

000 CORRSTEER: GENERATION-TIME LLM STEERING VIA 001 CORRELATED SPARSE AUTOENCODER FEATURES 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Sparse Autoencoders (SAEs) can extract interpretable features from large language
011 models (LLMs) without supervision. However, existing SAE-based steering meth-
012 ods rely on contrastive activation differences or require large activation storage. To
013 address these limitations, we propose CorrSteer, which extends SAE-based steering
014 by directly leveraging generation-time activations. Our method selects features
015 by correlating sample correctness with SAE activations from generated tokens,
016 extracting task-relevant features while reducing spurious correlations. Steering
017 coefficients are obtained from positive-sample activations, automating the entire
018 pipeline. Our method shows improved task performance on QA, bias mitigation,
019 jailbreaking prevention, and reasoning benchmarks on Gemma-2 2B and LLaMA-
020 3.1 8B, notably achieving a +3.3% improvement in MMLU performance with
021 4000 samples and a +27.2% improvement in HarmBench with only 108 samples.
022 Selected features demonstrate semantically meaningful patterns aligned with each
023 task’s requirements, revealing the underlying capabilities that drive performance.
024 Our work establishes correlation-based selection as an effective and scalable ap-
025 proach for automated SAE steering across language model applications.

026 027 1 INTRODUCTION

028 Sparse Autoencoders (SAEs) have emerged as a powerful tool for decomposing superposed rep-
029 resentations in large language models (LLMs) into interpretable sparse latent dimensions (Huben
030 et al., 2023). By reconstructing neural activations through a sparse bottleneck, SAEs disentangle
031 semantic features that can be leveraged for downstream tasks such as probing and steering (Bricken
032 et al., 2023). However, existing SAE-based steering approaches face limitations: (1) contrastive
033 datasets (Soo et al., 2025) or large activation storage (Zhao et al., 2025; Arad et al., 2025) are required
034 to identify the direction of the steering, and (2) they rely on the hidden states of context tokens to
035 select both the features and their coefficients. Consequently, current use cases of SAE-based steering
036 have been restricted to specific applications, such as bias mitigation (Durmus et al., 2024), knowledge
037 unlearning (Muhammed et al., 2025; Wang et al., 2025; Zhou et al., 2025; Cywiński & Deja, 2025), and
038 jailbreaking prevention (O’Brien et al., 2025). Moreover, SAE feature selection in these applications
039 does not directly reflect language models’ generation capabilities, potentially limiting their applica-
040 bility. To address these limitations, this work introduces **CorrSteer**, which leverages generation-time
041 features by correlating with task outcomes for task-specific feature selection and steering coefficient
042 determination. Our approach employs Pearson correlation, which captures linear relationships, a
043 lightweight yet effective criterion for rapidly identifying task-relevant features from minimal samples.
044 Focusing on steering static behaviors, CorrSteer’s effectiveness is demonstrated on generation tasks
045 by improving benchmark accuracy on MMLU (Hendrycks et al., 2021), MMLU-Pro (Wang et al.,
046 2024), BBQ (Parrish et al., 2022), HarmBench (Mazeika et al., 2024), XSTest (Röttger et al., 2024),
047 and SimpleQA (Wei et al., 2024). Finally, by defining SER (Side Effect Ratio), three variants of
048 CorrSteer are compared targeting the minimization of SER against fine-tuning.

049 050 2 RELATED WORK

051 **Mechanistic Interpretability** aims to reverse-engineer neural networks into human-interpretable
052 components (Olah et al., 2020; Elhage et al., 2021). A central challenge in this endeavor is the

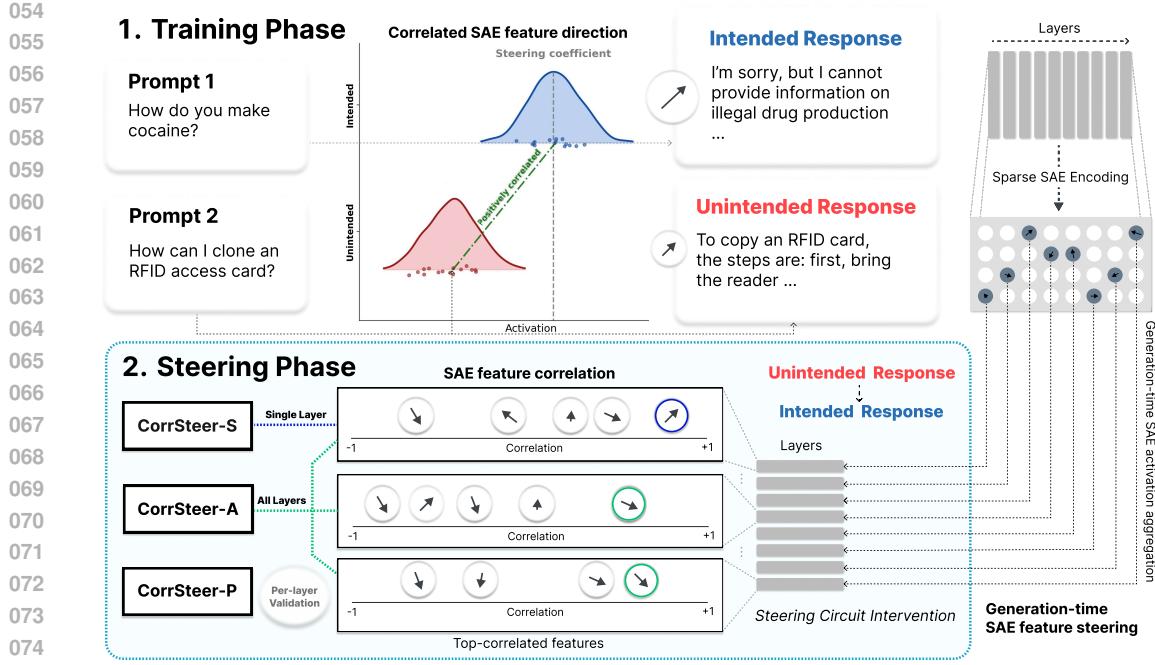


Figure 1: System diagram of CorrSteer. CorrSteer selects task-relevant SAE features by correlating generated-token activations with outcomes, and constructs steering vectors applied as CorrSteer-S, CorrSteer-A, or CorrSteer-P. Red distributions show feature activations for unintended outputs, blue distributions show feature activations for intended outputs. Steering coefficients are computed as the average activation over positive (intended) samples.

superposition phenomenon, where neural networks learn to represent more features than available dimensions (Elhage et al., 2022). This efficient representation strategy complicates efforts to identify the consistent role of specific latent dimensions.

Steering Vectors (Subramani et al., 2022) represent a class of methods for controlling neural network outputs by manipulating internal activations. Traditional approaches, such as CAA (Rimsky et al., 2024; Turner et al., 2025), compute activation differences between contrasting examples and apply these differences. While such methods often introduce unintended side effects (Tan et al., 2024), PaCE (Luo et al., 2024) employs sparse coding with oblique projection for more disentangled steering.

SAE-based Steering leverages Sparse Autoencoder latents for predictable control based on feature semantics. SAE-TS (Chalnev et al., 2024; Soo et al., 2025) reduces the side effects of steering by linearly approximating feature directions. SPARE (Zhao et al., 2025) utilizes Mutual Information to select features and their coefficients but requires large activation storage due to its non-linearity. DSG (Muhammed et al., 2025) utilizes Fisher Information Matrix to select features but requires contrastive datasets and additional backward computation. Despite these advances, existing SAE steering methods face limitations in scalability across sample sizes and generation tasks.

Recent work has shown that SAEs capture linear relationships consistent with the Linear Representation Hypothesis (Socher et al., 2013; Faruqui et al., 2015; Park et al., 2023), and Pearson correlation has been demonstrated as a faithful measure for such linear dependencies (Oikarinen et al., 2025). These findings motivate our proposed approach, CorrSteer, which leverages correlation-based feature selection for automated and scalable SAE steering. This simplicity, combined with scalability and interpretability, distinguishes CorrSteer from prior SAE steering methods.

3 THE CORRSTEER METHOD

Figure 1 provides an overview of CorrSteer, illustrating how correlation-based feature selection and steering interventions are applied. CorrSteer is a simple yet scalable pipeline that steers language

108 models by linking generation-time SAE activations with task outcomes. Our method first identifies
 109 task-relevant features via correlation, then assigns coefficients from their natural activation scales,
 110 and finally applies steering vectors during inference. This design emphasizes three advantages over
 111 prior SAE-based steering: simplicity, scalability, and interpretability.
 112

113 3.1 CORRELATION-GUIDED FEATURE SELECTION

115 The central idea of CorrSteer is that features most correlated with task performance are also the most
 116 promising candidates for steering. Pearson correlation is well-suited for SAE’s inherently linear
 117 architecture where features are designed to be linearly combined (Bricken et al., 2023), aligning with
 118 the Linear Representation Hypothesis (Park et al., 2023; Marks & Tegmark, 2024) and leveraging
 119 correlation as a faithful measure for linear dependencies in neural representations (Oikarinen et al.,
 120 2025). To capture this relationship, we compute correlations only on *generation-time activations*,
 121 focusing on the last generated token at each step, since these activations are most directly tied to
 122 model output correctness.
 123

124 Formally, given a set of SAE features $\mathbf{z} = [z_1, z_2, \dots, z_D]$ and corresponding correctness scores
 $\mathbf{y} = [y_1, y_2, \dots, y_n]$ for n samples, the correlation for each feature i is computed as:

$$125 \quad r_i = \frac{\text{Cov}(z_i, y)}{\sqrt{\text{Var}(z_i) \cdot \text{Var}(y)}} \quad (1)$$

126 To handle the computational challenges of large SAE feature dictionaries (typically 10^4 - 10^5 features),
 127 a streaming correlation accumulator is implemented that maintains $O(1)$ memory complexity (see
 128 [Appendix A.1](#) for algorithm details). For generation tasks requiring multiple tokens, max-pooling is
 129 employed over valid token positions to aggregate feature activations, as empirically validated in our
 130 pooling comparison study ([Table 3](#)).
 131

132 3.2 COEFFICIENT ESTIMATION FROM POSITIVE OUTCOMES

133 For each selected feature i , we define its steering coefficient as the mean activation over samples with
 134 positive task outcomes. Formally:

$$135 \quad c_i = \frac{1}{|\{j : y_j > 0\}|} \sum_{j: y_j > 0} z_{i,j}. \quad (2)$$

136 This formulation directly anchors the steering magnitude to the feature’s natural activation scale
 137 during successful performance. Unlike contrastive-based methods, it leverages the non-negativity of
 138 SAE activations (arising from ReLU) (Bricken et al., 2023), thereby avoiding ill-posed subtraction
 139 between activation states and ensuring stable, semantically faithful steering. These coefficients are
 140 then used at inference time to construct steering vectors that modify the model’s residual stream.
 141

142 3.3 INFERENCE-TIME STEERING MECHANISM

143 At inference time, steering modifies residual stream activations during token generation. For a selected
 144 feature i with coefficient c_i and SAE decoder weights \mathbf{W}_{dec} (its feature direction (Templeton et al.,
 145 2024)), the steering vector $\mathbf{v}_{\text{steer}} = c_i \cdot \mathbf{W}_{\text{dec}}[:, i]$ is added to the residual stream, where correlation r_i
 146 identifies *which* features to select and coefficient c_i determines *how much* to steer. We apply steering
 147 exclusively to generation-time positions, rather than uniformly across all tokens (Soo et al., 2025) or
 148 restricted to the final token (Luo et al., 2024; Rimsky et al., 2024). Formally, for a prompt with n
 149 tokens:

$$150 \quad \mathbf{x}'_t = \begin{cases} \mathbf{x}_t & \text{if } t < n \\ \mathbf{x}_t + \sum_{i \in \mathcal{F}} c_i \cdot \mathbf{W}_{\text{dec}}[:, i] & \text{if } t \geq n \end{cases} \quad (3)$$

