack for CFC were run with one seed, leading to no standard deviation.

5 Discussion

Our study aimed to replicate key aspects of ‘Robust Fair Clustering’ (Chhabra et al., 2023), examining four
algorithms across four datasets (see Section 3.5). We successfully confirmed Claims 2 and 3 of the original
study, but only achieved partial replication for Claim 1, highlighting some variations in our experimental
findings.

The results presented for Claim 1 (Section 4.1.1) partially confirm the effectiveness of the black-box attack
in degrading the fairness performance of the clustering models. Across the four datasets and three fairness
algorithms outlined in the baseline study, 75% of our experiments supported this claim, showcasing a signifi-
cant reduction in fairness, with the Balance metric showing declines exceeding 30%. While our results largely
mirrored those of the original study, there were notable exceptions: a slight increase, instead of a considerable
decrease, for the Balance and Entropy metrics on the MNIST-USPS dataset using Scalable Fairlet Decom-
position (SFD). In the baseline study, the fairness models were also evaluated on DIGITS and Yale datasets.
Our experiments on these datasets reveal that the fairness attack significantly impairs the performance of
the SFD model for both datasets, as detailed in Appendix E, Table 9. When subjected to attacks, three of
the four datasets referenced in the baseline study show a substantial performance drop in the SFD model.
The lack of a similar decline in the MNIST-USPS dataset suggests that the SFD model effectively copes with
the attack on this dataset. The discrepancy in the SFD model’s performance on MNIST-USPS between the
baseline research and our analysis may be attributed to potential dataset preprocessing not disclosed in the
baseline study or to the original results being incidental. Even though the outcomes for the SFD model on
MNIST-USPS do not match those of the baseline study, the results from the other three datasets referenced
in the baseline support the original claim. Similarly, on the Office-31 dataset, the results for Fair K-Center
(KFC) remained unchanged before and after the attack. Besides the reasons discussed above, this can be
attributed to the unsupervised and unstable nature of clustering algorithms, which can result in singleton
clustering or utilizing fewer clusters than specified (Ohl et al., 2022). Despite the discussed discrepancies,
considering that the results of most of the experiments are similar to the findings in the baseline research,
Claim 1 is partially confirmed.

Our analysis of Claim 2 (Section 4.1.2) aligns with the hypothesis that clustering models are prone to
adversarial influence. As shown in the original paper, such attacks lead to significant fairness decreases
across all fair clustering algorithms and datasets. While our observations showed some deviations from this
pattern and some exceptions exist as previously discussed, they generally aligned with the original study
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in demonstrating a consistent decline in fairness performance across the studied algorithms and datasets
post-attack. Specifically, the fairness performance, as assessed by the Balance metric, experienced declines
exceeding 30% in most instances, and in many cases, even exceeded 70%

The third claim (Section 4.1.3) states that the Contrastive Fair Clustering (CFC) algorithm exhibits high
resilience against the proposed fairness attack. Consistent with the findings reported in the paper, our
analysis revealed that the CFC algorithm demonstrated superior performance in terms of fairness utility
and clustering performance compared to other state-of-the-art fair clustering algorithms. An exception was
observed where the SFD algorithm exhibited a marginal improvement in performance following the attack
on the MNIST-USPS dataset, as previously mentioned. This dataset represents the sole instance among the
four evaluated in the baseline study where such an anomaly was noted. While there may exist some variations
in the specific values of post-attack fairness compared to pre-attack fairness, our analysis generally confirms
the superior performance of the CFC algorithm in defending against fairness attacks when compared to other
algorithms. Thus, our findings affirm the robustness and effectiveness of the CFC algorithm in preserving
fairness and performance under adversarial conditions.

Additionally, our study incorporated new evaluation metrics as outlined in Section 4.2.1, enhancing our
understanding of model performance and guiding the development of new attack methods. Particularly
noteworthy was the Minimum Cluster Ratio, which exhibited substantial shifts in several experiments, con-
trasting with other additional metrics that remained relatively stable pre- and post-attack. This suggests
that they may not be suitable targets for fairness attacks, though further investigation is needed to confirm
this hypothesis. Equally notable were the Silhouette Difference and Silhouette Score metrics. Initially intro-
duced to assess fairness and clustering quality, respectively, these metrics played a crucial role in revealing
the KFC algorithm’s tendency towards singleton clustering, thereby enhancing the transparency of the model
evaluations.

