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Abstract

Head motion during MRI acquisition presents significant problems for subsequent
neuroimaging analyses. In this work, we propose to use convolutional neural
networks (CNNs) to correct motion-corrupted images as well as investigate a
possible improvement by augmenting L1 loss with adversarial loss. For training,
in order to gain access to a ground-truth, we first selected a large number of
motion-free images from the ABIDE dataset. We then added simulated motion
artifacts on these images to produce motion corrupted data and a 3D regression
CNN was trained to predict the motion-free volume as the output. We tested the
CNN on unseen simulated data as well as real motion affected data. Quantitative
evaluation was carried out using metrics such as Structural Similarity (SSIM) index,
Correlation Coefficient (CC), and Tissue Contrast T-score (TCT). It was found
that Gaussian smoothing as a conventional method did not significantly differ in
SSIM, CC and RMSE from the uncorrected data. On the other hand, the two CNN
models successfully removed the motion-related artifact as their SSIM and CC
significantly increased after their correction and the error was reduced. The CNN
displayed significantly larger TCT compared to the uncorrected images whereas
the adversarial network, while improved did not show a significantly increased
TCT, which may be explained also by its over-enhancement of edges. Our results
suggest that the proposed CNN framework enables the network to generalize well
to both unseen simulated motion artifacts as well as real motion artifact-affected
data. The proposed method could easily be adapted to estimate a motion severity
score, which could be used as a score of quality control or as a nuisance covariate
in subsequent statistical analyses.
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1 Introduction

Head motion during MRI scanning has become a critical issue as recent studies rely on 3D acquisition
which require longer acquisition times for high-quality imaging, resulting in serious confounding
effects for subsequent neuroimaging analyses. Subject motion during scanning results in blurring of
tissue contrast boundaries as well as ghost repetitions of the image in the phase-encoding directions.
Quasi-periodic motion e.g. due to physiological activity e.g. respiration, results in coherent ghosting
artifacts, whereas random motion, manifests as multiple displaced replicas of the image, or stripes [1].
Such neuroimaging confounds become more germane in imaging studies of infants, children [2] and
adolescents [3] as they may be less compliant during the imaging session. Consequently, a significant
proportion (10-40%) of the initially acquired samples have to be excluded in the analysis stage [4].
Even after exclusion of images with visually-recognized motion artifact through a standard image
quality control, the confounding effects of subtle artifacts in the remaining data may be substantial
and sufficient to bias results from morphometric studies [5].

Previous attempts to reduce motion artifacts from MRI images are based on iterative estimation of
a phase-correction [6, 7], or more recently on compressed-sensing theory [8] or parallel-imaging
reconstruction methods [9]. These techniques require the raw frequency domain (k-space) data,
which is seldom available for large scale open datasets. For this reason, we adopt a convolutional
neural network (CNN) regression model to perform an image domain motion correction based on
deep learning.

The CNN training process by nature requires the combination of a set of motion-free images as
the ground truth data with the same individual’s motion-corrupted images as the input data. It is
however impractical to acquire such coupled data. To overcome, we propose a hypothesis that adding
realistic motion simulation to clean images and training a CNN model with the combination of clean
images and their motion simulation data can correct the simulated motion corruption as well as
the real motion artifact. The novelty of our study lies in: (1) selecting a large sample (n=725) of
motion-free images as the ground truth, modeling of realistic motion-simulation by applying phase
shifts to produce phase discontinuities [7]; (2) Testing the proposed hypothesis by performing a
systematic validation and measuring quantitative evaluation indices that have become standard in the
field of image reconstruction, and (3) investigating a possible improvement of the regression CNN by
adopting an adversarial network approach.

2 Methods

2.1 Outline

The proposed study framework is described in Fig. 1. It consists of 3 main stages: (1) Training of
regression CNN using simulated data; (2) testing using unseen simulated data and the evaluation
metrics: SSIM – structural similarity index, correlation coefficient and RMSE; (3) Testing on real
motion corrupted volumes using histogram analysis and by measuring TCT – tissue contrast t-score.

2.2 Dataset

Seven hundred and twenty five 3D T1-weighted MRI images from the Autism Brain Imaging Data
Exchange (ABIDE) dataset 10 that were deemed to have no significant artifacts by our in-house
quality control protocol were used for training of the regression CNN. A separate subset of the
ABIDE data (n=39) were held out for use as a motion-simulated test set. In the ABIDE dataset which
includes a large number of pediatric subjects, we observed 158 cases with a significant amount of
motion artifacts (mild: 64; moderate: 84; severe: 20). Twenty-four volumes among the moderately
motion-corrupted images were randomly selected to be used for the real data test (note: tissue
segmentation error in mild cases were minimal whereas neuroanatomy in the severe cases could
be barely be identified). The imaging sequence and acquisition parameters for ABIDE dataset are
available from: http://fcon_1000.projects.nitrc.org/indi/abide..

