
Under review as a conference paper at ICLR 2018

SEQUENTIAL COORDINATION OF DEEP MODELS
FOR LEARNING VISUAL ARITHMETIC

ABSTRACT

Achieving machine intelligence requires a smooth integration of perception
and reasoning, yet models developed to date tend to specialize in one or the
other; sophisticated manipulation of symbols acquired from rich perceptual
spaces has so far proved elusive. Consider a visual arithmetic task, where
the goal is to carry out simple arithmetical algorithms on digits presented
under natural conditions (e.g. hand-written, placed randomly). We propose
a two-tiered architecture for tackling this problem. The lower tier consists
of a heterogeneous collection of information processing modules, which
can include pre-trained deep neural networks for locating and extracting
characters from the image, as well as modules performing symbolic trans-
formations on the representations extracted by perception. The higher tier
consists of a controller, trained using reinforcement learning, which coordi-
nates the modules in order to solve the high-level task. For instance, the
controller may learn in what contexts to execute the perceptual networks
and what symbolic transformations to apply to their outputs. The resulting
model is able to solve a variety of tasks in the visual arithmetic domain,
and has several advantages over standard, architecturally homogeneous
feedforward networks including improved sample efficiency.

1 INTRODUCTION

Recent successes in machine learning have shown that difficult perceptual tasks can be tack-
led efficiently using deep neural networks (LeCun et al., 2015). However, many challenging
tasks may be most naturally solved by combining perception with symbol manipulation.
The act of grading a question on a mathematics exam, for instance, requires both sophisti-
cated perception (identifying discrete symbols rendered in many different writing styles)
and complex symbol manipulation (confirming that the rendered symbols correspond to
a correct answer to the given question). In this work, we address the question of creating
machine learning systems that can be trained to solve such perceptuo-symbolic problems
from a small number of examples. In particular, we consider, as a first step toward full-
blown exam question grading, the visual arithmetic task, where the goal is to carry out basic
arithmetic algorithms on hand-written digits embedded in an image, with the wrinkle that
an additional symbol in the image specifies which of a handful of algorithms (e.g. max, min,
+, *) should be performed on the provided digits.

One straightforward approach to solving the visual arithmetic task with machine learning
would be to formulate it as a simple classification problem, with the image as input, and
an integer giving the correct answer to the arithmetic problem posed by the image as the
label. A convolutional neural network (CNN; LeCun et al., 1998) could then be trained via
stochastic gradient descent to map from input images to correct answers. However, it is
clear that there is a great deal of structure in the problem which is not being harnessed by
this simple approach, and which would likely improve the sample efficiency of any learning
algorithm that was able to exploit it. While the universal approximation theorem (Hornik
et al., 1989) suggests that an architecturally homogeneous network such as a CNN should
be able to solve any task when it is made large enough and given sufficient data, imposing
model structure becomes important when one is aiming to capture human-like abilities of
strong generalization and learning from small datasets (Lake et al., 2016).

1

Under review as a conference paper at ICLR 2018

In particular, in this instance we would like to provide the learner with access to modules
implementing information processing functions that are relevant for the task at hand — for
example, modules that classify individual symbols in the image, or modules that perform
symbolic computations on stored representations. However, it is not immediately clear how
to include such modules in standard deep networks; the classifiers need to somehow be
applied to the correct portion of the image, while the symbolic transformations need to be
applied to the correct representations at the appropriate time and, moreover, will typically
be non-differentiable, precluding the possibility of training via backpropogation.

In this work we propose an approach that solves this type of task in two steps. First, the ma-
chine learning practitioner identifies a collection of modules, each performing an elementary
information processing function that is predicted to be useful in the domain of interest, and
assembles them into a designed information processing machine called an interface (Zaremba
et al., 2016) that is coupled to the external environment. Second, reinforcement learning (RL)
is used to train a controller to make use of the interface; use of RL alleviates any need for the
interface to be differentiable. For example, in this paper we make use of an interface for the
visual arithmetic domain that contains: a discrete attention mechanism; three pre-trained
perceptual neural networks that classify digits/classify arithmetic symbols/detect salient
locations (respectively); several modules performing basic arithmetic operations on stored
internal representations. Through the use of RL, a controller learns to sequentially combine
these components to solve visual arithmetic tasks.