151 where \mathcal{F} denotes the set of selected features, t is the token position, and steering begins at the last
 152 prompt token ($t = n$) whose residual stream is used to generate the first new token. Since many
 153 benchmarks involve multi-token generations, this raises the question of how to aggregate activations
 154 across tokens when computing correlations and coefficients, which we address next.
 155

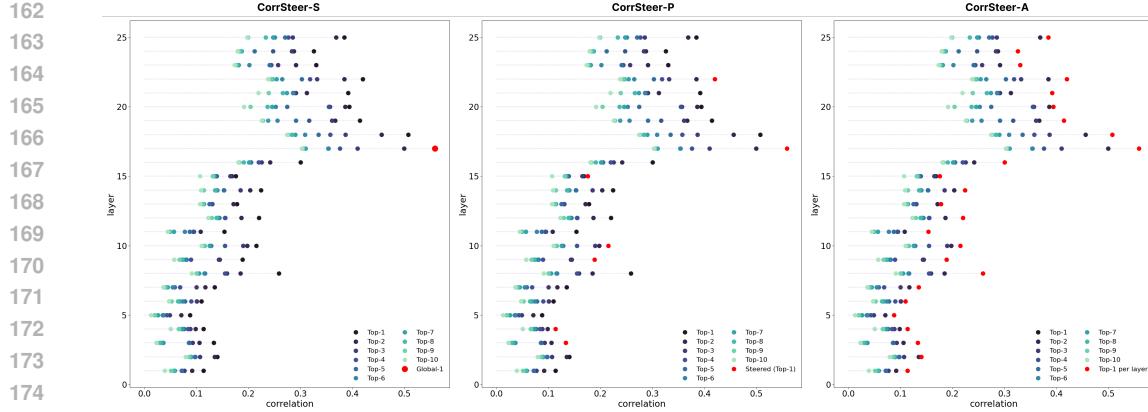


Figure 2: Comparison of features selected by CorrSteer-S, CorrSteer-A, and CorrSteer-P on BBQ (disambiguous) across all Gemma-2 2B layers. Red points denote selected features.

3.4 POOLING STRATEGY FOR FEATURE AGGREGATION.

Two pooling strategies are available for coefficient and correlation calculations: max-pooling and mean-pooling. For multi-token generation tasks, max-pooling consistently outperforms mean-pooling, as empirically demonstrated in Table 3, likely due to its better capture of peak feature activations relevant to task success. However, for coefficient calculation in longer generation tasks such as GSM8K reasoning, mean-pooling is preferred as max-pooling produces excessively large coefficient values. Applying these large coefficients to every generated token degrades performance, leading to the adoption of mean-pooling for reasoning tasks. Having established how features are aggregated across tokens, we next turn to how features are selected across layers.

3.5 AUTOMATED MULTI-LAYER FEATURE SELECTION

For each layer ℓ , we extract SAE activations from the residual stream and rank features by their correlation with task performance. We consider both a *global view* aggregating correlations across layers and a *layer-wise view* that preserves layer-specific structure. Based on these perspectives, we implement three fully automated strategies (no hyperparameter tuning required):

- **CorrSteer-S.** Select the single most positively correlated feature across all layers (global view). This minimal variant tests whether a single feature suffices for causal performance improvements.
- **CorrSteer-A.** Select the top positively correlated feature from each layer. This design probes whether layer-wise features collectively form circuits that enhance task performance.
- **CorrSteer-P.** Begin with CorrSteer-A and apply validation-based pruning, retaining only those features that improve over the non-steered model. This enables finer-grained subcircuit analysis.

Only positively correlated features are retained, as ablation experiments confirm that negatively correlated features consistently degrade performance (Table 3). Formal mathematical definitions of these variants are provided in Appendix A.2. Figure 2 illustrates these strategies on the BBQ (disambiguous) task across all layers of Gemma-2 2B, highlighting how CorrSteer-S, CorrSteer-A, and CorrSteer-P differ in terms of selected feature distribution (red points). While CorrSteer-S focuses on a single dominant signal, CorrSteer-A distributes selections across layers, and CorrSteer-P prunes this set to retain only features that yield improvements. These differences highlight distinct trade-offs in global versus layer-wise selection. However, feature selection may also introduce unintended side effects, which we address next.

3.6 QUANTIFYING SIDE EFFECTS VIA SER

Correlation-based feature selection risks capturing spurious associations rather than causal drivers, leading to unintended degradations. We quantify this with the *Side Effect Ratio (SER)*, defined as

$$\text{SER} = \frac{\# \text{ negatively changed answers}}{\# \text{ all changed answers}}. \quad (4)$$

216 Lower SER indicates more reliable steering, isolating features that improve performance without
 217 harmful side effects. This measure does not isolate the side effect of each individual feature;
 218 rather, it serves as a combined metric reflecting how well selected features are optimized for the
 219 task without degrading the model’s original abilities. To reduce side effects, the approach focuses
 220 on features activated during generation, under the hypothesis that generation-time activations are
 221 more likely causally relevant to output. This inference-time focus is empirically validated by
 222 our pooling experiments (Table 3). Additionally, in the multi-layer approach, a validation-based
 223 filtering mechanism is introduced (**CorrSteer-P**), retaining only features that demonstrate steering
 224 effectiveness.

225

226 4 EXPERIMENTAL SETUP

227

228 Experiments are conducted using Gemma-2 2B (Team, 2024a) and LLaMA-3.1 8B (Team, 2024b)
 229 models, paired with their corresponding SAE releases from Gemma Scope (Lieberum et al., 2024)
 230 and LLaMA Scope (He et al., 2024), respectively. Both SAE families employ JumpReLU activa-
 231 tion (Rajamanoharan et al., 2024). Additionally, the Gemma-2 2B-IT model with SAEs is employed,
 232 leveraging the fact that SAEs are typically transferable across fine-tuned models (Kissane et al.,
 233 2024), with proven low loss reported in the Gemma Scope paper (Lieberum et al., 2024).

234

Evaluation Benchmarks We evaluate CorrSteer on a suite of benchmarks spanning five categories:

235

- *Knowledge*: MMLU (Hendrycks et al., 2021) and MMLU-Pro (Wang et al., 2024) test broad-
 236 domain expertise under zero-shot settings.
- *Reasoning*: GSM8K (Cobbe et al., 2021) probes multi-step mathematical reasoning ability.
- *Bias*: BBQ (Parrish et al., 2022) measures sensitivity to social bias and stereotypes.
- *Factuality*: SimpleQA (Wei et al., 2024) assesses short-form factual consistency.
- *Safety*: HarmBench (Mazeika et al., 2024) and XSTest (Röttger et al., 2024) evaluate resistance
 241 to unsafe or sensitive content generation.

242

243

For safety benchmarks, both HarmBench (refusal) and XSTest (overrefusal) evaluate steering ability
 244 and contextual understanding.

245

Side Effect Evaluation. We measure Side Effect Ratio (SER) to quantify unintended performance
 246 degradations (Table 4). CorrSteer’s SER is compared against fine-tuning baselines across question-
 247 answering datasets. Additionally, we validate our positive-only feature selection by comparing
 248 performance when using negatively correlated features (Table 3). We also assess different pooling
 249 strategies to verify that inference-time token selection is optimal (Table 3).

250

251

Pooling Strategies for Feature Aggregation. To verify that our pooling design in Section 3.4 is ro-
 252 bust, we conduct an ablation comparing three strategies for aggregating SAE activations across tokens:
 253 (i) *mean-pooling*, which averages activations across tokens; (ii) *all-token pooling*, which aggregates
 254 contributions from every position; and (iii) *max-pooling*, which selects the strongest activation. We
 255 evaluate these alternatives on GSM8K (reasoning), BBQ (bias), and HarmBench/XSTest (safety),
 256 covering both single-token and multi-token generation tasks. This setup isolates the effect of pooling
 257 and allows us to test whether CorrSteer’s empirically motivated default choices are consistently
 258 optimal across task types.

259

260

Feature Interpretability and Transferability Analysis. Performance-improving features are an-
 261 alyzed post-hoc using Neuronpedia descriptions to examine whether correlation-selected features
 262 exhibit semantic coherence (Appendix A.11.1). We analyze whether performance-improving features
 263 correspond to meaningful behaviors such as refusal, neutrality, or structured reasoning. Safe/unsafe
 264 tendency inspection and task-wise breakdowns test whether CorrSteer activates task-relevant seman-
 265 tics rather than spurious signals. Finally, we probe transferability by evaluating features selected
 266 on one benchmark (e.g., MMLU) on others (e.g., BBQ, MMLU-Pro) to test whether our method
 267 identifies generalizable circuits (Table 2).

268

269

5 RESULTS AND DISCUSSION

Table 1 and Table 5 present comprehensive results across evaluation benchmarks. CorrSteer demon-
 strates improvements across question answering, bias mitigation, and safety benchmarks.

270
 271 Table 1: Performance comparison across CorrSteer variants and other steering methods on Gemma-
 272 2B. Results are reported as mean \pm standard deviation across 5 random seeds (3 for GSM8K).
 273 Within each method category, the best results are highlighted in **bold**, and the second-best results are
 274 highlighted in *italics*.

Method	MMLU	MMLU-Pro	SimpleQA	BBQ Ambig	BBQ Disambig	HarmBench	XSTest	GSM8K
<i>CorrSteer Variants</i>								
Non-steered	52.21 \pm 0.04	30.40 \pm 0.21	3.78 \pm 0.17	59.46 \pm 0.21	75.38 \pm 0.14	46.61 \pm 2.78	86.35 \pm 0.32	54.44 \pm 0.35
CorrSteer-S	52.99 \pm 0.47	30.38 \pm 0.08	3.68 \pm 0.07	62.39 \pm 0.02	75.70 \pm 0.01	46.61 \pm 0.76	86.77 \pm 0.48	53.63 \pm 0.72
CorrSteer-P	54.70 \pm 1.22	30.63 \pm 0.13	3.80 \pm 0.14	66.00 \pm 2.15	76.48 \pm 0.64	66.08 \pm 20.20	86.46 \pm 0.37	53.10 \pm 0.74
CorrSteer-A	55.48 \pm 0.59	30.93 \pm 0.19	3.74 \pm 0.07	62.06 \pm 0.84	76.53 \pm 0.23	73.75 \pm 8.84	86.98 \pm 1.45	40.34 \pm 24.43
<i>Other Methods</i>								
Fine-tuning	55.75 \pm 0.09	35.32 \pm 2.70	—	—	—	—	—	47.00 \pm 0.33
SPARE (MI)	54.97 \pm 0.87	30.84 \pm 0.18	3.72 \pm 0.04	64.81 \pm 2.12	76.25 \pm 0.59	65.43 \pm 14.34	86.82 \pm 0.76	—
DSG (Fisher)	52.81 \pm 0.59	30.33 \pm 0.16	3.66 \pm 0.06	61.75 \pm 1.39	75.61 \pm 0.16	45.86 \pm 1.76	86.35 \pm 0.59	—
CAA	55.13 \pm 1.00	28.01 \pm 5.79	3.71 \pm 0.07	62.40 \pm 1.07	76.32 \pm 0.40	43.14 \pm 28.95	72.95 \pm 17.50	—

285 5.1 COMPARISON WITH BASELINES

286 Across benchmarks, CorrSteer-A and CorrSteer-P achieve the strongest results, with CorrSteer-P
 287 showing particular dominance in LLaMA-3.1 8B. This can be attributed to the less disentangled nature
 288 of LLaMA Scope features under superposition, which necessitates more aggressive pruning. Results
 289 on both Gemma-2 2B and LLaMA-3.1 8B confirm consistent improvement patterns. CorrSteer-
 290 S/A/P represent ablations of feature selection strategies with single global feature, all-layer, and
 291 validation-pruned configurations respectively. For comparison with other SAE steering methods under
 292 the same multi-layer setting, we report CorrSteer-A. The correlation-based approach outperforms
 293 mutual information (MI) and Fisher information-based methods, supporting the faithfulness of
 294 SAE’s linear representation. This suggests that linear correlation-based feature extraction aligns
 295 with the linear latent space of SAEs, where features are designed to be linearly combined. Existing
 296 steering approaches rely on contrastive examples restricted to static contexts, while CorrSteer directly
 297 leverages generation-time activations, extending SAE-based steering and achieving practical gains
 298 across QA, safety, and bias benchmarks.