2.3 Motion artifact simulation

Motion simulation was performed online during training. Anterior-posterior and left-right axes
were considered to be phase-encoding for all simulations. Translational motion can be modeled
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Figure 1: Summary of the proposed study framework. The details of the CNN model are further
illustrated in Fig. 2.

as multiplications in k-space by linear phase shifts (exp(−2πi kxθx)) in the direction of motion,
where kx is the k-space line and θx is a function of the motion. For our purposes, artifacts were
simulated by applying random linear phase shifts to n random phase-encoding lines in the Fourier
transformed magnitude image, where n was sampled from a uniform distribution between zero and
60. We preserve the center 7 percent of k-space lines as corrupting these would cause low-spatial
frequencies to appear dark and thus unrepresentative of most data that would make it to the data
archive stage. Ghosting of the bright fat tissue outside of the skull is a common problem that we were
able to preserve in our simulations by performing corruption of k-space prior to brain masking and
cropping. In a similar manner, the simulated test dataset was created by corrupting 30 lines in the
Fourier domain.

2.4 Architecture and implementation

Preprocessing consisted of motion simulation (described previously), brain extraction, spatial nor-
malization, cropping and histogram normalization respectively. Brain masks were generated using
the Human Connectome project (HCP) pre-processing pipeline [11] which was robust for both
motion-free and motion-corrupted images. Masked images were linearly spatially normalized using
FSL-FLIRT [12].

CNNs were trained using input patches of size 80 x 80 x 80 voxels using NiftyNet [13] and TensorFlow
[14]. A modified HighRes3dNet (HR3DNet) architecture [15], a compact and efficient CNN model
suited for large-scale 3D image data was used for regression (Fig. 2) combined with an Adam
optimizer [16], an L1 loss function and a batch size of 1. Separately we also used HR3DNetGAN
(HR3DNet generative adversarial network) that integrated a discriminator trained to distinguish
between clean data and corrected data. Together the generator and discriminator formed an additional
adversarial loss term [17] which was added to the L1 loss with a scaling factor of λ , where λ was
a hyperparameter set here equal to 0.001. Networks were trained on a single (Nvidia GTX1080Ti,
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Figure 2: Modified 8-convolutional layer HighRes3dNet [15] architecture with dilated convolutions
and skip connections as the generator. The first convolutional layer used convolution, Batch Normal-
ization (BN) then a Rectified Linear Unit (ReLU) activation, subsequent layers used BN, ReLU then
Conv. For the discriminator, a 5-convolutional layer network was used with Leaky Rectified Linear
Unit (LReLU) as the activation functions in order to avoid sparse gradients.

11GB memory), for 100000 iterations (15 hours) with a learning rate of 10−4, which was decayed by
a factor of 2 every 5000 iterations.

2.5 Evaluation

To perform quantitative evaluations on the accuracy of the motion correction using the proposed
CNN models, we measured the following metrics that were obtained by comparing the ground truth
image and the output image from each CNN model: the structural similarity index (SSIM), Pearson
correlation coefficient (CC) and root-mean square error (RMSE). Where SSIM is given by [18]:

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(1)

where c1 and c2 are small constants to stabilize the computation and µx and σ2
x are the mean and

variance of the images respectively with x and y indicating the different images to compare. We
measured these metrics in the test-set with 39 images with motion simulation. As a 3D Gaussian
smoothing has been commonly used to reduce the effect of motion artifact, we assessed the improve-
ment of using CNN models to this conventional method: we compared the SSIM and CC for the
results from each HR3DNet and HR3DNetGAN models to those from 3D Gaussian smoothing using
a kernel width of 1 mm at full-width half-maximum. To evaluate the performance of the CNN models
in correcting the real motion artifact, where the ground-truth was not available, images were classified
into GM, WM and CSF using FSL-FAST and tissue contrast t-score (TCT) was used as a surrogate
measure of image quality, where TCT was given by [19]:

TCT =
(µwm − µgm)

(σ2
wm + σ2

gm)
(2)

where µwm and µgm are the mean white matter and gray matter signal intensities and σ2
wm and σ2

gm
are the variances. The TCT has previously been used to quantify the increase in intensity variation
within GM and WM tissue as a result of motion-induced blurring [19].
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Figure 3: Examples of testing the CNNs on unseen simulated motion artifacts compared to Gaussian
smoothing

Table 1: Quantitative evaluation of model performance on motion artifacts simulated on unseen test
cases. Significant increases compared to the uncorrected images is indicated with ** at p<0.0001
(corrected using Bonferroni adjustment)

Uncorrected Gaussian HR3DNet HR3DNetGAN
SSIM (Mean ± SD) 0.954±0.0148 0.952±0.0145 0.972±0.009** 0.971±0.009**
CC (Mean ± SD) 0.905±0.050 0.905±0.050 0.960±0.017** 0.957±0.018**
RMSE (Mean ± SD) 0.0412±0.010 0.0408±0.009 0.0333±0.011** 0.0326±0.011**