Our study was further extended by including two new datasets, as detailed in Section 4.2.1, to assess the
adaptability of models across different data distributions. In the uncropped Yale dataset, CFC consistently
outperformed its counterparts. For MTFL, the attacks were not very effective even for the KFC, FSC,
and SFD algorithms. This could be attributed to the dataset being simplified to just two categories post-
processing, making it relatively straightforward for the clustering models to effectively group the data into
two clusters, even with 15% of the labels switched. Further investigation is necessary to fully understand
the underlying reasons for this outcome.

Moreover, we conducted additional investigations to assess the generalizability of the model under diverse
attack scenarios. The investigations included attacking different evaluation metrics other than the ones used
in the baseline research, as well as a combined attack. The findings indicated that the performance of CFC
remained consistently stable, even under these new forms of attack. This suggests that the current model
demonstrates robustness against attacks designed in a similar way as the attack to the evaluation metric
Balance in baseline research. Future studies involving more innovative attacks might offer opportunities to
enhance and broaden the model’s defensive capabilities.

Finally, the findings from our ablation study, particularly the minimal influence of the α and β hyper-
parameters on the CFC model, underscore the robustness of the model’s design. This resilience against
hyperparameter fluctuations highlights the model’s adaptability and efficiency in maintaining fairness and
clustering quality across varied settings.

Limitations and Future Work: The primary constraints of our study were limited computational re-
sources and time, leading us to use a restricted set of seeds in defense experiments and a narrow scope in
our grid search. Further work could include expanding the grid search and running the defense experiments
with a full set of seeds. Expanding the grid search parameters could potentially unveil a more effective
attack strategy, aligning with our ultimate objective of identifying potent attacks. A particularly valuable
addition to this study would be the development of a novel attack approach that can significantly challenge
the robustness of the CFC algorithm, thereby pushing the boundaries of our current understanding of defense
mechanisms in fair clustering.
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Environmental Impact: Experiments were conducted using a computer cluster located in Amsterdam,
which has a carbon efficiency of 0.4590 kgCO2eq/kWh. A cumulative of 130 hours of computation was
performed on hardware of type A100, and 80 hours on AMD Ryzen 7 4800H CPU. Total emissions are
estimated to be 19.73 kgCO2eq. Estimations were conducted using the Machine Learning Impact calculator
presented in (Lacoste et al., 2019).

Broader Impact: Recent studies have shown that algorithmic decision-making may be inherently prone
to unfairness, even when there is no intention for it (Pessach & Shmueli, 2022). This study contributes to the
importance of fairness in clustering algorithms and their resilience against adversarial attacks. Our findings
not only highlight the vulnerabilities of ML models to adversarial attacks as shown in existing literature (Ma
et al., 2019), but also contribute to the verification of more robust defense mechanisms against such fairness
attacks. Furthermore, by incorporating additional evaluation metrics and datasets, our research offers a
more in-depth exploration of the fair clustering model’s adaptability and resilience which is beneficial to
further research. Through this research, we aim to highlight our study’s role in advancing the technical
robustness of AI technologies, contributing to a more equitable and sustainable future in the field of ML.

5.1 What was easy

The original paper provided the necessary information on the majority of hyperparameter values required
to reproduce the experiments, and the publically available repository was well-documented with insightful
comments. This made it straightforward to refactor the code and understand the idea of the proposed
method. While it required some effort to comprehend and adapt the implementation structure, the overall
time invested in executing the experiments successfully was reasonable.

5.2 What was difficult

One minor inconvenience was that certain dependencies needed slight adjustments to align better with
current popular environments. Moreover, incorporating the KFC algorithm required the installation of
IBM-CPLEX, used as an external solver via PuLP. Another potential concern was the lack of clarity in
the baseline research regarding the acquisition of pre-computed labels and index files, interfering with the
expansion to additional datasets and evaluation metrics for assessing the robustness of the conclusions.

5.3 Communication with original authors

There was no direct communication with the original authors throughout the replication effort. Later advice
on hyperparameters for the KFC algorithm from the authors did not impact the noted singleton clustering
behavior.
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A Hyperparameters

• SFD algorithm: The values of p and q parameters are set to efficiently balance the trade-off
between clustering performance and fairness utility. Specifically, we use p = 2 and q = 5 for most
datasets, except for the Inverted UCI DIGITS dataset where p = 1 and q = 5.

• FSC algorithm: we employ the nearest neighbors approach to construct the input graph, setting
the number of neighbors to 3 for all datasets.

