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Abstract

Active learning has long been a topic of study
in machine learning. However, as increas-
ingly complex and opaque models have be-
come standard practice, the process of ac-
tive learning, too, has become more opaque.
There has been little investigation into in-
terpreting what specific trends and patterns
an active learning strategy may be explor-
ing. This work expands on the Local Inter-
pretable Model-agnostic Explanations frame-
work (LIME) to provide explanations for ac-
tive learning recommendations. We demon-
strate how LIME can be used to generate lo-
cally faithful explanations for an active learn-
ing strategy, and how these explanations can
be used to understand how different models
and datasets explore a problem space over
time. We propose a measure for uncertainty
bias based on disparate impact that allows
further exploration of the relative exploita-
tion of different data subgroups. We com-
bine the LIME framework with the uncer-
tainty bias metric to demonstrate how clus-
ters of unlabeled points can be made auto-
matically based on common sources of un-
certainty. We show that this allows for an
interpretable explanation of what an active
learning algorithm is learning as points with
similar sources of uncertainty have their un-
certainty bias resolved.

1. Introduction

The importance of interpretability and explainability
of machine-learned decisions has recently been an area
of active interest, with the EU even declaring what
has been called a “right to an explanation” (Goodman
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& Flaxman, 2016). Recent work on interpretability
has included both local explanations about an indi-
vidual’s decision (Ribeiro et al., 2016) and global ex-
planations about the model’s actions overall, and has
included interpretable techniques in clustering (Chen
et al., 2016), integer programming (Zeng et al., 2016),
rule lists (Wang & Rudin, 2015), and methods for un-
derstanding deep nets (Zeiler & Fergus, 2014; Le et al.,
2011) in addition to historical work on decision trees
(Quinlan, 1993) and random forests (Breiman, 2001).
In these traditional machine learning contexts, the fo-
cus of interpretability has been two-fold, first on the
receiver of the decision (“why was I rejected for this
job?”) and second on the model creator (“why is my
model giving these answers?”).

Here, we extend this interest in interpretability to ac-
tive learning, a domain in which the explanation is
additionally of interest to the labeler (”why am I be-
ing asked these questions and why is it worth it to
answer?”). Since active learning is generally applied
in scenarios such as drug discovery where it is expen-
sive (whether in terms of time or money) to label a
query, the labeler in these contexts is often a domain
expert in their own right (e.g., a chemist). Given this,
a query explanation can serve as a way to both justify
an expensive request and allow the domain expert to
give feedback to the model. We demonstrate how ac-
tive learning choices can be made more interpretable
to non-experts and show that expert-driven learning
performs at least as well as traditional active learning
strategies on several simulated and real datasets.

1.1. Results

We demonstrate how active learning choices can be
made more interpretable to non-experts. Using per-
query explanations of uncertainty, we develop a sys-
tem that allows experts to choose whether to label
a query. This allows experts to incorporate domain
knowledge and their own interests into the labeling
process. For example, in the case of a chemist’s knowl-
edge of a chemical system, this might allow a model
to focus on the reactions of interest to the chemist,
the ones for which reagents are already purchased, or
even take advantage of the chemist’s existing knowl-
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edge to learn targeted information faster. Indeed, we
demonstrate the potential for such expert-driven ac-
tive learning systems to outperform traditional active
learning strategies.

In addition, we introduce a quantified notion of un-
certainty bias, the idea that an algorithm may be less
certain about its decisions on some data clusters than
others. In the context of decision-making about peo-
ple, this may mean that some protected groups (e.g.,
races or genders) may receive less favorable decisions
due to risk aversion (Goodman & Flaxman, 2016). In
the context of active learning, this means that these
groups are more likely to be targeted for exploratory
queries in order to improve the model. We combine
this idea with the explanations generated per query to
describe the groups most targeted by uncertainty bias.