Contributions. We propose a novel recipe for constructing agents capable of solving complex
tasks by sequentially combining provided information processing modules. The role of the system
designer is limited to choosing a pool of modules and gathering training data in the form
of input-output examples for the target task. A controller is then trained by RL to use the
provided modules to solve tasks. We evaluate our approach on a family of visual arithmetic
tasks wherein the agent is required to perform arithmetical reduction operations on hand-
written digits in an image. Our experiments show that the proposed model can learn to
solve tasks in this domain using significantly fewer training examples than unstructured
feedforward networks.

The remainder of the article is organized as follows. In Section 2 we describe our general
approach and lay down the required technical machinery. In Section 3 we describe the
visual arithmetic task domain in detail, and show how our approach may be applied there.
In Section 4 we present empirical results demonstrating the advantages of our approach as
it applies to visual arithmetic, before reviewing related work in Section 5 and concluding
with a discussion in Section 6.

2 TECHNICAL APPROACH

2.1 PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

Our approach makes use of standard reinforcement learning formalisms (Sutton and Barto,
1998). The external world is modelled as a Partially Observable Markov Decision Process
(POMDP), E . Each time step E is in a state st, based upon which it emits an observation ot
that is sent to the learning agent. The agent responds with an action at, which causes the
environment to emit a reward rt. Finally, the state is stochastically updated according to E ’s
dynamics, st+1 ∼ P (·|st, at). This process repeats for T time steps. The agent is assumed to
choose at according to a parameterized policy that maps from observation-action histories
to distributions over actions, i.e. at ∼ πθ(·|ht), where ht = o0, a0, . . . , ot and θ is a parameter
vector.

2.2 INTERFACES

We make extensive use of the idea of an interface as proposed in Zaremba et al. (2016). An
interface is a designed, domain-specific machine that mediates a learning agent’s interaction
with the external world, providing a representation (observation and action spaces) which
is intended to be more conducive to learning than the raw representation provided by the

2

Under review as a conference paper at ICLR 2018

external world. In this work we formalize an interface as a POMDP I distinct from E , with
its own state, observation and action spaces. The interface is assumed to be coupled to
the external world in a particular way; each time step E sends an observation to I, which
potentially alters its state, after which I emits its own observation to the agent. When
the agent responds with an action, it is first processed by I, which once again has the
opportunity to change its state, after which I sends an action to E . The agent may thus
be regarded as interacting with a POMDP C comprised of the combination of E and I. C’s
observation and action spaces are the same as those of I , its state is the concatenation of the
states of I and E , and its dynamics are determined by the nature of the coupling between I
and E .

Zaremba et al. (2016) learn to control interfaces in order to solve purely algorithmic tasks,
such as copying lists of abstractly (rather than perceptually) represented digits. One of the
main insights of the current work is that the idea of interfaces can be extended to tasks
with rich perceptual domains by incorporating pre-trained deep networks to handle the
perceptual components.

2.3 ACTOR-CRITIC REINFORCEMENT LEARNING

We train controllers using the actor-critic algorithm (see e.g. (Sutton and Barto, 1998; Degris
et al., 2012; Mnih et al., 2016; Schulman et al., 2015)). We model the controller as a policy πθ
that is differentiable with respect to its parameters θ. Assume from the outset that the goal
is to maximize the expected sum of discounted rewards when following πθ:

J(θ) = Eτ∼πθ

[
T−1∑
t=0

γtrt

]
=
∑
τ

Pπθ
(τ)

T−1∑
t=0

γtrt (1)

where τ = (o0, a0, r0, . . . , oT−1, aT−1, rT−1) is a trajectory, Pπθ
(τ) is the probability of that

trajectory under πθ, and γ ∈ (0, 1] is a discount factor. We look to maximize this objective
using gradient ascent; however, it is not immediately clear how to compute∇θJ(θ), since
the probability of a trajectory Pπθ

(τ) is a function of the environment dynamics, which are
generally unknown. Fortunately, it can be shown that an unbiased estimate of∇θJ(θ) can
be obtained by differentiating a surrogate objective function that can be estimated from
sample trajectories. Letting Rt =

∑T−1
i=t γ

i−tri, the surrogate objective is:

F(θ) = Eτ∼πθ

[
T−1∑
t=0

log(πθ(at|ht))Rt

]
(2)

The standard REINFORCE algorithm (Williams, 1992) consists in first sampling a batch
of trajectories using πθ, then forming an empirical estimate f(θ) of F(θ). ∇θf(θ) is then
computed, and the parameter vector θ updated using standard gradient ascent or one of its
more sophisticated counterparts (e.g. ADAM; Kingma and Ba (2014)).