• KFC algorithm: we utilize a parameter δ = 0.1 as specified in the original implementation.

• CFC algorithm: consistency in hyperparameters is maintained across all datasets, with a fixed
number of basic partitions (r) set at 100, a temperature parameter (τ) of 2 for the contrastive loss
(Lc), and a dropout of 0.6 in hidden layers.

Furthermore, the activation function employed is the Gaussian Error Linear Unit (GELU) (Hendrycks &
Gimpel, 2016), while the fair clustering algorithm utilized for generating J for structural preservation loss
(Lp) is SFD with default parameters, chosen for its faster runtime compared to other fair clustering algo-
rithms. The dimension of the hidden layer is set to 256 for all datasets except Inverted UCI DIGITS, which
has only 64 features, thus necessitating a hidden layer dimension of 36.

Optimization of other hyperparameters for different datasets to enhance fairness performance is conducted
using a grid-based search technique and are shown in Table 6.

Dataset R α β
MNIST-USPS 2 100 25
Office-31 1 1 100
Inverted UCI DIGITS 2 10 50
Extended Yale face B 2 50 10

Table 6: Summary of hyperparameters used in our experimentation.

B KFC: Comparison of Balance and Entropy Attacks

The original paper utilized the Fair K-Center (KFC) algorithm, but the code for this algorithm was absent in
the jupyter notebooks provided by the authors. Consequently, we had to make arbitrary decisions regarding
each experiment’s budget and attack strategy. In Table 7, we present the results for the Balance and Entropy
attacks for KFC on all datasets. Notably, these results consistently fall within a very similar range and, in
some instances, are even identical across datasets. Upon further investigation, it was discovered that KFC
clustered all data points into the same cluster, likely explaining the uniformity of the results.

Dataset Attack
Metric

Balance Entropy NMI ACC

MNIST-USPS Balance 0.350 ± 0.299 1.242 ± 0.418 0.027 ± 0.017 0.144 ± 0.010
Entropy 0.350 ± 0.299 1.202 ± 0.350 0.028 ± 0.019 0.145 ± 0.012

Office-31 Balance 0.971 ± 0.067 0.401 ± 0.135 0.001 ± 0.003 0.050 ± 0.000
Entropy 0.971 ± 0.067 0.401 ± 0.135 0.001 ± 0.003 0.050 ± 0.000

DIGITS Balance 0.313 ± 0.203 3.154 ± 0.244 0.056 ± 0.007 0.174 ± 0.017
Entropy 0.375 ± 0.209 3.133 ± 0.220 0.028 ± 0.019 0.175 ± 0.016

Yale Balance 0.834 ± 0.322 0.668 ± 0.578 0.003 ± 0.007 0.030 ± 0.001
Entropy 0.845 ± 0.326 0.845 ± 0.326 0.602 ± 0.517 0.030 ± 0.001

Table 7: Comparison of Balance and Entropy attacks for the KFC algorithm for MNIST-USPS, Office-31,
Inverted UCI DIGITS (DIGITS), and Extended Yale face B (Yale) datasets. Results show the impact
on fairness utility (Balance and Entropy) and clustering utility (NMI and ACC).
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C Definitions for Metrics

Normalized Mutual Information (NMI) is a normalized version of the mutual information metric. It can
be defined as Equation 1, with the mutual information metric (Shannon, 1948) represented by I, Shannon’s
entropy represented by E, the cluster assignment labels represented by L, and the ground truth labels
represented by Y :

NMI = I(Y, L)
1
2 [E(Y ) + E(L)]

(1)

Accuracy (ACC) is equivalent to the classic accuracy for classification. A mapping function ρ is utilized
to compute all feasible mappings between true labels and predicted cluster labels for some m samples. It
defines Yi as the true labels and Li as the predicted cluster labels and forms the following Equation:

ACC = max
ρ

∑m
i=1 1{Yi = ρ(Li)}

m
(2)

Balance lies between 0 (least fair) and 1 (most fair). Suppose that the model contains m protected groups
for a given dataset X. Equation 3 denotes rg

X as the proportion of samples of the dataset belonging to
protected group g and rg

k as the proportion of samples in cluster k ∈ [K] belonging to protected group g:

Balance = min
k∈[K],g∈[m]

min
{

rg
X

rg
k

,
rg

k

rg
X

}
(3)