2. Related Work

Active Learning. Active learning has a long history
that is detailed in this comprehensive survey (Settles,
2009). Our work will focus on explaining query uncer-
tainty. Uncertainty querying for active learning was
first proposed in 1994 by Lewis and Gale (Lewis &
Gale, 1994). Since then, it has become perhaps the
most common strategy for active learning and several
strategies for quantifying uncertainty have been devel-
oped (Settles, 2009). Strategies used to quantify un-
certainty for actively learning multi-class classification
problems include selecting the sample with the mini-
mum maximum-class probability, selecting the sample
with the minimum difference in probabilities between
the two most probable classes, and choosing the sam-
ple with maximal label entropy. All three of the above
strategies are equivalent for binary classification tasks,
such as the tasks we focus on in this paper (Settles,
2009).

3. Local Interpretable Model-Agnostic
Explanations

We will build specifically on a method for creat-
ing local explanations introduced in (Ribeiro et al.,
2016). Local Interpretable Model-Agnostic Explana-
tions (LIME) is an algorithm for offering prediction
explanations for individual predictions. This works
well on even very complex models by training an inter-
pretable model on the local space around a prediction.
This local approximation is useful for creating annota-
tions of factors that are influential in a model’s predic-
tion. For a given predicted instance, LIME generates
a perturbed sample set in the neighborhood of the in-

stance. Then, based on the sample and the model
predictions, LIME searches for the most interpretable
model and derives an explanation.

4. Explaining Active Learning Queries

The goal of this work is to explain, beyond the at-
tributes and specific data points queried, a strategy
to understand what uncertainty an active learning al-
gorithm is attempting to resolve and to determine
whether any subgroups need to be monitored during
an active learning run.

Toy example. An example multi-class classification
problem is used to explore explanations on uncertainty.
Four Gaussian distributions with unit variance are cen-
tered at (−3,−3), (3,−3), (3, 3), and (−3, 3). The
Gaussians are assigned labels such that the first two
represent one class and the second another. Initially,
50 points are randomly selected from the Gaussian at
(−3,−3) and (3, 3) to be labeled. The points have been
purposefully drawn in such a way as to label none of
the points Gaussians centered in the second and fourth
quadrants. An initial logistic regression model, W ,
is trained on the initial 50 labeled points. Based on
the resulting model of the probability distribution, the
certainty scores across the problem space are mapped.
The labeled points, decision boundary, and certainty
scores can be seen in Figure 1.

Using LIME (Ribeiro et al., 2016), we can ask for
locally-faithful weighted explanations of the certainty
values provided by W . We will refer to combinations of
LIME explanations of uncertainty as “uncertainty re-
gions.” These regions can be useful for grouping points
together based on identical sources of uncertainty. In
these cases, we would expect points explored in a given
uncertainty region to increase the certainty we have
about points with the same sources of uncertainty.

5. Identifying Uncertainty Bias

In situations where some instance populations are
smaller (minority groups) or where the initial train-
ing data distribution is skewed, the active learner may
prefer queries that are disproportionally drawn from a
single region (or population group). For example, in
our toy example above, we saw that upper left quad-
rant is underrepresented in the labeled dataset. The
points in this region have higher uncertainty and were
more likely to be targeted for active learning queries.
In order to understand both what and how an active
learning method is learning and whether there is a dis-
parate impact among groups targeted to be labeled, it
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Figure 1. Left: Labeled starting pool. Center: Certainty over the problem space. The black points represent unlabeled
points in the pool. Blue represents regions of certainty and red represents regions that are uncertain. Pictured in the
hatched quadrant is the ‘explanatory region’ that contains the target point (1.88,−1.26). Right: A local view of the target
point and the LIME explanation for the model’s prediction of 80% uncertainty for the black point at (1.88,−1.26).

is important to identify this uncertainty bias.

Definition 5.1 (Uncertainty bias). Given a dataset
D = (X, U) with d-dimensional feature vector X and
corresponding (discrete) uncertainty labels U and its
disjoint set R of uncertainty regions (groups), let Xr =
{x ∈ X|x ∈ r, r ∈ R} be the items of the data set within
R. U takes values + (certain) and − (uncertain). The
uncertainty bias with respect to region r ∈ R is defined
to be:

1− Pr(U = +|x ∈ r)

Pr(U = +|x ∈ R \ r)

Note that this is the same as 1−DI where DI is the
disparate impact value (Feldman et al., 2015) applied
where the region of focus is the protected class and
the positive value is a label of +. For the purposes of
this work, we consider any point with certainty greater
than or equal to the median over our pool to be certain
(U = +).