The above gradient estimate is unbiased (i.e. E [∇θf(θ)] = ∇θJ(θ)) but can suffer from high
variance. This variance can be somewhat reduced by the introduction of a baseline function
bt(h) into Equation (2):

F(θ) = Eτ∼πθ

[
T−1∑
t=0

log(πθ(at|ht)) (Rt − bt(ht))

]
(3)

It can be shown that including bt(h) does not bias the gradient estimate and may
lower its variance if chosen appropriately. The value function for the current policy,
V πθ (h) = Eτ∼πθ

[Rt|ht = h], is a good choice for bt (Sutton et al., 2000) — however this
will rarely be known. A typical compromise is to train a function Vω(h), parameterized by a
vector ω, to approximate V πθ (h) at the same time as we are training πθ. Specifically, this is
achieved by minimizing a sample-based estimate of Eτ∼πθ,t

[
(Rt − Vω(ht))2

]
.

We employ two additional standard techniques (Mnih et al., 2016). First, we have Vω(h)
share the majority of its parameters with πθ, i.e. ω = θ . This allows the controller to learn

3

Under review as a conference paper at ICLR 2018

useful representations even in the absence of reward, which can speed up learning when
reward is sparse. Second, we include in the objective a term which encourages πθ to have
high entropy, thereby favouring exploration.

Overall, given a batch of N sample trajectories from policy πθ, we update θ in the direction
of the gradient of the following surrogate objective:

1

NT

N∑
k=1

T−1∑
t=0

(
log πθ(a

k
t |hkt)Âkt − λ

(
Rkt − Vθ(hkt)

)2 − η∑
a

πθ(a|hkt) log πθ(a|hkt)

)
(4)

where λ and η are positive hyperparameters, Âkt = Rkt − Vθ(hkt), and care is taken not to
backpropagate through Âkt as the first term does not provide a useful training signal for Vθ.

3 VISUAL ARITHMETIC

We now describe the Visual Arithmetic task domain in detail, as well as the steps required
to apply our approach there. We begin by describing the external environment E , before
describing the interface I, and conclude the section with a specification of the manner in
which E and I are coupled in order to produce the POMDP C with which the controller
ultimately interacts.

3.1 EXTERNAL ENVIRONMENT

Tasks in the Visual Arithmetic domain can be cast as image classification problems. For
each task, each input image consists of an (n, n) grid, where each grid cell is either blank
or contains a digit or letter from the Extended MNIST dataset (Cohen et al., 2017). Unless
indicated otherwise, we use n = 2. The correct label corresponding to an input image is
the integer that results from applying a specific (task-varying) reduction operation to the
digits present in the image. We consider 5 tasks within this domain, grouped into two kinds.
Changing the task may be regarded as changing the external environment E .

Figure 1: Example input images from the Vi-
sual Arithmetic tasks. Top: Input images
for any of the 4 Single Operation tasks (Sum,
Prod, Max, Min). Correct answer depends on
what task they are being used in. For example,
when solving the Sum task, correct answers
from left to right are: 13, 21, 18, 16. Bottom:
Combined task, correct answers from left to
right are: 2, 5, 27, 10.

Single Operation Tasks. In the first kind
of task, each input image contains a ran-
domly selected number of digits (2 or 3 un-
less otherwise stated) placed randomly on
the grid, and the agent is required to output
an answer that is a function of the both the
specific task being performed and the dig-
its displayed in the image. We consider 4
tasks of this kind: Sum, Product, Maximum
and Minimum. Example input images are
shown in Figure 1, Top Row.

Combined Task. We next consider a task
that combines the four Single Operation
tasks. Each input example now contains
a capital EMNIST letter in addition to 2-to-3
digits. This letter indicates which reduction
operation should be performed on the dig-
its: A indicates add/sum,M indicates mul-
tiplication/product, X indicates maximum,
N indicates minimum. Example input im-
ages are shown in Figure 1, Bottom Row.
Succeeding on this task requires being able to both carry out all the required arithmetic
algorithms and being able to identify, for any given input instance, which of the possible
algorithms should be executed.