Entropy is similar to Balance, where higher values of Entropy indicate that clusters have more fairness. In
Equation 4, Nk,g is used to represent the set containing the samples of the dataset X that belong to both
the cluster k ∈ [K] and the protected group g. Besides, nk is used to denote the number of samples in cluster
k:

Entropy(g) = −
∑

k∈[K]

|Nk,g|
nk

log |Nk,g|
nk

(4)
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D Attack and Defense Results on MNIST-USPS and Office-31 with Relative
Changes

Algorithm Metrics
MNIST-USPS

Pre-Attack Post-Attack Change (%) Relative
Change (%)

Random-
Attack

Change (%) Relative
Change
(%)

SFD

Balance 0.282 ± 0.001 0.300 ± 0.001 (+)6.382 (+)106.4 0.330 ± 0.001 (+)17.02 (+)117.0
Entropy 3.063 ± 0.151 3.104 ± 0.001 (+)1.339 (+)1.028 3.147 ± 0.000 (+)2.742 (+)106.3
NMI 0.315 ± 0.000 0.358 ± 0.000 (+)13.65 (+)348.7 0.346 ± 0.000 (+)9.841 (+)268.3
ACC 0.419 ± 0.000 0.473 ± 0.000 (+)12.89 (+)211.7 0.456 ± 0.000 (+)8.831 (+)171.5

FSC

Balance 0.000 ± 0.000 0.000 ± 0.000 (-)100.0 (-)0.000 0.000 ± 0.000 (-)100.0 (-)0.000
Entropy 0.327 ± 0.000 0.241 ± 0.001 (-)26.30 (-)206.7 0.301 ± 0.001 (-)7.951 (-)204.6
NMI 0.549 ± 0.000 0.543 ± 0.000 (-)1.093 (-)35.44 0.538 ± 0.000 (-)2.004 (-)508.1
ACC 0.450 ± 0.000 0.454 ± 0.000 (+)0.889 (-)54.90 0.443 ± 0.000 (-)1.556 (-)203.0

KFC

Balance 0.557 ± 0.324 0.350 ± 0.299 (-)37.16 (-)39.86 0.724 ± 0.117 (+)30.20 (+)280.6
Entropy 1.355 ± 0.374 1.202 ± 0.351 (-)11.29 (-)11.56 1.417 ± 0.417 (+)4.576 (+)1,317
NMI 0.000 ± 0.000 0.000 ± 0.000 (-)100.0 (-)1,820 0.000 ± 0.000 (-)100.0 (-)1,976
ACC 0.147 ± 0.000 0.146 ± 0.000 (-)0.680 (-)114.8 0.145 ± 0.000 (-)1.361 (-)139.8

Algorithm Metrics
Office-31

Pre-Attack Post-Attack Change (%) Relative
Change (%)

Random -
Attack

Change (%) Relative
Change
(%)

SFD

Balance 0.546 ± 0.000 0.158 ± 0.000 (-)71.06 (+)18.52 0.359 ± 0.120 (-)34.25 (+)39.21
Entropy 10.00 ± 0.000 9.783 ± 0.001 (-)2.170 (+)34.42 9.903 ± 0.001 (-)0.970 (+)62.42
NMI 0.888 ± 0.000 0.861 ± 0.000 (-)3.041 (+)26.01 0.860 ± 0.000 (-)3.153 (-)334.3
ACC 0.841 ± 0.000 0.765 ± 0.000 (-)9.037 (+)3.831 0.769 ± 0.000 (-)8.561 (-)194.4

FSC

Balance 0.000 ± 0.000 0.000 ± 0.000 (-)100.0 (-)0.000 0.211 ± 0.211 (+)100.0 (-)1.903
Entropy 9.164 ± 0.119 9.383 ± 0.301 (+)2.390 (+)339.7 9.628 ± 0.213 (+)5.063 (+)2,346
NMI 0.652 ± 0.000 0.682 ± 0.000 (+)4.601 (+)25.74 0.685 ± 0.000 (+)5.061 (+)36.38
ACC 0.390 ± 0.000 0.438 ± 0.000 (+)12.31 (+)24.30 0.436 ± 0.000 (+)18.72 (+)112.3

KFC

Balance 0.971 ± 0.001 0.971 ± 0.001 (-)0.000 (+)100.0 0.971 ± 0.001 (-)0.000 (+)100.0
Entropy 0.401 ± 0.135 0.401 ± 0.135 (-)0.000 (+)100.0 0.401 ± 0.135 (-)0.000 (+)100.0
NMI 0.000 ± 0.000 0.000 ± 0.000 (-)100.0 (-)206.0 0.000 ± 0.000 (-)100.0 (-)62,400
ACC 0.001 ± 0.000 0.001 ± 0.000 (-)0.000 (-)100.0 0.001 ± 0.000 (-)0.000 (+)100.0