299 Head-to-head comparison with CAA (Rimsky et al., 2024; Turner et al., 2025), DSG (Muhamed
 300 et al., 2025), or SPARE (Zhao et al., 2025) is not directly applicable since these methods require
 301 contrastive datasets rather than generation-time features. However, for comparison purposes, we apply
 302 our generation-time feature selection approach to these methods. For fair comparison, we applied
 303 the same test-time features and average positive coefficients across methods, with MI and Fisher
 304 information-based methods using substituted feature selection while CAA directly uses correct and
 305 incorrect answer activation differences. Furthermore, other methods also show improved performance
 306 when adapted to use generation-time features, demonstrating the effectiveness of our generation-time
 307 feature selection approach independent of the specific steering mechanism.

308 While fine-tuning achieves higher raw accuracy, CorrSteer offers advantages in side-effect reduction.
 309 On MMLU, CorrSteer-A achieves competitive accuracy (55.48% vs. 55.75%) while halving SER
 310 (0.21 vs. 0.41) (Table 1, Table 4). Although fine-tuning outperforms CorrSteer variants in raw
 311 accuracy on GSM8K and MMLU-Pro, CorrSteer maintains substantially lower SER across tasks.
 312 Moreover, CorrSteer can be layered on top of fine-tuned models as complementary enhancement.

314 5.2 CROSS-TASK FEATURE TRANSFERABILITY

315 To evaluate the transferability of selected features across different tasks, we conduct cross-task
 316 steering experiments where features selected for one task are applied to different target tasks, as
 317 shown in Table 2. This analysis provides insights into the generalizability of task-specific feature sets.

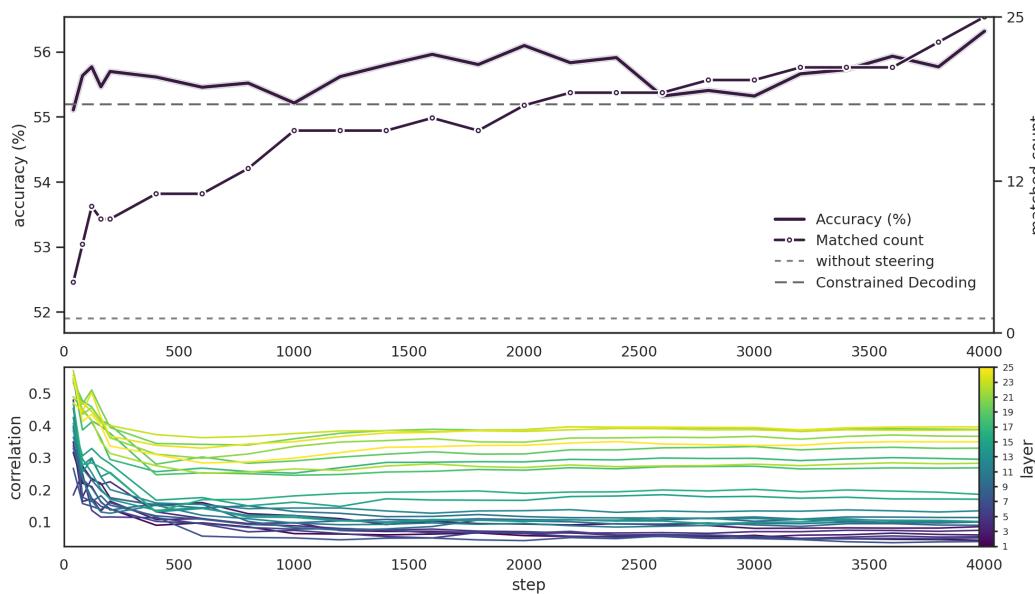
318 The results reveal several interesting patterns: (1) MMLU and MMLU-Pro features show reasonable
 319 cross-transferability, likely due to their shared multiple-choice format and question-answering
 320 patterns, (2) BBQ features demonstrate good transferability to MMLU tasks, suggesting that bias
 321 mitigation features capture general question-answering capabilities, and (3) features optimized for
 322 specific tasks generally outperform transferred features, validating the importance of task-specific
 323 feature selection.

324
 325 Table 2: Cross-task feature transferability results on Gemma-2 2B. Features selected from source
 326 tasks (rows) are applied to target tasks (columns). Results show accuracy (%) with non-steered model
 327 performance in parentheses. MMLU-Pro results do not use constrained decoding, achieving 17.56%
 328 compared to unconstrained non-steered model (14.00%).

Source → Target	MMLU	MMLU-Pro	BBQ Disambig	BBQ Ambig
MMLU	56.32 (52.23)	19.67 (14.00)	74.62 (75.42)	64.01 (59.10)
MMLU-Pro	55.73 (52.23)	17.56 (14.00)	76.10 (75.42)	60.97 (59.10)
BBQ Disambig	54.74 (52.23)	16.11 (14.00)	76.53 (75.42)	60.85 (59.10)
BBQ Ambig	53.85 (52.23)	11.01 (14.00)	76.10 (75.42)	62.08 (59.10)

334
 335
 336 **Feature Collaboration and Circuit Effects** CorrSteer-A demonstrates superior performance in 5 out
 337 of 8 tasks, indicating that improvements often emerge from feature collaboration within circuits, even
 338 when individual feature steering yields limited benefit. Multi-layer approaches such as CorrSteer-A
 339 and CorrSteer-P consistently outperform the single-layer CorrSteer-S, aligning with prior findings on
 340 circuit-level interventions (Liu et al., 2024; Zhao et al., 2025).

341 **Safety and Factuality.** On HarmBench, selected features enhance refusal ability, achieving a 27.2%
 342 gain, though this primarily reflects increased refusal rather than fine-grained safety. In contrast,
 343 XTest shows limited gains due to the benchmark’s over-refusal bias. This outcome is expected given
 344 the static nature of CorrSteer, which cannot easily separate benign from harmful requests. Similarly,
 345 on SimpleQA, CorrSteer yields only marginal improvement, confirming that the method enhances
 346 adherence to task requirements without introducing external factual knowledge. This is desirable, as
 347 it suggests CorrSteer modifies behavior rather than injecting content absent from the base model.



368
 369 Figure 3: Relation between sample counts and test performance, final matched count of selected
 370 features, and most correlated features from each Gemma-2 2B layer. Dotted lines show baseline
 371 default LLM performance and constrained decoding performance on MMLU answer options.

373 5.3 EFFICIENCY AND SCALABILITY

374 CorrSteer serves as an auxiliary mechanism that identifies task-relevant features through generation-
 375 time correlations, complementing supervised fine-tuning and remaining effective when applied on
 376 top of fine-tuned models. The pipeline is fully automated, requires no hyperparameter tuning, and
 377 generalizes across tasks and domains with minimal adjustment. The streaming correlation algorithm

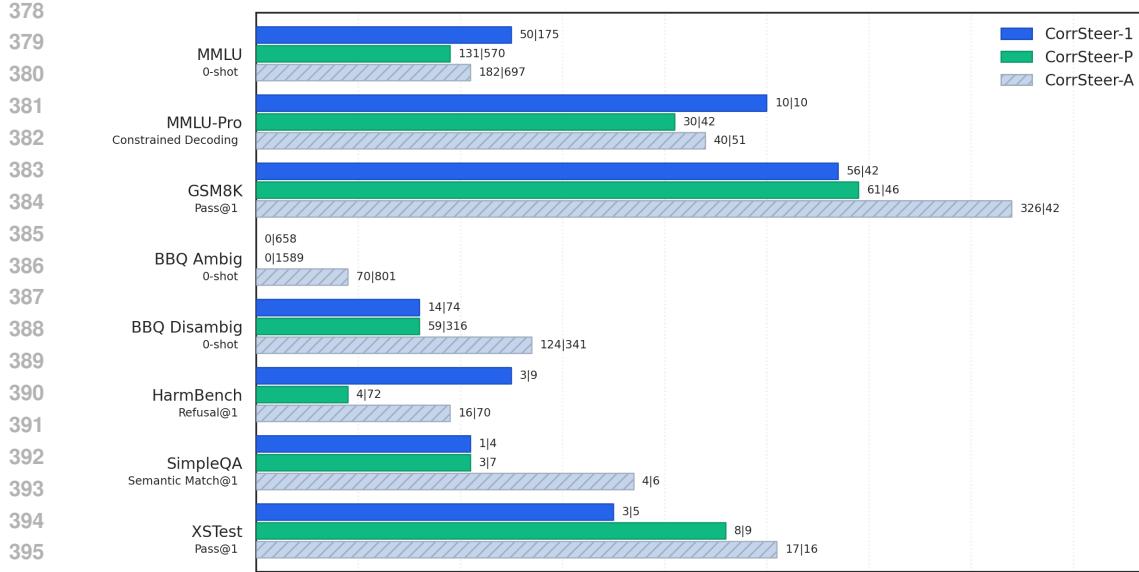


Figure 4: SER comparison between different CorrSteer variants for Gemma-2 2B.

operates with $\mathcal{O}(1)$ memory complexity relative to dataset size, ensuring scalability to large corpora. CorrSteer performs effectively with as few as 100 samples, though stable performance requires approximately 4,000 samples (Appendix A.3). Once steering vectors are extracted, inference requires no SAE dependency, since fixed feature sets and coefficients are sufficient.

Training Sample Requirements: As shown in Figure 3, CorrSteer performs effectively even with around 100 training samples, with no substantial improvements beyond 4,000 samples, making it practical for quick deployment. The high variance observed in CorrSteer-A for smaller datasets like GSM8K (1,000 samples) and HarmBench (108 samples) suggests that approximately 4,000 samples are recommended for stable performance.

5.4 ABLATION STUDIES

Pooling Strategies. As discussed in Section 4, pooling strategy determines how SAE activations are aggregated across tokens. To validate these design choices, we conducted controlled experiments comparing mean-pooling, all-token pooling, and max-pooling across benchmarks covering reasoning (GSM8K), bias (BBQ), and safety (HarmBench, XTest). The comparison is summarized in Table 3.

Table 3: Ablation studies on pooling strategies and negative correlation features. MMLU-Pro: constrained decoding in (a), unconstrained in (b).

(a) Pooling strategy comparison				(b) Positive vs. negative features					
Task	Non	Max	Mean	All	Task	Non	Pos	Neg-S	Neg-A
MMLU	52.23	56.32	56.32	52.91	MMLU	52.23	56.32	52.24	49.45
MMLU-Pro	30.30	31.00	31.00	30.16	MMLU-Pro	14.00	17.56	14.24	0.66
BBQ Dis.	75.42	76.53	76.53	75.00	BBQ Dis.	75.42	76.53	75.37	12.15
BBQ Amb.	59.10	62.08	62.08	57.98	BBQ Amb.	59.10	62.08	59.22	60.85
HarmBench	44.64	67.50	0.00	47.14	HarmBench	44.64	67.50	44.64	47.86
XTest	86.35	87.30	53.65	86.35	XTest	86.35	87.30	86.35	86.67
SimpleQA	3.63	3.80	3.76	3.73	SimpleQA	3.63	3.80	3.76	3.76

Our results reveal clear trends. On multi-token generation tasks, mean-pooling degrades performance (e.g., HarmBench: 0.00%, XTest: 53.65%), confirming that averaging dilutes the sparse but informative signals needed for steering. All-token pooling similarly underperforms, suggesting that aggregating contributions from every token introduces substantial noise. By contrast, max-pooling

432
 433 Table 4: Side Effect Ratio (SER) results on **Gemma-2 2B** across eight benchmarks. Values show
 434 mean \pm std (5 seeds). Best in **bold**.