4

Under review as a conference paper at ICLR 2018

class VisualArithmeticInterface:

interface state
int fovea_x, fovea_y, store, op, digit;
Image salience_map;

pretrained deep nets
Function op_classifier, digit_classifier, salience_detector;

def update_interface(ExternalObs e, string action):
if action == "right": fovea_x += 1
elif action == "left": fovea_x -= 1
elif action == "down": fovea_y += 1
elif action == "up": fovea_y -= 1
elif action == "+": store += digit
elif action == "*": store *= digit
elif action == "max": store = max(store, digit)
elif action == "min": store = min(store, digit)
elif action == "+1": store += 1
elif action == "classify_op":

op = op_classifier(get_glimpse(e, fovea_x, fovea_y))
elif action == "classify_digit":

digit = digit_classifier(get_glimpse(e, fovea_x, fovea_y))
elif action == "update_salience":

salience_map = salience_detector(e, fovea_x, fovea_y)
else:

raise Exception("Invalid action")
obs = (fovea_x, fovea_y, store, op, digit, salience_map)
return obs

Figure 2: Pseudo python code (with types added for clarity) for an approximation of the
interface used in the Visual Arithmetic task domain.

3.2 INTERFACE

We now describe the interface I that is used to solve tasks in this domain. The first step is to
identify information processing functions that we expect to be useful. We can immediately
see that for Visual Arithmetic, it will be useful to have modules implementing the following
functions:

1. Detect and attend to salient locations in the image.

2. Classify a digit or letter in the attended region.

3. Manipulate symbols to produce an answer.

We select modules to perform each of these functions and then assemble them into an
interface which will be controlled by an agent trained via reinforcement learning. A single
interface, depicted in Figure 2, is used to solve the various Visual Arithmetic tasks described
in the previous section.

This interface includes 3 pre-trained deep neural networks. Two of these are instances of
LeNet (LeCun et al., 1998), each consisting of two convolutional/max-pool layers followed
by a fully-connected layer with 128 hidden units and RELU non-linearities. One of these
LeNets, the op classifier, is pre-trained to classify capital letters from the EMNIST dataset.
The other LeNet, the digit classifier, is pre-trained to classify EMNIST digits. The third
network is the salience detector, a multilayer perceptron with 3 hidden layers of 100 units
each and RELU non-linearities. The salience network is pre-trained to output a salience
map when given as input scenes consisting of randomly scattered EMNIST characters (both
letters and digits).

5

Under review as a conference paper at ICLR 2018

3.3 E − I COUPLING AND REINFORCEMENT LEARNING DETAILS

In the Visual Arithmetic setting, E may be regarded as a degenerate POMDP which emits the
same observation, the image containing the EMNIST letters/digits, every time step. I sends
the contents of its store field (see Figure 2) to E every time step as its action. During training,
E responds to this action with a reward that depends on both the time step and whether the
action sent to E corresponds to the correct answer to the arithmetic problem represented by
the input image. Specifically, for all but the final time step, a reward of 0 is provided if the
answer is correct, and −1/T otherwise. On the final time step, a reward of 0 is provided if
the answer is correct, and −1 otherwise. Each episode runs for T = 30 time steps. At test
time, no rewards are provided and the contents of the interface’s store field on the final time
step is taken as the agent’s guess for the answer to the arithmetic problem posed by the
input image. For the controller, we employ a Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) with 128 hidden units. This network accepts observations provided
by the interface (see Figure 2) as input, and yields as output both πθ(·|h) (specifically a
softmax distribution) from which an action is sampled, and Vθ(h) (which is only used during
training). The weights of the LSTM are updated according to the actor-critic algorithm
discussed in Section 2.3.

4 EXPERIMENTS

In this section, we consider experiments applying our approach to the Visual Arithmetic
domain. These experiments involve the high-level tasks described in Section 3.1. For all
tasks, our reinforcement learning approach makes use of the interface described in Section
3.2 and the details provided in Section 3.3.