Table 8: Results for pre-attack, post-attack (black-box), random attack, change between pre- and post-attack
/ random attack, and relative changes compared to the original study, when 15% group membership labels are
switched for fair clustering algorithms SFD, FSC, and KFC and datasets MNIST-USPS and Office-31. Results
show the impact on fairness utility (Balance and Entropy) and clustering utility (NMI and ACC). Relative
changes provide insights into how our changes between pre-attack and post-attack / random attack differ from
those of the paper.

E Attack Results on DIGITS and Yale Datasets

Algorithms Metrics
DIGITS

Pre-Attack Post-Attack Change (%) Relative
Change (%)

Random
Attack

Change (%) Relative
Change (%)

SFD

Balance 0.000 ± 0.000 0.000 ± 0.000 (-)100.0 (-)0.000 0.000 ± 0.000 (-)100.0 (-)0.000
Entropy 2.921 ± 0.000 0.000 ± 0.000 (-)100.0 (-)0.000 0.000 ± 0.000 (-)100.0 (-)0.000
NMI 0.278 ± 0.000 0.393 ± 0.000 (+)41.37 (+)28.44 0.393 ± 0.000 (+)41.37 (+)21.04
ACC 0.399 ± 0.000 0.436 ± 0.000 (+)9.273 (+)70.46 0.436 ± 0.000 (+)9.273 (+)27.38

FSC

Balance 0.000 ± 0.000 0.000 ± 0.000 (-)100.0 (-)0.000 0.000 ± 0.000 (-)100.0 (-)0.000
Entropy 0.346 ± 0.000 0.342 ± 0.000 (-)1.156 NA 0.346 ± 0.000 (-)0.000 (-)100.0
NMI 0.564 ± 0.000 0.561 ± 0.000 (-)0.532 NA 0.564 ± 0.000 (-)0.000 (+)100.0
ACC 0.313 ± 0.000 0.316 ± 0.000 (+)0.958 NA 0.314 ± 0.000 (+)0.319 (-)9.117

KFC

Balance 0.707 ± 0.132 0.375 ± 0.209 (-)46.96 (+)33.99 0.394 ± 0.306 (-)44.27 (-)1.840
Entropy 3.376 ± 0.107 3.133 ± 0.220 (-)7.198 (-)5.620 3.210 ± 0.197 (-)4.917 (-)16.63
NMI 0.001 ± 0.000 0.001 ± 0.000 (-)0.000 (+)100.0 0.001 ± 0.000 (-)0.000 (+)100.0
ACC 0.174 ± 0.000 0.175 ± 0.000 (+)0.575 (+)143.1 0.174 ± 0.000 (-)0.000 (+)100.0

Algorithms Metrics
Yale

Pre-Attack Post-Attack Change (%) Relative
Change (%)

Random
Attack

Change (%) Relative
Change (%)

SFD

Balance 0.000 ± 0.000 0.000 ± 0.000 (-)100.0 (-)0.000 0.000 ± 0.000 (-)100.0 (-)0.000
Entropy 3.969 ± 0.232 3.741 ± 0.193 (-)5.745 (+)46.85 4.326 ± 0.374 (+)8.994 (+)2,192
NMI 0.160 ± 0.000 0.160 ± 0.000 (-)0.000 (-)100.0 0.164 ± 0.000 (+)2.500 (-)64.55
ACC 0.001 ± 0.000 0.001 ± 0.000 (-)0.000 (-)100.0 0.001 ± 0.000 (-)0.000 (-)100.0

FSC

Balance 0.000 ± 0.000 0.000 ± 0.000 (-)100.0 (-)0.000 0.000 ± 0.000 (-)100.0 (-)0.000
Entropy 3.402 ± 0.001 3.261 ± 0.001 (-)4.145 (-)42.34 3.488 ± 0.123 (+)2.528 (+)93.87
NMI 0.367 ± 0.000 0.365 ± 0.000 (-)0.545 (-)2.830 0.366 ± 0.000 (-)0.272 (-)129.5
ACC 0.273 ± 0.000 0.274 ± 0.000 (+)0.366 (+)314.0 0.273 ± 0.000 (-)0.000 (+)100.0