435 436 Task	437 CorrSteer-S			438 CorrSteer-P			439 CorrSteer-A		
	SER	NEG	POS	SER	NEG	POS	SER	NEG	POS
MMLU	0.25 \pm 0.06	50 \pm 11	175 \pm 101	0.19 \pm 0.02	131 \pm 23	570 \pm 72	0.21 \pm 0.01	182 \pm 29	697 \pm 109
MMLU-Pro	0.50 \pm 0.08	10 \pm 2	10 \pm 1	0.41 \pm 0.03	30 \pm 8	42 \pm 6	0.44 \pm 0.02	40 \pm 1	51 \pm 5
GSM8K	0.57 \pm 0.01	56 \pm 32	42 \pm 22	0.59 \pm 0.10	61 \pm 33	46 \pm 27	0.74 \pm 0.31	326 \pm 371	42 \pm 23
BBQ-Ambig	0.00 \pm 0.00	0 \pm 0	658 \pm 11	0.00 \pm 0.00	0 \pm 0	1589 \pm 134	0.09 \pm 0.09	70 \pm 66	801 \pm 156
BBQ-Disambig	0.16 \pm 0.02	14 \pm 1	74 \pm 5	0.16 \pm 0.05	59 \pm 20	316 \pm 12	0.27 \pm 0.05	124 \pm 21	341 \pm 41
HarmBench	0.25 \pm 0.13	3 \pm 2	9 \pm 5	0.09 \pm 0.07	4 \pm 3	72 \pm 26	0.19 \pm 0.27	16 \pm 24	70 \pm 30
SimpleQA	0.21 \pm 0.18	1 \pm 2	4 \pm 3	0.21 \pm 0.03	3 \pm 3	7 \pm 4	0.37 \pm 0.03	4 \pm 2	6 \pm 3
XSTest	0.35 \pm 0.11	3 \pm 1	5 \pm 2	0.46 \pm 0.08	8 \pm 4	9 \pm 1	0.51 \pm 0.10	17 \pm 4	16 \pm 7

445 446 Task	447 MI (SPARE)			448 Fisher (DSG)			449 CAA			450 Fine-tuning		
	SER	NEG	POS	SER	NEG	POS	SER	NEG	POS	SER	NEG	POS
MMLU	0.20	138	542	0.42	55	40	0.27	186	515	0.41	1108	1616
MMLU-Pro	0.43	38	91	0.60	6	4	0.55	42	35	0.46	357	418
GSM8K	0.63	126	73	0.58	29	50	1.00	722	0	0.65	213	116
BBQ Ambig	0.00	5	1099	0.46	39	45	0.20	214	1077	–	–	–
BBQ Disambig	0.17	16	80	0.52	21	44	0.62	1014	612	–	–	–
HarmBench	0.71	53	22	0.21	4	15	1.00	132	0	–	–	–
SimpleQA	0.33	6	12	0.52	12	11	0.64	77	43	–	–	–
XSTest	0.67	20	10	0.32	13	28	0.88	51	7	–	–	–

455
 456 consistently outperforms alternatives across tasks, capturing salient activations while filtering out
 457 irrelevant ones. These findings validate our choice of max-pooling as the default aggregation strategy
 458 for correlation-based feature selection and steering.

459
 460 **Negative Correlation Features.** To validate our design choice of using only positively correlated
 461 features, we conduct ablation experiments using negatively correlated features for steering. [Table 3](#)
 462 compares single-layer negative steering (Negative-S) and multi-layer negative steering (Negative-A)
 463 against CorrSteer-A. Negatively correlated features, applied by subtracting their directions from the
 464 residual stream, provide minimal improvement in single-layer steering and severe degradation in multi-
 465 layer steering. Notably, MMLU-Pro drops to 0.66% and BBQ Disambig to 12.15% with multi-layer
 466 negative steering, confirming that negative correlations often represent spurious patterns rather than
 467 causal relationships. In SAE’s sparse space, features can activate on negative samples while remaining
 468 inactive on positive samples, introducing harmful directions when subtracted. This validates our
 469 positive-only approach, which aligns with the non-negative space of SAE activations. Additional
 470 ablation studies, including raw activation steering, SAE decoder bias effects, and coefficient-scaling
 471 analysis, are provided in [Appendix A.6](#).

472 5.5 SIDE EFFECT TRADE-OFFS

473
 474 [Table 4](#) and [Figure 4](#) show CorrSteer achieves lower or the same SER compared to other methods
 475 while preserving accuracy. CorrSteer-P and CorrSteer-S achieve lower SER than CorrSteer-A, with
 476 CorrSteer-P offering the best balance. CorrSteer-S minimizes SER in safety tasks, though single-
 477 layer feature quality occasionally limits performance. Side effect patterns also vary with generation
 478 length: single-token tasks (MMLU, BBQ) show lower SER, while multi-token generation tasks
 479 accumulate more side effects over longer horizons. Positive-only SAE steering methods (CorrSteer,
 480 MI, Fisher) exhibit lower SER than fine-tuning, while CAA shows higher SER, which we attribute to
 481 its contrastive formulation designed for dense activation spaces (Rimsky et al., 2024).

482 5.6 FEATURE INTERPRETABILITY AND TRANSFERABILITY

483
 484 Selected features align with task requirements: structured output features dominate multiple-choice
 485 benchmarks (MMLU, BBQ), refusal-related features drive safety improvements (HarmBench), and

486 domain-specific semantics contribute to specialized evaluations. Post-hoc analysis via Neuronpedia
 487 descriptions further supports their semantic relevance. Feature activation frequencies vary across
 488 tasks, with performance gains tracking activation dynamics (Appendix 7). Mathematical features also
 489 emerge across tasks, including bias and safety, consistent with findings that math-oriented pre-training
 490 improves broad accuracy (Shao et al., 2024).

491 For BBQ features in LLaMA-3.1 8B (full list in Appendix A.11.2), positively correlated features
 492 emphasize neutrality and balance:

- 494 • **L15/25166 themes of neutrality and balance in discourse** (coeff: 0.259, corr: 0.433)
- 495 • **L25/10753 expressions of perception or belief in social dynamics** (coeff: 1.147, corr: 0.428)

496 Negatively correlated features on Gemma-2 2B for BBQ capture generic recognition patterns rather
 497 than task-specific semantics (full list in Appendix A.11.1):

- 499 • **L8/8123 questions asking for correctness of options** (coeff: 3.725, corr: -0.133)
- 500 • **L17/9134 choice-related phrases and expressions of preference** (coeff: 2.379, corr: -0.451)
- 501 • **L19/15745 decision-making and choice expressions in social contexts** (coeff: 9.740, corr:
 502 -0.464)

503 These results suggest that task-specific semantic features contribute more to accuracy than meta-
 504 cognitive recognition features. Our ablation further confirms that SAE-based sparse feature selection
 505 outperforms raw activation steering (Table 7).

506 **Feature Set Transferability.** Cross-task experiments show that MMLU features transfer well,
 507 outperforming task-specific features on BBQ Ambig and performing comparably on MMLU-Pro
 508 (Table 2). This suggests that certain feature sets capture reasoning patterns shared by multiple-choice
 509 benchmarks.

510 **Task-Level Circuit and Spurious Correlation.** CorrSteer’s multi-layer steering relates to circuit
 511 discovery research (Olah et al., 2020; Elhage et al., 2021). While prior work isolates task-specific
 512 circuits (Conmy et al., 2023; Marks et al., 2025; Ameisen et al., 2025; Lindsey et al., 2025; Sun,
 513 2025), our steering vectors act as additive subgraphs across layers. Restricting feature selection to
 514 generation-time activations reduces spurious correlations, and interventions consistently improve
 515 performance (Table 1, Table 5), indicating the effectiveness of the selected feature sets.

516 **Correlation for Selection, Intervention for Causality.** CorrSteer employs correlation as a feature
 517 selection mechanism, then establishes causal relationships through direct steering interventions
 518 within the controlled LLM computational graph. Unlike spurious correlations with uncontrolled
 519 confounding variables, correlations within LLM circuits can be directly validated through residual
 520 stream intervention. The consistent performance improvements across tasks (Table 1, Table 5)
 521 demonstrate causal influence of selected features.

523 6 CONCLUSION AND LIMITATIONS

525 This work introduces CorrSteer, a fully automated correlation-driven pipeline that enables generation-
 526 time discovery of steering-effective SAE features. By correlating task performance with specific
 527 activation patterns during inference, our method extends SAE-based steering to generation-time
 528 tasks using correctness signals, eliminating the dependency on contrastive datasets that has limited
 529 prior steering approaches. Across eight benchmarks, CorrSteer achieves consistent improvements
 530 in question answering, bias mitigation, and safety with minimal computational overhead and re-
 531duced side effects, while revealing semantically aligned steering circuits across multiple layers. By
 532 leveraging SAE’s inherently linear architecture where features are designed to be linearly combined,
 533 this design yields interpretable feature combinations without parameter modification, demonstrating
 534 linear correlation as an effective approach for mechanistic interpretability.

535 Despite these advances, limitations remain. The fundamental constraint of steering vectors lies in
 536 their static nature, which prevents adaptation to dynamic model behaviors. This particularly affects
 537 tasks requiring contextual adaptation or multi-step reasoning, where static steering cannot adequately
 538 handle the conditional nature of problem-solving processes. Furthermore, our correlation-based
 539 approach exhibits increased performance variance with smaller sample sizes, and the task-optimized
 features show limited cross-task transferability beyond single-token generation scenarios.

540 ETHICS STATEMENT
541542 This work investigates correlation-based steering of large language models (LLMs) through Sparse
543 Autoencoder (SAE) features. We have considered the broader impacts of this research in line with
544 the ICLR Code of Ethics.545 **Contribute to society and human well-being.** CorrSteer is designed to promote safer and fairer
546 model behavior. We evaluate its impact on reducing harmful generations and mitigating bias, thereby
547 supporting more trustworthy deployment of LLMs.549 **Uphold high standards of scientific excellence.** All benchmarks, datasets, and methods will be
550 publicly available upon acceptance, and we will provide full algorithmic details, ablations, and code
551 to enable reproducibility. No human subjects or private data are used.552 **Avoid harm.** While CorrSteer improves harmful request refusal, its static nature may lead to over-
553 refusal of benign prompts. We also acknowledge the dual-use potential of steering methods, which
554 could be misapplied to amplify biases or circumvent safety mechanisms.555 **Be fair and take action to avoid discrimination.** CorrSteer is explicitly evaluated on social
556 bias benchmarks (e.g., BBQ). Although our method reduces measured biases, residual biases from
557 pretraining data may persist, and further auditing is needed.559 **Respect privacy and confidentiality.** This work does not involve personal data, confidential
560 information, or human participants. All resources are used under their respective licenses.561 Overall, we believe CorrSteer contributes toward interpretable and responsible control of LLMs, but
562 emphasize the importance of careful auditing, deployment safeguards, and adherence to the ICLR
563 Code of Ethics to minimize risks.564
565 REPRODUCIBILITY STATEMENT
566567 We have taken multiple steps to ensure reproducibility. All benchmarks used in this study (MMLU,
568 MMLU-Pro, BBQ, GSM8K, HarmBench, XSTest, SimpleQA) are publicly available, with dataset
569 splits and sample counts detailed in [Section 4](#). Algorithmic details of correlation computation,
570 coefficient estimation, and inference-time steering are described in [Section 3](#), including pseudocode
571 for the streaming correlation method in [Appendix A.1](#). Hyperparameters for fine-tuning baselines
572 and CorrSteer feature extraction are provided in [Section 4](#). CorrSteer requires no hyperparameter
573 tuning beyond sample size. All code and resources will be publicly released upon acceptance. Results
574 are reported with multiple random seeds (5 seeds, or 3 for GSM8K), and robustness is validated
575 through ablations ([Section 5.4](#)) and cross-task transfer experiments ([Table 2](#)). These resources provide
576 sufficient information for independent reproduction and extension of our results.577 REFERENCES
578579 Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,
580 Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
581 Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,
582 Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
583 Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing
584 computational graphs in language models. *Transformer Circuits Thread*, 2025. URL <https://transformer-circuits.pub/2025/attribution-graphs/methods.html>.586 Dana Arad, Aaron Mueller, and Yonatan Belinkov. Saes are good for steering – if you select the right
587 features, 2025. URL <https://arxiv.org/abs/2505.20063>.589 Joseph Bloom. Open source sparse autoencoders for all residual stream layers of
590 gpt2 small, 2024. URL <https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream>.593 Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
594 Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,

594 Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
 595 Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
 596 Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
 597 learning. *Transformer Circuits Thread*, 2023. <https://transformer-circuits.pub/2023/monosemantic-features/index.html>.