5.1. Clustering Over Uncertainty Labels to
Increase Interpretability

It will not always be practical to manually define ex-
planatory regions to observe when doing active learn-
ing. To automatically create groups for tracking the
principle patterns explored during active learning, k -
means clustering is used to cluster the samples’ ex-
planations and weights. We use each label as its own
dimension where the value for each point is the weight
of that label on the point’s uncertainty, or 0 if the
point falls outside of the constraint. This means that
for a set of possible uncertainty labels U , all of our
original data points have an equivalent point in our
uncertainty space IR|U |. The objective of k -means (us-
ing Lloyd’s algorithm) is thus to minimize the pairwise
squared deviations for all of the points in each cluster:∑k

i

∑
d∈U

∑
x,y∈Ci

‖xd − yd‖2

Each cluster centroid is then used to keep track of
the principle sources of uncertainty for that cluster.
The number of clusters, k is chosen by trying a wide
range of potential values and finding the value that
maximizes the proportion of points that share their
top uncertainty constraints with their respective clus-
ter centroids. As this ratio will likely continue to trend
upwards as k grows, k is simply increased until adding
another k will not improve this proportion over some
small threshold. It is possible to largely capture all
of the uncertainty labels for a pool within a relatively
small number of clusters, greatly simplifying the task
of tracking what regions of uncertainty are explored.

5.2. Experiments: Identifying Uncertainty
Bias

In addition to our toy data set outlined above, we con-
sider uncertainty bias under the explanatory active
learning framework described above on the ProPub-
lica dataset for recidivism prediction (Angwin et al.,
2016) as well as the Dark Reaction Project dataset of
chemical reactions for synthesis prediction (Raccuglia
et al., 2016).

LIME Setup. All of the experiments in the this
work use LIME as described in (Ribeiro et al., 2016)
to explain continuous (regressor) predictions.1,2 We
apply this to our active learning selection criterion.
Ridge regression is the local ‘interpretable’ model to
estimate feature importance. For the experiments in
this work, our active learning criterion is the max class
probability. Continuous features were split into at
most 8 bins by greedily maximizing information gain
to make the splits. To track our active learning strate-

1https://github.com/marcotcr/lime/
2https://github.com/datascienceinc/lime



Interpretable Active Learning

gies on the various datasets, we simply recorded every
time a point was sampled for each cluster. Similarly,
we track the uncertainty bias across every cluster each
time a point was labeled and the model trained on the
now-expanded data.

Toy Data Set. The results of the toy data set are
consistent with our understanding of active learning.
The underexplored regions, Quadrant 2 and Quadrant
4, begin with a high uncertainty bias and are quickly
emphasized by the active learning algorithm. The gen-
eral classifier boundary quickly approaches the correct
one, and the uncertainty biases begin to even out. The
learning progress can be seen in Figure 2.
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Figure 2. Left: Average counts of points taken from each
quadrant during 50 active learning runs on the toy data
set. Right: Uncertainty bias per quadrant over 50 active
learning runs. As we would expect, the under-explored
quadrants, Quadrant 2 and Quadrant 4, start off with high
uncertainty bias that is gradually resolved. This corre-
sponds to the the exploration of Quadrant 2 represented
by the slope of the orange curve between 50 and 90 train-
ing points in the left graph.

ProPublica Recidivism and Race. The ProPub-
lica dataset includes attributes describing the sex, age,
race, juvenile felony and misdemeanor counts, number
of adult priors, charge degree (felony or misdemeanor),
and charge description for 6172 people arrested in
Broward County, Florida, along with a boolean value
indicating whether they were rearrested within two
years of the original arrest date. For this experiment,
the goal was to see if sensible explanations could be
made about what the active learning algorithm is ex-
ploring. We used a logistic regression model trained
on an initial pool of 400 randomly selected points as
our starting point. Each data point was given two un-
certainty labels and the uncertainty labels and weights
were clustered with k = 40 clusters. Eighty-three per-
cent of the points in the pool were in clusters with cen-
troids that matched their own uncertainty constraints
and 100% shared at least one uncertainty label with

their cluster’s centroid.
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Figure 3. The most frequently queried uncertainty clusters
for the ProPublica 2-year recidivism dataset. The first
two clusters, covering middle aged people and men with a
few priors seem like reasonably uncertain classes. It seems
reasonable that a high number of priors or no priors might
make the chance of recidivism more certain and that the
age range and gender are likely very common in the dataset
and naturally have high variance. Five of the six clusters
all display overall downward trends.

