
Workshop track - ICLR 2017

SYNTHETIC GRADIENT METHODS
WITH VIRTUAL FORWARD-BACKWARD NETWORKS

Takeru Miyato1,2, Daisuke Okanohara1, Shin-ichi Maeda3, Koyama Masanori4
{miyato, hillbig}@preferred.jp,
ichi@sys.i.kyoto-u.ac.jp, mkoyama@fc.ritsumei.ac.jp
1 Preferred Networks, Inc. 2 ATR Cognitive Mechanisms Laboratories
3 Informatics, Kyoto University 4 Mathematics, Ritsumeikan University

ABSTRACT

The concept of synthetic gradient introduced by Jaderberg et al. (2016) provides
an avant-garde framework for asynchronous learning of neural network. Their
model, however, has a weakness in its construction, because the structure of their
synthetic gradient has little relation to the objective function of the target task. In
this paper we introduce virtual forward-backward networks (VFBN). VFBN is a
model that produces synthetic gradient whose structure is analogous to the actual
gradient of the objective function. VFBN is the first of its kind that succeeds in de-
coupling deep networks like ResNet-110 (He et al., 2016) without compromising
its performance.

1 INTRODUCTION

So far, deep neural network has been successful in winning state of the art performances on various
tasks, and numerous studies including Shazeer et al. (2017); He et al. (2016) support the belief of
the deeper the better, the larger the better. While these recent advances are increasingly enabling
the usage of deep and wide models in applications, some serious hardware problems remain. For
outrageously large networks, one is forced to distribute the model parameters and data over multiple
machines, and the computational efficiency is at the mercy of sheer communication-speed among
hardwares. Asynchronous update scheme for neural network may provide a cure for resolving such
bottleneck. One such scheme is the decoupled learning of neural network based on synthetic gradi-
ent introduced by (Jaderberg et al., 2016). If h is an output of some hidden layer in the network, the
derivative of the final objective function δ(h) := ∂ℓ/∂h with respect to h requires the parameters
and the outputs of the layers above. The idea of synthetic gradient is to boldly approximate δ(h)

by much simpler, independent function δ̂(h). Quoting their terminology, one can decouple the sets
of independent δ̂(h) function associated with each hidden layer. Unfortunately, however, as we will
show later in this paper, their method fails in training some important families of deep neural net-
works. We believe that the weakness of the gradient synthesizer model used in lies in its structure.
In fact, their construction of the synthetic gradient does not guarantee any structural similarity to the
original gradient function that is computed with the standard forward and backward prop.

Our virtual forward-backward network (VFBN) is a model that synthesizes a gradient with respect
to the variable in intermediate layer using a virtual network that mimics the actual subnetwork
above the very layer. In order to evaluate the effectiveness of our VFBN, we applied our method
to the Residual Network with 110 layers. We were able to decouple the original model without
significantly compromising the performance when compared to the original model trained with the
back-prop. This is a feat that could not be achieved by Jaderberg et al. (2016).

2 THE METHOD OF SYNTHETIC GRADIENT

In this section, we would like to use a label classifier as an example-model to describe the synthetic
gradient method proposed by Jaderberg et al. (2016). We shall however note that our concept is
widely applicable to many other tasks that uses neural network. Throughout, let us denote the input

1

Workshop track - ICLR 2017

by x ∈ RI , where I is input dimension. Also, we would use y ∈ {0, 1}K ;
∑

i yi = 1 to denote
one-hot vector, and use Dl = {x(n), y(n)|n = 1, . . . , N} to denote a labeled dataset. We train the
model p(Y |x, θ) with D. To make the discussion compact, we would like to assume that p(Y |x, θ)
is a neural network with L hidden layers. That is, putting θ = {W l}L+1

l=1 , we can write

p(Y = yi|x, θ) := softmax(WL+1
i hL), hl := f(al), al := W lhl−1, l ∈ {1, . . . , L}. (1)

where f(·) is a nonlinear function, such as ReLU (Jarrett et al., 2009; Nair & Hinton, 2010; Glorot
et al., 2011). Also, softmax(·) indicates a softmax function on oi ∈ R ; exp(oi)/

∑K
j=1 exp(oj).

We have omitted the bias parameters in each layer for simplicity.

In usual training of the neural network, the update of the parameter in the lower layer must wait for
the update of the layer above and work in synchrony. To train each layer asynchronously, Jaderberg
et al. (2016) proposed synthetic gradient method that can decouple the training of each layer in the
network, the precise meaning of which we would explain momentarily. In their work, they use

δl ≈ δ̂l(hl, c) (2)

to denote the approximation of δl, where hl is the output from l-th layer and c is some auxiliary
contextual input available. Note that this approximator does not depend on the computations in the
layers above. The approximator δ̂l(hl, c) is trained by minimizing

el(δ̂l) := ∥δl − δ̂l∥22, (3)

wherein δl can in turn be approximated as well. For the gradient synthesizer in their experiment,
they used the label information y for the contextual information c, and used a model that takes the
concatenated vector [h, y] as the input (Figure 1a):

δ̂(h, y) := g([h, y]). (4)

In our paper, we refer to this model as Jaderberg’s model (see Appendix for more detail). This paper
sprouted from our suspicion that this family of function does not really capture the relationship
between forward and backward prop in the original network, and might fall short in its ability to
approximate the gradient with high accuracy.