3 Results

3.1 Simulated test data

We first visually evaluated the image quality for the series of the unseen MRI images used in testing.
Our evaluation confirmed that most of the pattern related to simulated motion was well-corrected
using both NR3DNet and HR3DNetGAN while maintaining the tissue contrast and sharpness of
tissue borders in the corrected images to a level similar to the ground-truth images. Whereas the
traditional Gaussian smoothing did not fully remove the pattern related to motion and did not achieve
as good tissue contrast while blurring tissue boundaries (example shown in Fig. 3). The quantitative
evaluation measures are shown in Table 1. We found that Gaussian smoothing did not significantly
differ in SSIM, CC and RMSE from the uncorrected data (p>0.3; paired t-test). On the other hand, the
two CNN models successfully removed the motion-related artifact as their SSIM and CC significantly
increased after their correction (SSIM: 0.954 vs. 0.972-0.971; p<0.001; CC: 0.905 vs. 0.960-0.957;
p<0.001, RMSE: 0.0412 vs. 0.0333-0.0326; p<0.01). The inter-individual variances of SSIM and CC
in the CNN corrected images were observed to be 2-3 times lower than the uncorrected data (Table 1).

3.2 Real motion-artifact affected data

An example for visual inspection is shown in Fig. 4 and indicates that while some artifacts remain,
HR3DNet was able to eliminate a large proportion of ghosting artifacts at the same time as preserving
the sharp tissue boundaries and improving the GM-WM tissue contrast. Compared to HR3DNet, use
of HR3DNetGAN produces sharper tissue contrast boundaries, however, it tended to over-enhance
edges and regions with residual artifacts.

Quantitative results are shown in Table 2. HR3DNet exhibited a significantly larger TCT (p<0.00001)
compared to the uncorrected images. The HR3DNetGAN did not show a significant improvement in
TCT, which may be explained by its over-enhancement of edges.

Table 2: Quantitative evaluation of model performance on real motion artifact affected data. Signifi-
cant increases compared to the uncorrected images is indicated with * at p<0.00001 (corrected using
Bonferroni adjustment)

Uncorrected Gaussian HR3DNet HR3DNetGAN
TCT (Mean ± SD) 1.987 ± 0.117 1.905 ± 0.184 2.190 ± 0.140* 2.026 ± 0.135
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Figure 4: Testing on real motion affected MRI data from the ABIDE dataset. Original motion affected
data displays blurring and ghosting artifacts. Gaussian smoothing is able to remove some of the
artifact at the expense of blurring and loss of tissue-contrast boundaries. HR3DNet significantly
improves the quality of the image, while retaining sharp tissue-contrast boundaries. HR3DNetGAN
gives similar results while over-enhancing edges and residual artifacts (blue arrow-heads).

4 Discussion and Conclusions

Here we have investigated whether 3D CNNs can be used for retrospective motion correction in the
image domain. To this end, we performed a systematic qualitative and quantitative evaluation on
simulated and real motion artifact-affected images. Results from this study suggest that training the
model on a large database of clean images to define a ground truth enables the network to generalize
well to both unseen simulated motion artifacts as well as real motion artifact-affected data which
likely present patterns that are not fully characterized using simulations. Our evaluation results
however are promising and demonstrate the ability of CNN models trained using simulated data to
correct for real motion artifact.

The strength in the proposed approach is that it does not require availability of raw k-space data
and could easily be adopted without a notable modification to correct other commonly occurring
artifact types such as RF spikes, inhomogeneity, aliasing and Gaussian noise. One early proof-of-
principal attempt at using 2D CNNs to correct magnitude domain images suggested a possibility of
deep learning-based motion correction [20] but it was difficult to evaluate the performance of this
approach as it included neither a quantitative evaluation nor validation on a separate test set with real
artifacts. Unlike the CNN model used in [20], recent developments in deep learning, such as residual
connections [21], and dilated convolutions [22] that were adopted in our study have enabled us to
achieve more promising results for real-world application. In contrast to our hypothesis, although
HR3DNetGAN performed correction of real motion artifacts, it also tended to over-enhance edges
which confirmed previous findings that GANs tend to introduce artifacts in denoising applications
[23]. However, addition of a perceptual loss [23, 24] or using new techniques to stabilize training
[25] may help alleviate this issue.

In summary, given the degree of improvement in the quality of motion corrupted MRI data, our
method has significant potential to improve performance related to subsequent image processing e.g.
brain tissue segmentation. It is practical that such an improvement can be achieved without the need
for hand-labelled data, which is opposed to techniques relying on multi-templates and label-fusion. In
the image quality control procedure, scoring the severity of the given artifact is a crucial step towards
the decision to exclude the artifactual image or not in the subsequent image analysis. Our proposed
method could easily be adapted to estimate a motion severity score, for instance, by calculating the
evaluation metrics used in our study (i.e., SSIM, CC, TCT) between the original and the corrected
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images. These measures could be used as a score of quality control or as a nuisance covariate in
subsequent statistical analyses as in [26], which potentially increases the statistical power in the
identification of brain changes in relation to neurological conditions.
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