We can see clearly that, of the top most explored
clusters, uncertainty bias trended downwards on five
of them. This demonstrates that our active learning
strategy is successfully exploring the regions of great-
est uncertainty. It also provides support for the valid-
ity of our explanatory labels, as the uncertainty labels
for points that are frequently queried truly correlate
with the resolved uncertainty.

Moving forward, we wanted to see how uncertainty
bias might be dependent on race and how this might
be affected by the active learning process. To test this
we tested the new model for uncertainty bias based
on race with each point added to our pool. The re-
sults can be found in Figure 4. It is evident that,
from the very beginning, there is a notable disparity
in our model’s ability to make confident predictions
between the different racial categories. While active
learning seems to resolve most of the difference in un-
certainty bias between the people labeled ’White’ and
’Hispanic,’ Black people arrested in Broward County
were subject to considerable uncertainty bias by our
logistic regression model even after 2000 more points
were actively queried.
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Figure 4. Uncertainty bias based on racial labels found in the dataset. It is useful when active learning resolves uncertainty
bias, but this run demonstrates why this cannot be assumed. Near-margin active learning does not reduce the uncertainty
bias conditioned by racial labels for the recidivism dataset. In this situation, further steps ought to be taken to resolve
this bias.

Figure 5. Counts and uncertainty biases for the most frequently sampled clusters from the Dark Reactions dataset. It is
interesting to observe how the first three clusters are explored thoroughly together, and then the other four clusters begin
to dominate.
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Dark Reactions Dataset. The Dark Reaction
Project dataset includes 6114 hydrothermal synthesis
reactions and 274 attributes describing chemical prop-
erties that might predict the associated boolean classi-
fication indicating whether the experiment successfully
created a crystalline product or not. To predict this
outcome, we used AdaBoost with 200 decision stump
weak learners. The certainty function thus estimates
the probability of each class through a weighted aver-
age of the fraction of training samples within each leaf
of the decision stumps.

The Dark Reaction dataset was a challenge because
there are many more features than the the ProPub-
lica dataset. We started by considering k = 7 clusters
and the associated uncertainty bias values (see Fig-
ure 5). We find a large gap in uncertainty between
the top three clusters and the rest, and the most un-
certain cluster also has an explanation indicating this
increased uncertainty. To produce more specific class
labels, 10 weighted explanatory labels were generated
to explain the certainty of each point. As there are
many more attributes used for each explanation in the
DRP dataset, the labels listed for each cluster indicate
that a given attribute implies more than 2% more or
less certainty for points in that cluster, on average.
‘Many sources’ is the leading cluster, which refers to
a cluster with no primary source of uncertainty above
this threshold. Given that there are 274 attributes in
the DRP dataset, it is notable that most of the curves
do have prominent sources of uncertainty. By allow-
ing a domain expert to control the cutoff parameter
and the number of explanations to use, we can adjust
towards more precise explanations of uncertainty.

6. Conclusion

This work has demonstrated a straightforward applica-
tion of LIME to explain single active learning queries.
We also define a quantitative measure of uncertainty
bias. With these tools in hand we first demonstrate
how we can track the exploration of groups of points
with common uncertainty and confirm that that un-
certainty is being resolved with the uncertainty bias
measure. We then demonstrate on more complex, real-
world datasets how regions of uncertainty can be gen-
erated automatically to create meaningful groups to
track during learning. We hope to draw attention to
the problem of uncertainty bias, to highlight the lack
of transparency research in active learning, and to en-
courage active learning usage to be interpretable and
accountable.
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