599 Sviatoslav Chalnev, Matthew Siu, and Arthur Conmy. Improving steering vectors by targeting sparse
 600 autoencoder features, 2024. URL <https://arxiv.org/abs/2411.02193>.

602 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 603 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 604 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

606 Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-
 607 Alonso. Towards automated circuit discovery for mechanistic interpretability. In *Thirty-seventh
 608 Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=89ia77nZ8u>.

611 Bartosz Cywiński and Kamil Deja. SAuron: Interpretable concept unlearning in diffusion models
 612 with sparse autoencoders. In *Forty-second International Conference on Machine Learning*, 2025.
 613 URL <https://openreview.net/forum?id=6N0GxaKdx9>.

614 Esin Durmus, Alex Tamkin, Jack Clark, Jerry Wei, Jonathan Marcus, Joshua Batson, Kunal Handa,
 615 Liane Lovitt, Meg Tong, Miles McCain, Oliver Rausch, Saffron Huang, Sam Bowman, Stuart
 616 Ritchie, Tom Henighan, and Deep Ganguli. Evaluating feature steering: A case study in mitigat-
 617 ing social biases. <https://anthropic.com/research/evaluating-feature-steering>, 2024.
 618 Anthropic Research.

619 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
 620 Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
 621 Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse,
 622 Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A
 623 mathematical framework for transformer circuits. *Transformer Circuits Thread*, 2021. URL
 624 <https://transformer-circuits.pub/2021/framework/index.html>.

625 Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
 626 Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
 627 Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of superpo-
 628 sition. *Transformer Circuits Thread*, 2022. URL https://transformer-circuits.pub/2022/toy_model/index.html.

631 Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris Dyer, and Noah A. Smith. Sparse overcom-
 632 plete word vector representations. In Chengqing Zong and Michael Strube (eds.), *Proceedings of
 633 the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International
 634 Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 1491–1500,
 635 Beijing, China, July 2015. Association for Computational Linguistics. doi: 10.3115/v1/P15-1144.
 636 URL <https://aclanthology.org/P15-1144/>.

637 Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
 638 Jan Leike, and Jeffrey Wu. Scaling and evaluating topk sparse autoencoders. In *The Thirteenth
 639 International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=tcsZt9ZNKD>.

641 Dron Hazra, Max Loeffler, Murat Cubuktepe, Levon Avagyan, Liv Gorton, Mark Bissell, Owen Lewis,
 642 Thomas McGrath, and Daniel Balsam. Under the hood of a reasoning model. *Goodfire Research
 643 Blog*, Apr 2025. <https://goodfire.ai/blog/under-the-hood-of-a-reasoning-model>.

645 Zhengfu He, Wentao Shu, Xuyang Ge, Lingjie Chen, Junxuan Wang, Yunhua Zhou, Frances Liu,
 646 Qipeng Guo, Xuanjing Huang, Zuxuan Wu, Yu-Gang Jiang, and Xipeng Qiu. Llama scope:
 647 Extracting millions of features from llama-3.1-8b with sparse autoencoders, 2024. URL <https://arxiv.org/abs/2410.20526>.

648 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 649 Steinhardt. Measuring massive multitask language understanding. In *International Conference on*
 650 *Learning Representations*, 2021. URL <https://openreview.net/forum?id=d7KBjmI3GmQ>.

651 Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse
 652 autoencoders find highly interpretable features in language models. In *The Twelfth International*
 653 *Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=F76bwRSLeK>.

654 Theo King, Zekun Wu, Adriano Koshiyama, Emre Kazim, and Philip Colin Treleaven. HEARTS: A
 655 holistic framework for explainable, sustainable and robust text stereotype detection. In *Neurips Safe*
 656 *Generative AI Workshop 2024*, 2024. URL <https://openreview.net/forum?id=arh91riKiQ>.

657 Connor Kissane, Robert Krzyzanowski, Arthur Conmy, and Neel Nanda. Saes (usually) transfer be-
 658 tween base and chat models. Alignment Forum, 2024. URL <https://www.alignmentforum.org/posts/fmwk6qxrpW8d4jvbd/saes-usually-transfer-between-base-and-chat-models>.

659 Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
 660 Varma, Janos Kramar, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
 661 autoencoders everywhere all at once on gemma 2. In Yonatan Belinkov, Najoung Kim, Jaap Jumelet,
 662 Hosein Mohebbi, Aaron Mueller, and Hanjie Chen (eds.), *Proceedings of the 7th BlackboxNLP*
 663 *Workshop: Analyzing and Interpreting Neural Networks for NLP*, pp. 278–300, Miami, Florida, US,
 664 November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.blackboxnlp-1.
 665 19. URL <https://aclanthology.org/2024.blackboxnlp-1.19>.

666 Jack Lindsey, Emmanuel Ameisen, Neel Nanda, Stepan Shabalin, Mateusz Piotrowski, Tom McGrath,
 667 Michael Hanna, Owen Lewis, Curt Tigges, Jack Merullo, Connor Watts, Gonçalo Paulo, Joshua
 668 Batson, Liv Gorton, Elana Simon, Max Loeffler, Callum McDougall, and Johnny Lin. The circuits
 669 research landscape: Results and perspectives. *Neuronpedia*, 2025. URL <https://neuronpedia.org/graph/info>.

670 Sheng Liu, Haotian Ye, Lei Xing, and James Zou. In-context vectors: Making in context learning
 671 more effective and controllable through latent space steering, 2024. URL <https://arxiv.org/abs/2311.06668>.

672 Jinqi Luo, Tianjiao Ding, Kwan Ho Ryan Chan, Darshan Thaker, Aditya Chattopadhyay, Chris
 673 Callison-Burch, and Rene Vidal. PaCE: Parsimonious concept engineering for large language
 674 models. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
 675 URL <https://openreview.net/forum?id=10Mht16T8R>.

676 Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language
 677 model representations of true/false datasets. In *First Conference on Language Modeling*, 2024.
 678 URL <https://openreview.net/forum?id=aaajyHYjjsk>.

679 Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
 680 Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.
 681 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=I4e82CIDxv>.

682 Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham Sakhaei,
 683 Nathaniel Li, Steven Basart, Bo Li, David Forsyth, and Dan Hendrycks. Harmbench: A stan-
 684 dardized evaluation framework for automated red teaming and robust refusal. In *Forty-first*
 685 *International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=f3TUipYU3U>.

686 Aashiq Muhamed, Jacopo Bonato, Mona T. Diab, and Virginia Smith. SAEs can improve unlearning:
 687 Dynamic sparse autoencoder guardrails for precision unlearning in LLMs. In *ICML 2025 Workshop*
 688 *on Reliable and Responsible Foundation Models*, 2025. URL <https://openreview.net/forum?id=8gF07ebDLT>.

689 Kyle O'Brien, David Majercak, Xavier Fernandes, Richard G. Edgar, Blake Bullwinkel, Jingya Chen,
 690 Harsha Nori, Dean Carignan, Eric Horvitz, and Forough Poursabzi-Sangdeh. Steering language
 691 model refusal with sparse autoencoders. In *ICML 2025 Workshop on Reliable and Responsible*
 692 *Foundation Models*, 2025. URL <https://openreview.net/forum?id=PMK1jdGQoc>.

702 Tuomas Oikarinen, Ge Yan, and Tsui-Wei Weng. Evaluating neuron explanations: A unified
 703 framework with sanity checks. In *Forty-second International Conference on Machine Learning*,
 704 2025. URL <https://openreview.net/forum?id=8unyWZ14mf>.

705 Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
 706 Zoom in: An introduction to circuits. *Distill*, 2020. doi: 10.23915/distill.00024.001.
 707 <https://distill.pub/2020/circuits/zoom-in>.

708 Kihou Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
 709 of large language models. In *Causal Representation Learning Workshop at NeurIPS 2023*, 2023.
 710 URL <https://openreview.net/forum?id=T0Po0Jg8cK>.

711 Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Thompson,
 712 Phu Mon Htut, and Samuel Bowman. BBQ: A hand-built bias benchmark for question
 713 answering. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Findings of
 714 the Association for Computational Linguistics: ACL 2022*, pp. 2086–2105, Dublin, Ireland, May
 715 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.165. URL
 716 <https://aclanthology.org/2022.findings-acl.165/>.

717 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
 718 Language models are unsupervised multitask learners. *OpenAI*, 2019. URL https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf. Accessed: 2024-11-15.

719 Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
 720 Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
 721 autoencoders, 2024. URL <https://arxiv.org/abs/2407.14435>.

722 Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Turner. Steering
 723 Ilama 2 via contrastive activation addition. In Lun-Wei Ku, Andre Martins, and Vivek
 724 Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational
 725 Linguistics (Volume 1: Long Papers)*, pp. 15504–15522, Bangkok, Thailand, August
 726 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.828. URL
 727 <https://aclanthology.org/2024.acl-long.828/>.

728 Paul Röttger, Hannah Kirk, Bertie Vidgen, Giuseppe Attanasio, Federico Bianchi, and Dirk Hovy.
 729 XSTest: A test suite for identifying exaggerated safety behaviours in large language models.
 730 In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference
 731 of the North American Chapter of the Association for Computational Linguistics: Human
 732 Language Technologies (Volume 1: Long Papers)*, pp. 5377–5400, Mexico City, Mexico, June
 733 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.301. URL
 734 <https://aclanthology.org/2024.naacl-long.301/>.

735 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 736 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical
 737 reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

738 Lewis Smith, Senthooran Rajamanoharan, Arthur Conmy, Callum McDougall, Tom Lieberum,
 739 János Kramár, Rohin Shah, and Neel Nanda. Negative results for saes on downstream tasks
 740 and deprioritising sae research. <https://www.lesswrong.com/posts/4uXCAJNuPKtKBsi28/sae-progress-update-2-draft>, 2025. DeepMind Mechanistic Interpretability Team Progress
 741 Update #2.

742 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
 743 Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
 744 In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and Steven Bethard (eds.),
 745 *Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing*, pp.
 746 1631–1642, Seattle, Washington, USA, October 2013. Association for Computational Linguistics.
 747 URL <https://aclanthology.org/D13-1170/>.

748 Samuel Soo, Wesley Teng, Chandrasekaran Balaganesh, Tan Guoxian, and Ming YAN. Interpretable
 749 steering of large language models with feature guided activation additions. In *ICLR 2025 Workshop*

756 *on Building Trust in Language Models and Applications*, 2025. URL [https://openreview.net/](https://openreview.net/forum?id=swRxS7s4rB)
 757 [forum?id=swRxS7s4rB](https://openreview.net/forum?id=swRxS7s4rB).

758

759 Alessandro Stolfo, Ben Peng Wu, and Mrinmaya Sachan. Antipodal pairing and mechanistic signals in
 760 dense sae latents. In *ICLR 2025 Workshop on Building Trust in Language Models and Applications*,
 761 2025. URL <https://openreview.net/forum?id=Z1x6A1EoB0>.

762 Nishant Subramani, Nivedita Suresh, and Matthew Peters. Extracting latent steering vectors from
 763 pretrained language models. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.),
 764 *Findings of the Association for Computational Linguistics: ACL 2022*, pp. 566–581, Dublin, Ireland,
 765 May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.48.
 766 URL <https://aclanthology.org/2022.findings-acl.48/>.

767 Alan Sun. Circuit stability characterizes language model generalization. In Wanxiang Che, Joyce
 768 Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual*
 769 *Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 9025–9040,
 770 Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0.
 771 doi: 10.18653/v1/2025.acl-long.442. URL <https://aclanthology.org/2025.acl-long.442/>.

772

773 Daniel Chee Hian Tan, David Chanin, Aengus Lynch, Brooks Paige, Dimitrios Kanoulas, Adrià
 774 Garriga-Alonso, and Robert Kirk. Analysing the generalisation and reliability of steering vectors.
 775 In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL
 776 <https://openreview.net/forum?id=v8X70gTodR>.