Our experiments look primarily at how performance is influenced by the number of external
environment training samples provided. For all sample sizes, training the controller with
reinforcement learning requires many thousands of experiences, but all of those experiences
operate on the small provided set of input-output training samples from the external
environment. In other words, we assume the learner has access to a simulator for the
interface, but not one for the external environment. We believe this to be a reasonable
assumption given that the interface is designed by the machine learning practitioner and
consists of a collection of information processing modules which will, in most cases, take
the form of computer programs that can be executed as needed.

We compare our approach against convolutional networks trained using cross-entropy loss,
the de facto standard when applying deep learning to image classification tasks. These
feedforward networks can be seen as interacting directly with the external environment
(omitting the interface) and running for a single time step, i.e. T = 1. The particular
feedforward architecture we experiment with is the LeNet (LeCun et al., 1998), with either
32, 128 or 512 units in the fully-connected layer. Larger, more complex networks of course
exist, but these will likely require much larger amounts of data to train, and here we are
primarily concerned with performance at small sample sizes. For training the convolutional
networks, we treat all tasks as classification problems with 101 classes. The first 100 classes
correspond to the integers 0-99. All integers greater than or equal to 100 (e.g. when
multiplying 3 digits) are subsumed under the 101st class.

Experiments showing the sample efficiency of the candidate models on the Single Operation
tasks are shown in Figure 3. Similar results for the Combined task are shown in Figure 4.
In both cases, our reinforcement learning approach is able to leverage the inductive bias
provided by the interface to achieve good performance at significantly smaller sample sizes
than the relatively architecturally homogeneous feedforward convolutional networks.

5 RELATED WORK

Production Systems & Cognitive Architectures. The idea of using a central controller to
coordinate the activity of a collection of information processing components has its roots in
research on production systems in classical artificial intelligence, and cognitive architectures

6

Under review as a conference paper at ICLR 2018

0

20

40

60

80

100 Sum Product

27 29 211 213 215 2170

20

40

60

80

100 Maximum

27 29 211 213 215 217

Minimum
LSTM + RL
CNN - 32 hidden units
CNN - 128 hidden units
CNN - 512 hidden units

Training Examples

%
 T

es
t E

rro
r

Figure 3: Probing sample efficiency of candidate models on the four Single Operation tasks
(Sum, Product, Maximum, Minimum).

in cognitive science. Production systems date back to Newell and Simon’s pioneering work
on the study of high-level human problem solving, manifested most clearly in the General
Problem Solver (GPS; Newell and Simon, 1963). While production systems have fallen
out of favour in mainstream AI, they still enjoy a strong following in the cognitive science
community, forming the core of nearly every prominent cognitive architecture including
ACT-R (Anderson, 2009), SOAR (Newell, 1994; Laird, 2012), and EPIC (Kieras and Meyer,
1997). However, the majority of these systems use hand-coded, symbolic controllers; we are
not aware of any work that has applied recent advances in reinforcement learning to learn
controllers for these systems for difficult tasks.

Sequential Models for Supervised Learning. A related body of work concerns recurrent
neural networks applied to supervised learning problems. Mnih et al. (2014), for exam-
ple, use reinforcement learning to train a recurrent network to control the location of an
attentional window in order to classify images containing MNIST digits placed on clut-
tered backgrounds. Our approach may be regarded as providing a recipe for building
similar kinds of models while placing greater emphasis on tasks with a difficult algorithmic
components and the use of structured interfaces.

Neural Abstract Machines. One obvious point of comparison to the current work is recent
research on deep neural networks designed to learn to carry out algorithms on sequences of
discrete symbols. Some of these frameworks, including the Differentiable Forth Interpreter
(Riedel and Rocktäschel, 2016) and TerpreT (Gaunt et al., 2016), achieve this by explicitly
generating code, while others, including the Neural Turing Machine (NTM; Graves et al.,
2014), Neural Random-Access Machine (NRAM; Kurach et al., 2015), Neural Programmer
(NP; Neelakantan et al., 2015), and Neural Programmer-Interpreter (NPI; Reed and De Fre-
itas, 2015) avoid generating code and generally consist of a controller network that learns to
perform actions using a differentiable external computational medium (i.e. a differentiable
interface) in order to carry out an algorithm.