KFC

Balance 0.800 ± 0.400 0.800 ± 0.400 (-)0.000 (-)100.0 0.800 ± 0.400 (-)0.000 (-)100.0
Entropy 0.344 ± 0.000 0.344 ± 0.000 (-)0.000 (-)100.0 0.344 ± 0.000 (-)0.000 (-)100.0
NMI 0.000 ± 0.000 0.000 ± 0.000 (-)100.0 (-)864.5 0.000 ± 0.000 (-)100.0 (-)709.0
ACC 0.241 ± 0.000 0.241 ± 0.000 (-)0.000 (+)100.0 0.241 ± 0.000 (-)0.000 (+)100.0

Table 9: Results for pre-attack, post-attack (black-box), random attack, change between pre- and post-attack
/ random attack ,and relative changes compared to the original study, when 15% group membership labels
are switched for fair clustering algorithms SFD, FSC, and KFC and datasets Inverted UCI DIGITS (DIGITS)
and Extended Yale face B (Yale). Results show the impact on fairness utility (Balance and Entropy) and
clustering utility (NMI and ACC). Relative changes provide insights into how our changes between pre-attack
and post-attack / random attack differ from those of the paper.
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Figure 3: Pre-attack, post-attack (black-box) and random attack results on fairness utility (Balance and Entropy)
and clustering utility (ACC and NMI) for Inverted UCI DIGITS (DIGITS) and Extended Yale face B (Yale)
(x-axis: % of samples attacker can poison).

F Defense Results on DIGITS and Yale Datasets

Algorithms Metrics
DIGITS Yale

Pre-Attack Post-Attack Change (%) Relative
Change (%)

Pre-Attack Post-Attack Change (%) Relative
Change (%)

CFC

Balance 0.139±0.011 0.145±0.047 (+)4.50 (-)94.61 0.001±0.001 0.219±0.001 (+)21,800 (+)29,873
Entropy 1.978±0.051 1.996±0.079 (+)0.94 (-86.09) 6.015±0.193 6.813±1.010 (+)13.27 (+)0.378
NMI 0.226±0.000 0.290±0.000 (+)28.32 (-)269.4 0.150±0.000 0.144±0.000 (-)4.000 (-)119.8
ACC 0.283±0.000 0.293±0.000 (+)3.534 (+)157.6 0.150±0.000 0.144±0.000 (-)4.000 (-)142.6

SFD

Balance 0.000±0.000 0.000±0.000 (-)100.0 (-)0.000 0.000±0.000 0.000±0.000 (-)100.0 (-)0.000
Entropy 2.921±0.000 0.000±0.000 (-)100.0 (-)0.000 3.969±0.232 3.741±0.193 (-)5.745 (+)46.85
NMI 0.278±0.000 0.393±0.000 (+)41.37 (+)28.44 0.160±0.000 0.160±0.000 (-)0.000 (-)100.0
ACC 0.399±0.000 0.436±0.000 (+)9.273 (+)70.46 0.001±0.000 0.001±0.000 (-)0.000 (-)100.0

FSC

Balance 0.000±0.000 0.000±0.000 (-)100.0 (-)0.000 0.000±0.000 0.000±0.000 (-)100.0 (-)0.000
Entropy 0.346±0.000 0.342±0.000 (-)1.156 N/A∗ 3.402±0.001 3.261±0.001 (-)4.145 (-)42.34
NMI 0.564±0.000 0.561±0.000 (-)0.532 N/A∗ 0.367±0.000 0.365±0.000 (-)0.545 (-)2.830
ACC 0.313±0.000 0.316±0.000 (+)0.958 N/A∗ 0.273±0.000 0.274±0.000 (+)0.366 (+)314.0

KFC

Balance 0.707±0.132 0.375±0.209 (-)46.99 (+)33.99 0.800±0.400 0.800±0.400 (-)0.000 (-)100.0
Entropy 3.376±0.107 3.133 ± 0.22 (-)7.198 (-)5.620 0.344±0.000 0.344±0.000 (-)0.000 (-)100.0
NMI 0.001±0.000 0.001±0.000 (-)0.000 (+)100.0 0.000±0.000 0.000±0.000 (-)100.0 (-)864.5
ACC 0.174±0.000 0.175±0.000 (+)0.575 (+)143.1 0.241±0.000 0.241±0.000 (-)0.000 (+)100.0