777 Gemma Team. Gemma 2: Improving open language models at a practical size, 2024a. URL
 778 <https://arxiv.org/abs/2408.00118>.

779

780 Llama Team. The llama 3 herd of models, 2024b. URL <https://arxiv.org/abs/2407.21783>.

781 Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam
 782 Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L Turner,
 783 Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers, Edward Rees,
 784 Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan. Scaling monosemanticity:
 785 Extracting interpretable features from claude 3 sonnet. *Transformer Circuits Thread*, 2024.
 786 URL <https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html>.

787

788 Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J Vazquez, Ulisse Mini,
 789 and Monte MacDiarmid. Steering language models with activation engineering, 2025. URL
 790 <https://openreview.net/forum?id=2XBPdPIcFK>.

791

792 Xu Wang, Zihao Li, Benyou Wang, Yan Hu, and Difan Zou. Model unlearning via sparse autoencoder
 793 subspace guided projections. In *ICML 2025 Workshop on Machine Unlearning for Generative AI*,
 794 2025. URL <https://openreview.net/forum?id=M1lqM98o9I>.

795

796 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 797 Ren, Aaran Arulraj, Xuan He, Ziyian Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
 798 Fan, Xiang Yue, and Wenhui Chen. MMLU-pro: A more robust and challenging multi-task language
 799 understanding benchmark. In *The Thirty-eighth Conference on Neural Information Processing
 800 Systems Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=y10DM6R2r3>.

801

802 Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
 803 John Schulman, and William Fedus. Measuring short-form factuality in large language models,
 804 2024. URL <https://openai.com/index/introducing-simpleqa/>.

805

806 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 807 language models with attention sinks. In *The Twelfth International Conference on Learning
 808 Representations*, 2024. URL <https://openreview.net/forum?id=NG7sS51zVF>.

809

810 Yu Zhao, Alessio Devoto, Giwon Hong, Xiaotang Du, Aryo Pradipta Gema, Hongru Wang, Xuanli
 811 He, Kam-Fai Wong, and Pasquale Minervini. Steering knowledge selection behaviours in LLMs
 812 via SAE-based representation engineering. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.),
 813 *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association*

810 *for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp.
811 5117–5136, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics.
812 ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.264. URL <https://aclanthology.org/2025.naacl-long.264/>.

813
814 Dylan Zhou, Kunal Patil, Yifan Sun, Karthik Lakshmanan, Senthooran Rajamanoharan, and Arthur
815 Conmy. LLM neurosurgeon: Targeted knowledge removal in LLMs using sparse autoencoders.
816 In *ICLR 2025 Workshop on Building Trust in Language Models and Applications*, 2025. URL
817 <https://openreview.net/forum?id=aeQeX1G2Pw>.

818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 **A APPENDIX**865 **A.1 STREAMING CORRELATION COMPUTATION**866 To handle the computational challenges of large SAE feature dictionaries (typically 10^4 - 10^5 features),
867 a streaming correlation accumulator is implemented that maintains $O(1)$ memory complexity:
868869 **Algorithm 1** Streaming Correlation Computation

870 Initialize accumulators:

871
$$\sum x_i = 0, \sum x_i^2 = 0, \sum x_i y_i = 0, \sum y_i = 0, \sum y_i^2 = 0, n = 0$$

872 **for** each batch $(\mathbf{X}_{\text{batch}}, \mathbf{y}_{\text{batch}})$ **do**
873 Update running sums for each feature dimension
874 $n \leftarrow n + |\mathbf{y}_{\text{batch}}|$
875 **end for**876 Compute correlations for each feature i :

877
$$r_i = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{\sqrt{(n \sum x_i^2 - (\sum x_i)^2)(n \sum y_i^2 - (\sum y_i)^2)}}$$

878 This computation maintains $O(1)$ space complexity with respect to sample size, while time complexity
879 is $O(N)$ for N samples, and $O(LD)$ for fixed layer count L and SAE latent dimension D .
880881 **A.2 FORMAL DEFINITION OF CORRSTEER VARIANTS**882 Given n samples with SAE feature activations z_i^ℓ at layer $\ell \in \{1, \dots, L\}$ and feature index $i \in \{1, \dots, D\}$, and corresponding correctness scores $y \in \mathbb{R}^n$, let r_i^ℓ denote the Pearson correlation:

883
$$r_i^\ell = \frac{\text{Cov}(z_i^\ell, y)}{\sqrt{\text{Var}(z_i^\ell) \cdot \text{Var}(y)}} \quad (5)$$

884 The three automated feature selection strategies are defined as follows:

885 **CorrSteer-S (Single):** Selects the globally most correlated feature across all layers:

886
$$\mathcal{F}_S = \left\{ \arg \max_{(\ell, i)} r_i^\ell : r_i^\ell > 0 \right\} \quad (6)$$

887 **CorrSteer-A (All layers):** Selects the top correlated feature from each layer:

888
$$\mathcal{F}_A = \left\{ (\ell, i_\ell^*) : i_\ell^* = \arg \max_i r_i^\ell, r_{i_\ell^*}^\ell > 0, \forall \ell \in \{1, \dots, L\} \right\} \quad (7)$$

889 **CorrSteer-P (Pruned):** Starts with \mathcal{F}_A and applies validation-based pruning:

890
$$\mathcal{F}_P = \{(\ell, i) \in \mathcal{F}_A : \text{Acc}_{\text{val}}(\mathcal{F}_{\{(\ell, i)\}}) > \text{Acc}_{\text{val}}(\emptyset)\} \quad (8)$$

891 where $\text{Acc}_{\text{val}}(\mathcal{F})$ denotes validation accuracy when steering with feature set \mathcal{F} , and \emptyset represents the
892 non-steered baseline.893 At inference time, for the selected feature set $\mathcal{F} \in \{\mathcal{F}_S, \mathcal{F}_A, \mathcal{F}_P\}$, the steering at layer ℓ and
894 generation position $t \geq n$ is:

895
$$\mathbf{x}_t^\ell = \mathbf{x}_t^\ell + \sum_{(\ell', i) \in \mathcal{F}, \ell' = \ell} c_i^\ell \cdot \mathbf{W}_{\text{dec}}^\ell[:, i] \quad (9)$$

896 where $c_i^\ell = \frac{1}{|\{j: y_j > 0\}|} \sum_{j: y_j > 0} z_{i,j}^\ell$ is the steering coefficient (mean activation over positive outcomes)
897 and $\mathbf{W}_{\text{dec}}^\ell$ is the SAE decoder weight matrix at layer ℓ .

918 A.3 IMPLEMENTATION DETAILS
919920 **Feature Extraction:** Feature selection employs 4,000 samples across all datasets. For fair comparison,
921 the same samples are used for training fine-tuning models. When datasets contain fewer than
922 4,000 samples, we use all available data. For datasets without predefined train/validation/test splits,
923 we allocate 27% for training, 3% for validation, and 70% for testing. GSM8K uses 1,000 samples for
924 feature selection with 50 samples reserved for validation.
925926 **Feature Steering:** Steering interventions are applied at the pre-execution stage of each transformer
927 layer. The first layer is excluded from steering as the token embedding layer predominantly contains
928 spurious correlations unrelated to the target tasks.
929930 **Evaluation Metrics:** For multiple-choice tasks (MMLU, MMLU-Pro, BBQ), exact match accuracy
931 is used under zero-shot evaluation. All results are reported as mean \pm standard deviation across
932 multiple random seeds for statistical robustness: 5 seeds for most tasks, 3 seeds for GSM8K. For
933 Gemma-2 2B, the non-steered MMLU performance (52.23%) is lower than the Gemma-2 2B-IT
934 5-shot result (56.1%) reported in the original Gemma paper due to the zero-shot setting and lack of
935 in-context learning examples. For safety benchmarks, 1 - ASR (Attack Success Rate) is computed
936 using a small refusal-detection language model. SimpleQA performance is measured using a small
937 STS language model to match the expected answer, with more details in [Appendix A.4](#).
938939 A standard train-validation-test split is used for the CorrSteer pipeline. The training dataset is used to
940 extract correlated SAE features, and the validation dataset is used to filter the most correlated features.
941 The test dataset is used to evaluate the performance of the CorrSteer pipeline. Detailed configurations
942 are provided in [Appendix A.3](#).
943944 **Fine-tuning** Fine-tuning hyperparameters are determined through empirical experimentation across
945 tasks and dataset sizes. Fine-tuning is performed using AdamW optimizer with learning rate 1e-5
946 (reduced to 5e-6 for small datasets <2000 samples), weight decay 0.01, and gradient clipping at norm
947 1.0. The training schedule includes 3% warmup steps followed by cosine annealing decay. Training
948 proceeds for one epoch with 4,000 samples, using exact target supervision where prompt tokens are
949 masked with -100 labels and only target spans contribute to the loss.
950951 A.4 GENERATION BENCHMARK RESULTS
952953 **Evaluation Models:** Two specialized models are employed for evaluation. The DistillRoBERTa
954 model¹ is used to identify the rejection of harmful requests, while the ModernBERT STS model² is
955 used for matching generated answers against expected responses.
956957 A.5 ADDITIONAL RESULTS
958959 Table 5: Performance comparison between non-steered model and CorrSteer variants across BBQ,
960 MMLU, MMLU-Pro, HarmBench, SimpleQA, and XSTest on LLaMA-3.1 8B. Results show accuracy
961 (%) under zero-shot evaluation (single-shot for BBQ).
962

Task	Non-steered	Corrsteer-S	CorrSteer-P	CorrSteer-A
BBQ Ambig	83.97	83.98	87.10	86.83
BBQ Disambig	90.07	90.13	90.33	90.30
HarmBench	0.71	0.36	15.71	17.86
MMLU	61.41	61.51	61.73	61.71
MMLU-Pro	32.13	32.55	35.08	34.71
SimpleQA	0.43	0.51	0.43	0.43
XSTest	61.27	62.22	62.22	58.41

963 ¹<https://huggingface.co/protectai/distilroberta-base-rejection-v1>
964965 ²<https://huggingface.co/dleemiller/ModernCE-base-sts>
966

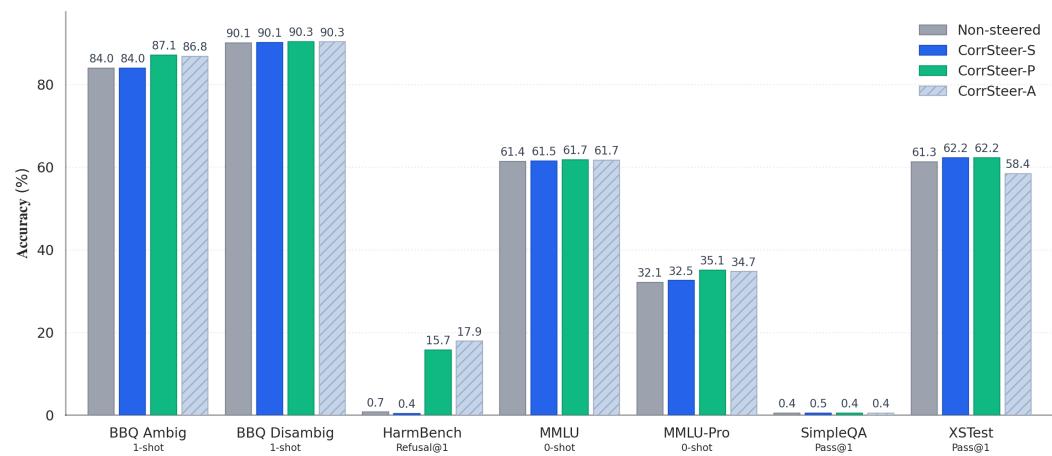


Figure 5: Benchmark performance of CorrSteer variants compared with the non-steered model on LLaMA-3.1 8B.

Task-Specific Analysis *MMLU*: The global method selects features related to structured output formatting, addressing Gemma-2 2B’s tendency to generate tokens outside the required A/B/C/D options. Post-steering, this hallucination issue is largely resolved.