Concat

y

�̂

g

[h, y]

�̂(h, y)h

(a) The Jaderberg’s
model

y

�̂

�̂(h, y)h

vf
@`/@vf

v0f

(b) VFBN model

Figure 1: The models for synthesizing gradient.

3 VIRTUAL FORWARD-BACKWARD NETWORKS (VFBN)

Intuition dictates that a good form of δ̂ should somewhat trace the gradient that is computed with
the forward and backward prop in standard routine. We shall there aim to synthesize a function
that behaves like the forward prop and a function that behaves like the back-prop. With simple chain
rule, we can see that the gradient of the original objective function ℓ with respect to a hidden variable
h given a label y can be written using recursive definition of δ as:

δl(h, y) :=
∂ℓ(y, fwd(h))

∂h
= bwd(h)× (∂fwd(h)ℓ(y, fwd(h))) (5)

where fwd represents the forward function about h that is derived from p(Y |x, θ), and bwd repre-
sents its derivative. Replacing the fwd with virtual approximator vf in eq.(5), we get our VFBN
gradient synthesizer:

δ̂l(h, y)VFBN := v′f (h)× ∂vf (h)ℓ(y, vf (h)) (6)

2

Workshop track - ICLR 2017

ResBlock-1 ResBlock
-2-1

ResBlock
-2-2 ResBlock-3

�̂(·, y)

CNN Softmax
x

Figure 2: Decoupling of ResNet-110.

where vf is an arbitrary function of user’s choice that is to be trained during the training, and v′f is its
derivate with respect to h (Figure 1b). We can rightly refer to vf and v′f as virtual forward network
and virtual backward network, respectively. The essence of our method is to use the approximator
of this form for the gradient synthesizer. We trained vf by minimizing Eq.(3) with respect to the
relevant parameters. Structure-wise, vf can be thought of as a simplified version of the subnetwork
above the layer containing the variable h (see appendix for the the architecture of vf we used in our
experiments).

4 EXPERIMENT : DECOUPLING OF RESNET-110 ON CIFAR-10

In order to verify the efficacy of the VFBN, we tested our model to decouple the training on 110-
layered Residual Networks (ResNet-110) (He et al., 2016) (see Appndix B) and compared its perfor-
mance against that of Jaderberg’s model1. Figure 2 is a graphical representation of our decoupling
procedure. We partitioned the residual network into two large subnetworks consisting of 55 layers
each, and decoupled the trainings on these to substructures.

Figure 3 compares the learning curve of two synthetic gradient methods against the standard training
with the back prop(BP)2. Note that the learning curve of Jaderberg’s models fall significantly behind
the BP, while our VFBN keeps its pace with the BP throughout. Table 1 tabulates the test errors
of the model trained with comparative methods. With 12 epochs, the test error rate of Jaderberg’s
Linear model, VFBN (αgs = 1e-3) and BP were respectively 15.56%, 5.51% and 5.15% .

We shall also note that, against our intuition, VFBN was able to produce a network with an error as
low as 5.73% with untrained vf (αgs = 0), which is slightly better than the result with the bottom
half of the network alone. We can justify this outcome with the structure of VFBN. If the parameters
of VFBN remain fixed, our VFBN keeps returning a derivative to the layers below the synthesizer so
that the output of the lower layers transformed by the fixed vf will become closely correlated with
the label information. But of course, trained VFBN can capture better information than the untrained
VFBN because it gains information from the layer above, and the generalization performance is in
fact better with αgs = 1e-3. The result indicates that VFBN can successfully learn the gradients for
deep network and draw out the potential of the deep network.

Test error (%)

BackProp 5.15
Bottom half with back prop 5.76

Layer-wise supervised loss 5.71

(Synthetic Gradient models)
Jaderberg’s small-ResNet 20.45
Jaderberg’s Linear 15.56
VFBN (ours, αgs = 0) 5.73
VFBN (ours, αgs = 1e-3) 5.51

Table 1: Test error rates on CIFAR-10 Figure 3: Learning curves on CIFAR-10

1We shall confess that, in our experiment, we simply replaced the back-propagated gradient with synthetic
gradient in usual synchronous training, and that our result has not been tested on distributional environment.

2We augmented the dataset prior to the experiment (50K training images→ 1.8M training images) and
each epoch in our experiment corresponds to the learning with the entire augmented dataset. As such, our 1
epoch corresponds to 36 epochs (= 1.8M/50K) in the standard study.

3

Workshop track - ICLR 2017

ACKNOWLEDGMENTS

We would like to thank the members of Preferred Networks, Inc., particularly Seiya Tokui, for
insightful advices and comments.