Table 10: Results for pre-attack, post-attack (black-box), random attack, change between pre- and post-attack,
and relative changes compared to the original study, when 15% group membership labels are switched for fair
clustering algorithms SFD, FSC, and KFC and datasets Inverted UCI DIGITS (DIGITS) and Extended Yale
face B (Yale). Results show the impact on fairness utility (Balance and Entropy) and clustering utility (NMI
and ACC). Relative changes provide insights into how our changes between pre-attack and post-attack / random
attack differ from those of the paper. The N/A values in the relative changes column indicate instances where
the change in the original paper was 0%, making division by 0 impossible.
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G Analyzing Overall Adversial Robustness of CFC

Figure 4: Pre-attack and post-attack (black-box) ratio trends for FSC, SFD, KFC, and CFC on fairness utility
(Balance and Entropy) and clustering utility (ACC and NMI) for MNIST-USPS and Office-31 (we do not plot
curves for which pre-attack values are 0) (x-axis: % of samples attacker can poison).
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H Extra Metrics for DIGITS and Yale Datasets

Algorithms Metrics
DIGITS Yale

Pre-Attack Post-Attack Random Attack Pre-Attack Post-Attack Random Attack

SFD

Min. Cluster Ratio 0.395 ± 0.001 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Cluster L1 0.344 ± 0.001 1.000 ± 0.000 1.000 ± 0.000 0.797 ± 0.009 0.804 ± 0.014 0.779 ± 0.015
Cluster KL 0.722 ± 0.002 ∞∗ ± nan∗ ∞∗ ± nan∗ ∞∗ ± nan∗ ∞∗ ± nan∗ ∞∗ ± nan∗
Silhouette diff −0.060 ± 0.000 −0.090 ± 0.124 −0.060 ± 0.142 −0.002 ± 0.005 −0.008 ± 0.004 −0.008 ± 0.005
Entropy Group A 2.271 ± 0.000 1.739 ± 0.869 1.525 ± 0.998 1.788 ± 0.100 1.816 ± 0.180 1.752 ± 0.166
Entropy Group B 1.983 ± 0.002 0.435 ± 0.869 0.652 ± 0.996 3.505 ± 0.016 3.491 ± 0.016 3.500 ± 0.014
ARI 0.157 ± 0.000 0.094 ± 0.001 0.094 ± 0.000 0.007 ± 0.001 0.009 ± 0.006 0.008 ± 0.006
Silhouette score −0.072 ± 0.000 0.322 ± 0.003 0.321 ± 0.001 0.065 ± 0.004 0.060 ± 0.004 0.061 ± 0.006

FSC

Min. Cluster Ratio 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Cluster L1 0.404 ± 0.000 0.404 ± 0.000 0.419 ± 0.044 0.760 ± 0.025 0.744 ± 0.052 0.762 ± 0.013
Cluster KL ∞∗ ± nan∗ ∞∗ ± nan∗ ∞∗ ± nan∗ ∞∗ ± nan∗ ∞∗ ± nan∗ ∞∗ ± nan∗
Silhouette diff −0.017 ± 0.000 −0.017 ± 0.000 −0.018 ± 0.005 0.004 ± 0.004 0.008 ± 0.005 0.002 ± 0.005
Entropy Group A 1.028 ± 0.006 1.024 ± 0.009 1.033 ± 0.017 2.966 ± 0.021 2.918 ± 0.087 2.984 ± 0.038
Entropy Group B 1.281 ± 0.000 1.281 ± 0.000 1.322 ± 0.124 2.280 ± 0.024 2.257 ± 0.032 2.272 ± 0.033
ARI 0.156 ± 0.000 0.156 ± 0.000 0.158 ± 0.008 0.062 ± 0.002 0.058 ± 0.007 0.062 ± 0.002
Silhouette score −0.139 ± 0.000 −0.140 ± 0.000 −0.138 ± 0.003 −0.009 ± 0.012 −0.020 ± 0.017 −0.006 ± 0.005