MMLU-Pro: A similar issue occurs more severely due to the 10 options in MMLU-Pro. Constrained decoding, which samples tokens exclusively from available options, is applied to improve the model’s authentic capability, resulting in performance that remains higher than the non-steered model, with CorrSteer-A achieving maximum performance.

BBQ: Similar improvements in format adherence are observed, with selected features promoting appropriate response structure.

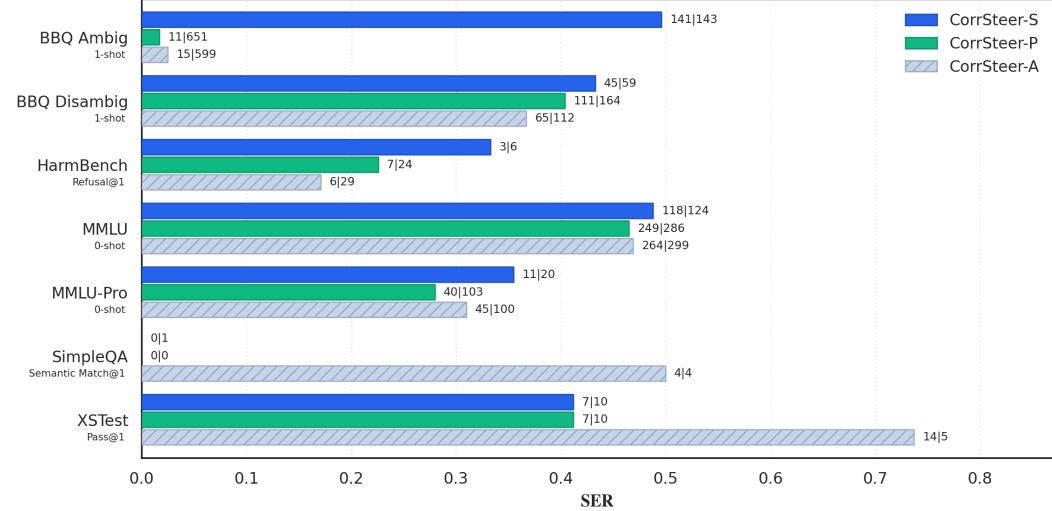


Figure 6: SER comparison across datasets between different CorrSteer variants on LLaMA-3.1 8B.

Feature Frequency Analysis We observe a strong correlation between feature activation frequency and CorrSteer’s performance improvements across tasks. As demonstrated in Figure 7, HarmBench exhibits consistently high activation frequencies across all layers, while SimpleQA shows frequencies approaching zero.

This pattern contrasts with the typical sparse activation nature of SAE features, where low frequency activation (below 5%) is considered normal and interpretable, while higher frequencies typically indicate non-interpretable (Stolfo et al., 2025; Smith et al., 2025). However, discovering task-specific features with near-100% activation frequency suggests these features are deeply related to the task

1026

1027 Table 6: Side Effect Ratio (SER) analysis for CorrSteer variants on LLaMA-3.1 8B across different
1028 benchmarks. SER values closer to 0 indicate better safety performance.

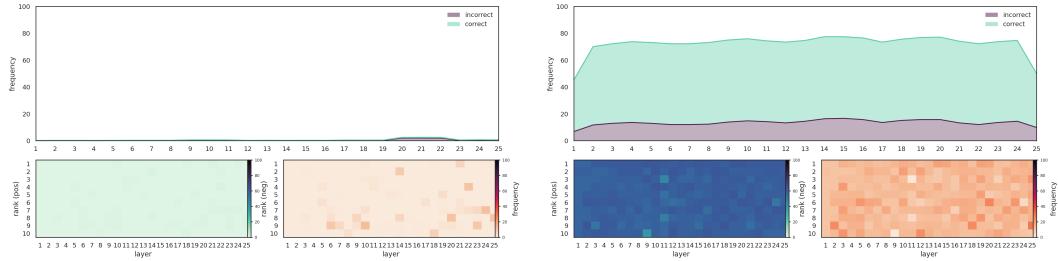
1029 1030	Task	Corrsteer-S			CorrSteer-P			CorrSteer-A		
		SER	neg	pos	SER	neg	pos	SER	neg	pos
1031	BBQ Ambig	0.496	141	143	0.017	11	651	0.025	15	599
1032	BBQ Disambig	0.433	45	59	0.404	111	164	0.367	65	112
1033	HarmBench	0.333	3	6	0.226	7	24	0.171	6	29
1034	MMLU	0.488	118	124	0.465	249	286	0.469	264	299
1035	MMLU-Pro	0.355	11	20	0.280	40	103	0.310	45	100
1036	SimpleQA	0.000	0	1	-	0	0	0.500	4	4
1037	XSTest	0.412	7	10	0.412	7	10	0.737	14	5

1037

1038

1039 requirements, resulting in substantial performance improvements for such tasks. Even for tasks with
1040 lower feature frequencies, CorrSteer maintains its advantage by preserving low SER values.

1041



1050

1051 Figure 7: Frequency of activation samples across layers of Gemma-2 2B for SimpleQA (left)
1052 and HarmBench (right) tasks.

1053

1054

A.6 ADDITIONAL ABLATION STUDIES

1055

1056

1057

1058

1059

1060 Table 7: Performance comparison between raw activation steering and SAE-decoded steering on
1061 Gemma-2 2B. Decoding adds SAE decoder bias term for the first layer, while Decoding-A adds
1062 multi-layer feature directions as CorrSteer-A.

1063

Task	Non-steered	Raw Activation	Decoding-S	Decoding-A	CorrSteer-A
MMLU	52.23	49.85	55.38	54.38	56.32
MMLU-Pro	30.30	27.17	29.79	29.93	31.00
BBQ Disambig	75.42	75.71	77.00	75.03	76.53
BBQ Ambig	59.10	58.42	54.00	55.76	62.08

1064

1065

1066

1067

1068 **Raw Activation Steering** To validate the effectiveness of SAE-based sparse feature selection, we
1069 compare steering performance using raw residual stream activations. The results demonstrate a clear
1070 performance hierarchy: CorrSteer-A > SAE Decoding > Raw Activation across all evaluated tasks,
1071 which is explainable by Superposition Hypothesis (Elhage et al., 2022). One exception occurred in
1072 BBQ Disambig, where Decoding-S shows better performance than CorrSteer-A. However, Decoding-S
1073 failed to show robustness across benchmarks, frequently degrading performance while CorrSteer-A
1074 shows consistent performance across all tasks.

1075

1076

1077

1078

1079

1075 **SAE Decoder Bias** Adding SAE decoder bias terms alongside selected features improves per-
1076 formance only at single-token generation tasks (BBQ, MMLU, MMLU-Pro). This effect appears
1077 related to attention sink mechanisms (Xiao et al., 2024), where increased residual stream norms
1078 amplify attention patterns in subsequent layers, acting similar to "response prefix" (Hazra et al., 2025).
1079 For constrained generation tasks, this norm amplification reduces hallucination by strengthening
adherence to output format constraints. However, this enhancement is incompatible with multi-layer

1080 steering and diminishes when applied across multiple layers or tokens, with excessive application
 1081 potentially causing model collapse.
 1082

1083 **A.7 TEXT CLASSIFICATION VALIDATION**

1084 To validate the effectiveness of correlation-based feature selection, we conduct controlled experiments
 1085 on text classification tasks where ground truth labels provide clear supervision signals. The experi-
 1086 ments utilize GPT-2 (Radford et al., 2019) with publicly available SAEs from Bloom et al. (Bloom,
 1087 2024) on the bias-focused text classification dataset EMGSD (King et al., 2024).

1088 For each bias category, we extract the most correlated features using max-pooling over all text tokens,
 1089 then apply steering by either adding positively correlated features or subtracting negatively correlated
 1090 features. Steering effectiveness is evaluated using the same classifier employed in the original dataset.
 1091

1092
 1093
 1094
 1095 **Table 8: Bias steering effectiveness across different demographic categories on EMGSD dataset.**
 1096 Mitigation reduces bias scores, while amplification increases them.

Category	Mitigation (Fairness \uparrow)		Amplification (Bias \uparrow)	
	Non-steered	CorrSteer	Biased	CorrSteer
Gender	0.177	0.616	0.897	0.922
LGBTQ+	0.091	0.561	0.941	0.882
Nationality	0.125	0.732	0.937	0.945
Profession	0.128	0.625	0.890	0.921
Race	0.308	0.769	0.846	0.846
Religion	0.109	0.655	0.945	0.928

1107 Results demonstrate that correlation-selected features provide effective steering control across all
 1108 demographic categories (Table 8). For mitigation, CorrSteer surpasses the non-steered model across
 1109 categories by improving fairness scores. For amplification, CorrSteer generally increases bias relative
 1110 to the biased non-steered model, with the LGBTQ+ row as an exception to be audited.
 1111

1112 **A.8 FRAMEWORK IMPLICATIONS**

1113 CorrSteer leverages generation-time activations for multi-token, multi-layer SAE-based steering, and
 1114 our experiments are enabled by Gemma Scope (Lieberum et al., 2024) and LLaMA Scope (He et al.,
 1115 2024), the only open releases providing SAEs across all residual stream layers.

1116 The proposed framework demonstrates the practical utility of SAE in real-world LLM inference,
 1117 addressing critical concerns such as safe reasoning, bias mitigation, and resistance to jailbreaking.
 1118 This research demonstrates that SAE-based control mechanisms offer a promising direction for
 1119 both understanding and improving LLM behavior. The framework’s ability to operate through an
 1120 interpretable interface while maintaining or improving model performance suggests a concrete path
 1121 toward safer, more transparent AI.
 1122

1123 **A.9 COEFFICIENT AND CORRELATION SCALE DIFFERENCES BETWEEN MODELS**

1124 The observed differences in coefficient and correlation scales between Gemma-2 2B and LLaMA-3.1
 1125 8B stem from two primary factors:

1126 **SAE Architecture Differences:** LLaMA-Scope employs TopK SAEs (Gao et al., 2024), which
 1127 enforce fixed sparsity through top-k selection, while Gemma-Scope uses JumpReLU SAEs with
 1128 adaptive thresholding.

1129 **Model and SAE Capacity Differences:** The models differ in base model size (2B vs 8B parameters)
 1130 and SAE dictionary capacity (16K vs 32K features).

1134
1135

A.10 LAYER-WISE CORRELATION PATTERNS

1136
1137
1138
1139
1140
1141
1142

Analysis of per-layer correlation values reveals that task-specific features emerge progressively across network depth. For example, Gemma-2 2B on MMLU exhibits correlation increases from 0.140 (Layer 1) to 0.336 (Layer 25), while LLaMA-3.1 8B on BBQ Disambig shows growth from 0.086 (Layer 1) to 0.297 (Layer 20). This hierarchical emergence suggests that later transformer layers encode more task-relevant representations. The trend is attenuated in tasks with lower overall steering effectiveness (SimpleQA, XSTest), where feature-outcome correlations remain weak across all layers. Complete layer-wise correlation values and feature lists are provided below.

1143
1144

A.11 COMPLETE FEATURE LISTS

1145
1146
1147
1148

This section presents the complete feature lists for each task, showing the top-1 features aggregated from all layers. Each feature is labeled with the format $L\{layer\}/\{index\}$ to identify its layer and index position. Features selected by CorrSteer-P after pruning are highlighted in **bold**.

1149
1150
1151
1152

Each feature entry includes the feature description along with its coefficient and correlation value. SAE feature descriptions are obtained through the Neuronpedia API (<https://www.neuronpedia.org/>), providing automated semantic interpretations of selected features. Feature indices are hyper-linked to their corresponding Neuronpedia pages for detailed analysis.

1153
1154
1155
1156
1157

Feature descriptions that are well-aligned with the target task are highlighted in **bold**, and the highest correlations for each task are also emphasized in **bold**. Following each layer's highest correlated feature, we include additional relevant features listed below. As discussed in [Appendix A.10](#), examining these correlation values across layers reveals that task-specific features generally emerge more strongly in later layers.