7

Under review as a conference paper at ICLR 2018

27 29 211 213 215 217

Training Examples
0

20

40

60

80

100

%
 T

es
t E

rro
r

LSTM + RL
CNN - 32 hidden units
CNN - 128 hidden units
CNN - 512 hidden units

Figure 4: Probing sample efficiency on the
Combined task.

Our approach is most similar to the lat-
ter category, the main difference being that
we have elected not to require the external
computational medium to be differentiable,
which provides it with greater flexibility
in terms of the components that can be in-
cluded in the interface. In fact, our work is
most similar to Zaremba et al. (2016), which
also uses reinforcement learning to learn al-
gorithms, and from which we borrowed the
idea of an interface, the main difference be-
ing that we have included deep networks in
our interfaces in order to tackle tasks with
non-trivial perceptual components.

Visual Arithmetic. Past work has looked
at learning arithmetic operations from vi-
sual input. Hoshen and Peleg (2016) train a
multi-layer perceptron to map from images
of two 7-digit numbers to an image of a number that is some task-specific function of the
numbers in the input images. Specifically, they look at addition, subtraction, multiplication
and Roman-Numeral addition. Howeover, they do not probe the sample efficiency of
their method, and the digits are represented using a fixed computer font rather than being
hand-written, making the perceptual portion of the task significantly easier.

Gaunt et al. (2017) addresses a task domain that is similar to Visual Arithmetic, and makes
use of a differentiable code-generation method built on top of TerpreT. Their work has the
advantage that their perceptual modules are learned rather than being pre-trained, but is
perhaps less general since it requires all components to be differentiable. Moreover, we
do not view our reliance on pre-trained modules as particularly problematic given the
wide array of tasks deep networks have been used for. Indeed, we view our approach as a
promising way to make further use of any trained neural network, especially as facilities for
sharing neural weights mature and enter the mainstream.

Modular Neural Networks. Additional work has focused more directly on the use of neural
modules and adaptively choosing groups of modules to apply depending on the input. End-
to-End Module Networks (Hu et al., 2017) use reinforcement learning to train a recurrent
neural network to lay out a feedforward neural network composed of elements of a stored
library of neural modules (which are themselves learnable). Our work differs in that rather
than having the layout of the network depend solely on the input, the module applied
at each stage (i.e. the topology of the network) may depend on past module applications
within the same episode, since a decision about which module to apply is made at every
time step. Systems built using our framework can, for example, use their modules to gather
information about the environment in order to decide which modules to apply at a later
time, a feat that is not possible with Module Networks.

In Deep Sequential Neural Networks (DSNN; Denoyer and Gallinari (2014)), each edge of
a fixed directed acyclic graph (DAG) is a trainable neural module. Running the network
on an input consists in moving through the DAG starting from the root while maintaining
a feature vector which is repeatedly transformed by the neural modules associated with
the traversed edges. At each node of the DAG, an outgoing edge is stochastically selected
for traversal by a learned controller which takes the current features as input. This differs
from our work, where each module may be applied many times rather than just once as is
the case for the entirely feedforward DSNNs (where no module appears more than once in
any path through the DAG connecting the input to the output). Finally, PathNet is a recent
advance in the use of modular neural networks applied to transfer learning in RL (Fernando
et al., 2017). An important difference from our work is that modules are recruited for the
entire duration of a task, rather than on the more fine-grained step-by-step basis used in our
approach.

8

Under review as a conference paper at ICLR 2018

6 DISCUSSION AND CONCLUSION

There are number of possible future directions related to the current work, including
potential benefits of our approach that were not explored here. These include the ability
to take advantage of conditional computation; in principle, only the subset of the interface
needed to carry out the chosen action needs to be executed every time step. If the interface
contains many large networks or other computationally intensive modules, large speedups
can likely be realized along these lines. A related idea is that of adaptive computation time;
in the current work, all episodes ran for a fixed number of time steps, but it should be
possible to have the controller decide when it has the correct answer and stop computation
at that point, saving valuable computational resources. Furthermore, it may be beneficial
to train the perceptual modules and controller simultaneously, allowing the modules to
adapt to better perform the uses that the controller finds for them. Finally, the ability of
reinforcement learning to make use of discrete and non-differentiable modules opens up
a wide array of possible interface components; for instance, a discrete knowledge base
may serve as a long term memory. Any generally intelligent system will need many
individual competencies at its disposal, both perceptual and algorithmic; in this work we
have proposed one path by which a system may learn to coordinate such competencies.