KFC

Min. Cluster Ratio 0.683 ± 0.128 0.426 ± 0.197 0.494 ± 0.246 0.640 ± 0.320 0.665 ± 0.276 0.665 ± 0.276
Cluster L1 0.094 ± 0.011 0.120 ± 0.011 0.117 ± 0.011 0.001 ± 0.001 0.001 ± 0.002 0.001 ± 0.002
Cluster KL 0.022 ± 0.005 ∞∗ ± nan∗ ∞∗ ± nan∗ ∞∗ ± nan∗ ∞∗ ± nan∗ ∞∗ ± nan∗
Silhouette diff −0.014 ± 0.021 −0.034 ± 0.052 −0.026 ± 0.051 N/A∗ N/A∗ N/A∗
Entropy Group A 1.82 ± 0.169 1.869 ± 0.157 1.850 ± 0.185 0.015 ± 0.029 0.015 ± 0.029 0.014 ± 0.030
Entropy Group B 1.82 ± 0.168 1.853 ± 0.173 1.831 ± 0.194 0.014 ± 0.029 0.016 ± 0.031 0.014 ± 0.028
ARI 0.022 ± 0.009 0.023 ± 0.008 0.023 ± 0.008 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Silhouette score −0.07 ± 0.032 −0.152 ± 0.059 −0.130 ± 0.048 N/A∗ N/A∗ N/A∗

Table 11: Results for pre-attack, post-attack (black-box) and random attack, when 15% group membership labels
are switched for fair clustering algorithms SFD, FSC, and KFC and datasets Inverted UCI DIGITS (DIGITS)
and Extended Yale face B (Yale). Results show the impact on additional metrics, where N/A corresponds to
uniform clustering, ∞ to infinite values, and nan to undefined values.

I Additional Attack Methods Results

Metric Attack Balance Attack Min. Cluster Ratio Combined Attack
Balance 0.149 ± 0.004 0.149 ± 0.004 0.144 ± 0.011
Entropy 9.764 ± 0.037 9.764 ± 0.037 9.715 ± 0.089
NMI 0.857 ± 0.009 0.857 ± 0.009 0.857 ± 0.002
ACC 0.757 ± 0.026 0.757 ± 0.026 0.753 ± 0.016
Min. Cluster Ratio 0.061, ±0.002 0.061, ±0.002 0.059 ± 0.005
Cluster L1 0.178 ± 0.007 0.178 ± 0.007 0.183 ± 0.002
Cluster KL 0.099 ± 0.009 0.099 ± 0.009 0.104 ± 0.006
Silhouette diff −0.009 ± 0.001 −0.008 ± 0.002 −0.005 ± 0.002
Entropy Group A 3.291 ± 0.016 3.291 ± 0.016 3.287 ± 0.035
Entropy Group B 3.357 ± 0.010 3.357 ± 0.010 3.360 ± 0.009
ARI 0.677 ± 0.021 0.677 ± 0.021 0.681 ± 0.010
Silhouette Score 0.153 ± 0.006 0.153 ± 0.006 0.157 ± 0.003

Table 12: Results of Additional Attack Methods: This table compares the performance of the original balance
attack against the newly introduced Minimum Cluster Ratio attack and the Combined (Balance & Entropy)
attack. For a consistent comparison, the results presented are based on the same three seeds that were utilized
during the grid search. The most effective attack strategy for each metric, as indicated by the lowest value, is
emphasized in bold.
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J Defense Results on Additional Attack Methods

Attack Type Metric MNIST-USPS Office-31

Pre-Attack Post-Attack Pre-Attack Post-Attack

Minimum Cluster Ratio

Min. Cluster Ratio 0.402 0.306 0.319 0.371
Cluster L1 0.271 0.238 0.180 0.139
Cluster KL 0.270 0.192 0.093 0.079
Silhouette diff −0.030 −0.022 −0.008 −0.008
Entropy Group A 2.052 2.022 2.787 2.760
Entropy Group B 1.849 1.899 2.775 2.768
ARI 0.138 0.193 0.438 0.415
Silhouette score 0.001 0.015 0.077 0.072

Combined

Min. Cluster Ratio 0.403 0.305 0.365 0.324
Cluster L1 0.214 0.256 0.155 0.180
Cluster KL ∞∗ ∞∗ ∞∗ 0.092
Silhouette diff −0.029 −0.015 −0.012 −0.017
Entropy Group A 2.019 2.127 2.845 2.812
Entropy Group B 1.877 1.937 2.810 2.870
ARI 0.159 0.204 0.399 0.444
Silhouette score 0.002 0.014 0.053 0.091

Table 13: Results for pre-attack and post-attack when 15% group membership labels are switched for defense
algorithm CFC and datasets MNIST-USPS and Office-31. Results show the impact on additional metrics,
where ∞ corresponds to infinite values. Experiments are run once because of the consumed GPU hours and
the small standard deviations in other related experiments.
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