REFERENCES

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
AISTATS, 2011.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, 2015.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, and
Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. arXiv preprint
arXiv:1608.05343, 2016.

Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. What is the best multi-
stage architecture for object recognition? In ICCV, 2009.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In ICML, 2010.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a next-generation open source
framework for deep learning. In Proceedings of workshop on machine learning systems (Learn-
ingSys) in the twenty-ninth annual conference on neural information processing systems (NIPS),
2015.

A TWO VERSIONS OF THE GRADIENT SYNTHESIZER

A.1 JADERBERG’S MODEL

In their experiment, Jaderberg et al used Linear model, given by:

δ̂(h, y) := W [h, y] (7)

where [a, b] indicates concatenation of the two vectors a and b.

A.2 VFBN MODEL

If we use the log-likelihood for the objective function, we may for instance use linear vf , in which
case we obtain

δ̂(h, y) := WT
v (y − softmax(Wvh)) (8)

where Wf is the weight matrix on vf . If we use one hidden layer neural network for vf , our VFBN
becomes

δ̂(h, y) :=W 1T
v f ′(W 1

v h)W
2T
v

× (y − softmax(W 2
v f(W

1
v h))) (9)

4

Workshop track - ICLR 2017

B DETAILS OF EXPERIMENTS

B.1 LEARNING WITH RESNET-110 ON CIFAR-10

All experiments used Chainer (Tokui et al., 2015) on GPU. CIFAR-10 is a well known benchmark
dataset for the image recognition tasks. For the experiments in this paper, we used augmented
CIFAR-10 dataset consisting of (1) 24×24 dimensional images randomly cropped from the original
32× 32 dimensional images, (2) 24× 24 dimensional images constructed by compressing 28× 28
dimensional images cropped from the original images and (3) making left-right reflection of the
output. The whole augmented dataset consists of 1, 800, 000 images as opposed to the original
50, 000. For the evaluation of test error, we produced augmented dataset for each test sample, fed
the resulting augmented dataset to the model and averaged the output. For the original model on
which to apply our VFBN, we used essentially the same network as the ResNet-110 used in He et al.
(2016) for the task on CIFAR-10.

Figure 2 shows the architecture of our version of ResNet-110. In this network, 24× 24× 3 dimen-
sional input x(three channels) is first transformed to 22×22×16 dimensional input with convolution
without padding. The output is then fed to ResBlock-1,2,3 consisting of 36 convolutional layers,
each using resolution preserving padding with 3× 3 kernel width. Skip connections occur at every
2 layers in this network. The resolutions and the number of feature maps at these three blocks are
22 × 22, 11 × 11, 6 × 6 and 32, 64, 64, respectively. We are using the stride of size 1 everywhere,
with exceptions on the connections over which the resolution changes, wherein we use the stride of
size 2. Each convolution layers is followed by Batch Normalization layer (Ioffe & Szegedy, 2015)
and ReLU activation. The global average pooling is conducted at ResBlock-3, and the outcome is
fed to softmax layer, producing the final probability output. For further details, please consult the
actual source code provided at https://github.com/mitmul/chainer-cifar10/.

For the experiment with synthetic gradient, we constructed gradient synthesizer right at the middle
of ResBlock-2.

For our experiment with the Jaderberg’s model (Jaderberg et al., 2016), we followed their procedure
and fed a concatenation of the intermediate output h and one hot vector y to their synthesizer.
Output of the layer at which we attached the synthetic gradient network consists of 64 feature maps
with 11 × 11 resolution. Thus, the concatenated input [h, y] to be fed to the synthesizer consists of
74 feature maps with 11× 11 resolution. We experimented on Jaderberg’s model with two families
of g (Eq.(4)). We first tested their model with linear g (Jaderberg’s Linear in Table 1) representing
one layer convoltion of 5 × 5 kernel width. We also tested their model with g being a ResNet
(Jaderberg’s small-ResNet in Table 1). We would articulate on the architecture of this ResNet
synthesizer.

Our version of Jaderberg’s ResNet synthesizer first transforms [h, y] into 64 feature maps via con-
volution layer with resolution preserving padding with 3× 3 kernel width. The network then feeds
the output to 4 convolution layers using resolution preserving padding with 3× 3 kernel width. For
the latter 4 layers, the skip connection occurs every 2 layers. The final output of the synthesizer
is produced by feeding the output again to the last layer of convolution using resolution preserving
padding with 3 × 3 kernel width. Except for the last layer, every convolution in the synthesizer
network is followed by batch normalization layer and ReLU.

Finally, we would describe the architecture of vf in our VFBN, which is a ResNet on its own. Our
vf first feeds the input to 4 convolutional layers using resolution preserving padding with kernel
width 3×3, admitting 2 skip connection at each layer. Our vf then mimics the original network and
applies global average pooling and softmax transformation in the end. As in the original network,
each convolution in vf is also followed by BatchNormalization Layer and ReLU.

5