We have proposed a novel approach for solving tasks that require both sophisticated
perception and symbolic computation. This approach consists in first designing an interface
that contains information processing modules such as pre-trained deep neural networks for
processing perceptual data and modules for manipulating stored symbolic representations.
Reinforcement learning is then used to train a controller to use the interface to solve tasks.
Using the Visual Arithmetic task domain as an example, we demonstrated empirically that
the interface acts as a source of inductive bias that allows tasks to be solved using a much
smaller number of training examples than required by traditional approaches.

REFERENCES

John R Anderson. How can the human mind occur in the physical universe? Oxford University
Press, 2009.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. Emnist: an extension
of mnist to handwritten letters. arXiv preprint arXiv:1702.05373, 2017.

Thomas Degris, Patrick M Pilarski, and Richard S Sutton. Model-free reinforcement learning
with continuous action in practice. In American Control Conference (ACC), 2012, pages
2177–2182. IEEE, 2012.

Ludovic Denoyer and Patrick Gallinari. Deep sequential neural network. arXiv preprint
arXiv:1410.0510, 2014.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A
Rusu, Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient
descent in super neural networks. arXiv preprint arXiv:1701.08734, 2017.

Alexander L Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli,
Jonathan Taylor, and Daniel Tarlow. Terpret: A probabilistic programming language for
program induction. arXiv preprint arXiv:1608.04428, 2016.

Alexander L Gaunt, Marc Brockschmidt, Nate Kushman, and Daniel Tarlow. Differentiable
programs with neural libraries. In International Conference on Machine Learning, pages
1213–1222, 2017.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735–1780, 1997.

9

Under review as a conference paper at ICLR 2018

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks
are universal approximators. Neural networks, 2(5):359–366, 1989.

Yedid Hoshen and Shmuel Peleg. Visual learning of arithmetic operation. In AAAI, pages
3733–3739, 2016.

Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko. Learning
to reason: End-to-end module networks for visual question answering. arXiv preprint
arXiv:1704.05526, 2017.

David E Kieras and David E Meyer. An overview of the EPIC architecture for cognition
and performance with application to human-computer interaction. Human-Computer
Interaction, 4(12):391–438, 1997.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random-access machines.
arXiv preprint arXiv:1511.06392, 2015.

John E Laird. The Soar cognitive architecture. MIT Press, 2012.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. arXiv preprint arXiv:1604.00289, 2016.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436–444, 2015.

Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention.
In Advances in neural information processing systems, pages 2204–2212, 2014.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International Conference on Machine Learning, pages 1928–1937,
2016.

Arvind Neelakantan, Quoc V Le, and Ilya Sutskever. Neural programmer: Inducing latent
programs with gradient descent. arXiv preprint arXiv:1511.04834, 2015.

Allen Newell. Unified theories of cognition. Harvard University Press, 1994.

Allen Newell and Herbert Alexander Simon. Gps: A program that simulates human thought.
In E. A. Feldman and J. Feigenbaum, editors, Computers and Thought, Computers and
thought. McGraw-Hill, New York, 1963.

Scott Reed and Nando De Freitas. Neural programmer-interpreters. arXiv preprint
arXiv:1511.06279, 2015.

Sebastian Riedel and Tim Rocktäschel. Programming with a differentiable forth interpreter.
2016.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning. MIT Press, 1998.
ISBN 0262193981.

10

Under review as a conference paper at ICLR 2018

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. In Advances
in neural information processing systems, pages 1057–1063, 2000.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8(3-4):229–256, 1992.

Wojciech Zaremba, Tomas Mikolov, Armand Joulin, and Rob Fergus. Learning simple
algorithms from examples. In Proceedings of the International Conference on Machine Learning,
2016.

11

	Introduction
	Technical Approach
	Partially Observable Markov Decision Processes
	Interfaces
	Actor-Critic Reinforcement Learning

	Visual Arithmetic
	External Environment
	Interface
	E-I Coupling and Reinforcement Learning Details

	Experiments
	Related Work
	Discussion and Conclusion