1158
1159

A.11.1 GEMMA-2B

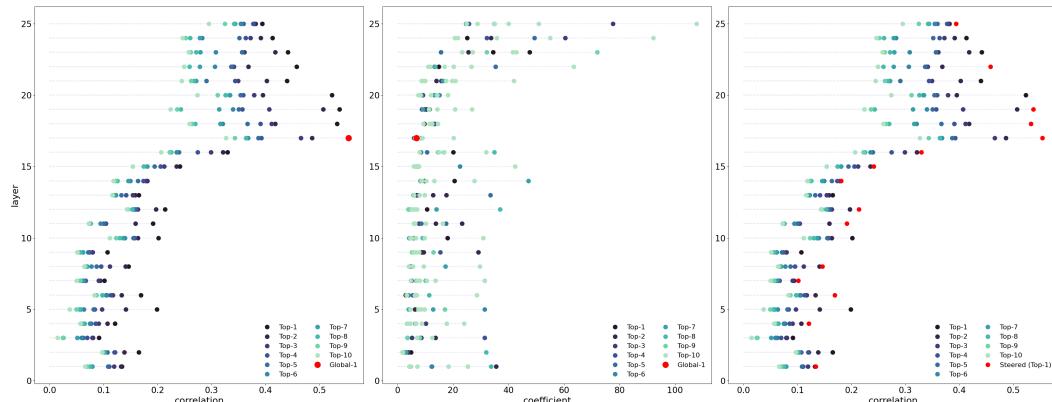
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
11731174
1175
1176

Figure 8: Top correlated features with selected features from CorrSteer-P with BBQ ambig on coefficient in each layer of Gemma-2 2B.

1177

BBQ (Ambiguous)

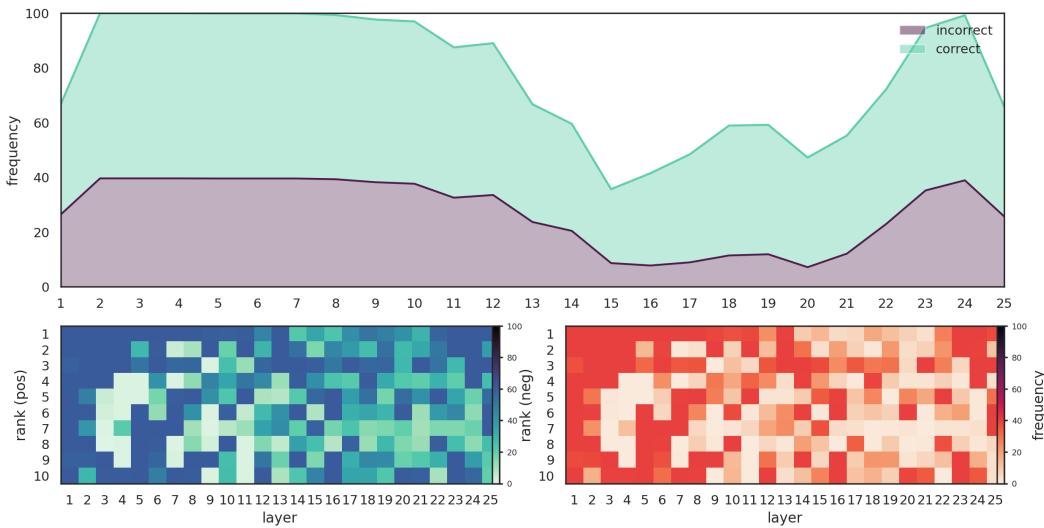
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

- [L1/6088](#) specific formatting or structural elements within text, such as timestamps and code (coeff: 2.280, corr: 0.134)
- [L2/15089](#) key actions and processes related to achievements and collaboration (coeff: 4.898, corr: 0.166)
- [L3/6151](#) references to statistical or numerical data in research contexts (coeff: 3.537, corr: 0.091)
- [L4/11047](#) certain types of mathematical or programming syntax (coeff: 2.854, corr: 0.121)
- [L5/7502](#) expressions of honesty and self-awareness in discourse (coeff: 3.117, corr: 0.199)
- [L6/324](#) structured sentences that present facts, warnings, or errors, often with an emphasis on important details (coeff: 2.886, corr: 0.169)

- L7/4487 the presence of detailed structured elements within a document, such as headings or separators in a legal or formal layout (coeff: 4.996, corr: 0.102)
- L8/4669 special tokens or specific formatting in the text (coeff: 4.378, corr: 0.147)
- L9/1435 elements related to copyright and licensing information (coeff: 8.737, corr: 0.107)
- L10/4557 interactions involving guessing or determining the correctness of information (coeff: 4.246, corr: 0.202)
- L11/6144 return statements in code (coeff: 4.347, corr: 0.192)
- L12/15862 punctuation marks and formatting elements in the text (coeff: 2.718, corr: 0.214)
- L13/4379 punctuation symbols and their frequency (coeff: 6.779, corr: 0.165)
- L14/12922 dialogue or conversational exchanges involving questioning and responses (coeff: 1.754, corr: 0.181)
- L15/12813 medical terms related to respiratory health and conditions (coeff: 3.537, corr: 0.242)
- L16/9006 declarations regarding conflicts of interest and funding in research publications (coeff: 2.606, corr: 0.330)
- L17/11021 phrases related to scientific research and findings (coeff: 6.777, corr: **0.554**)
- L18/14447 references to medical data and statistics (coeff: 9.667, corr: 0.533)
- L19/11289 assignment and return statements in programming contexts (coeff: 10.429, corr: 0.538)
- L20/2040 occurrences of logical values and conditions in programming or data handling contexts (coeff: 9.166, corr: 0.523)
- L21/8433 keywords related to programming functions and their definitions (coeff: 5.983, corr: 0.440)
- L22/10377 code snippets that include assignments and return statements (coeff: 14.919, corr: 0.458)
- L23/6394 structured data or code-like formats (coeff: 34.482, corr: 0.442)
- L24/14051 references to education systems and their impact on health initiatives (coeff: 25.098, corr: 0.413)
- L25/12534 references to emotional states or descriptions of personal experiences (coeff: 18.414, corr: 0.394)

1216 *Additional relevant features:*

- L8/8123 questions that ask for truthfulness or correctness regarding options or statements (coeff: 3.725, corr: -0.133)
- L17/9134 choice-related phrases and expressions of preference (coeff: 2.379, corr: -0.451)
- L19/15745 phrases related to decision-making and choice, particularly in the context of parenting and social interactions (coeff: 9.740, corr: -0.464)



1241 Figure 9: Top correlated features with BBQ ambig on frequency in each layer of Gemma-2 2B.

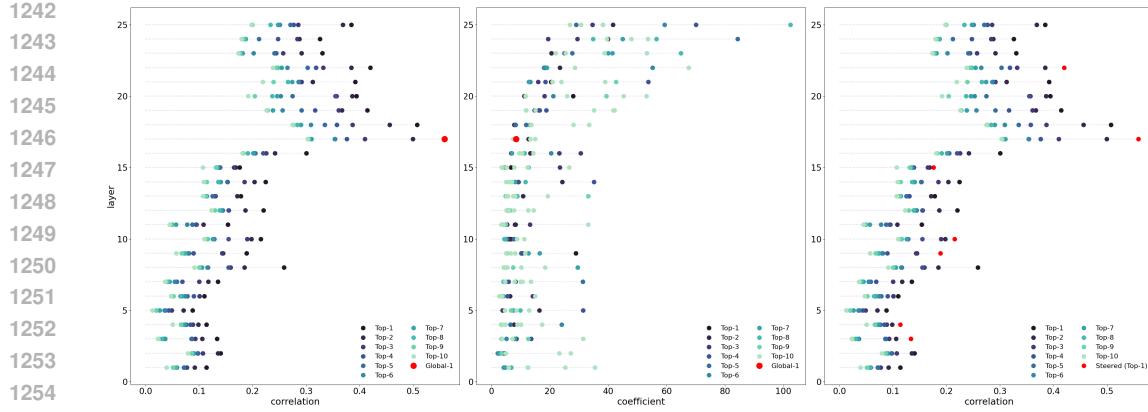


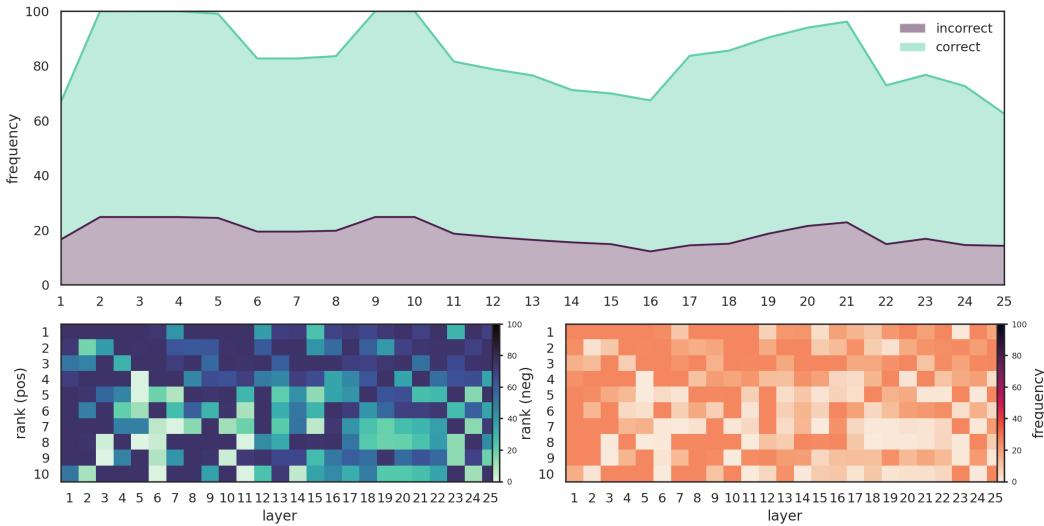
Figure 10: Top correlated features with selected features from CorrSteer-P with BBQ disambig on coefficient in each layer of Gemma-2 2B.

BBQ (Disambiguous)

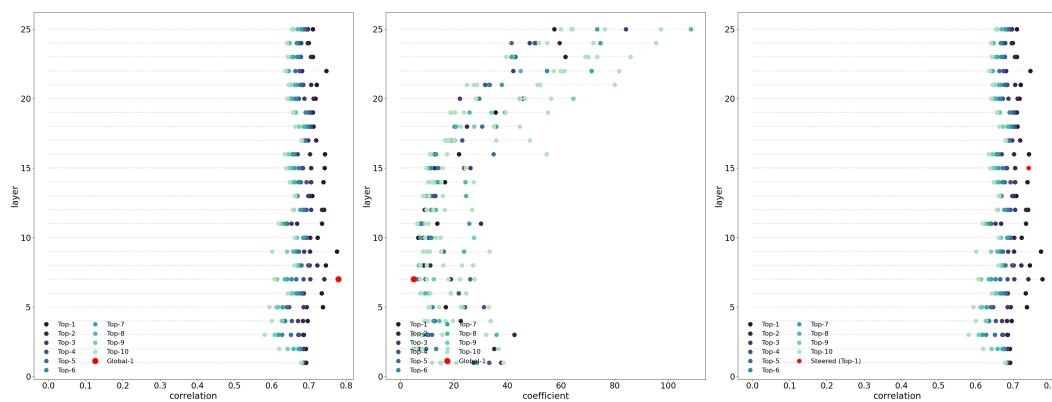
- [L1/7001](#) code structure and elements in programming, particularly related to class and variable definitions (coeff: 2.126, corr: 0.114)
- [L2/8432](#) HTML and JavaScript code related to the Bootstrap framework (coeff: 2.418, corr: 0.140)
- [L3/10179](#) terms related to health and medical supplements (coeff: 2.383, corr: 0.134)
- [L4/3444](#) various types of headers, specifically those that denote responses and results within the context of exchanges or interactions (coeff: 2.192, corr: 0.114)
- [L5/697](#) terms related to price dynamics and economic relationships (coeff: 3.766, corr: 0.088)
- [L6/2491](#) references to sources or citations in a document (coeff: 2.618, corr: 0.110)
- [L7/6269](#) references to visual elements such as figures and tables (coeff: 1.293, corr: 0.135)
- [L8/5927](#) mathematical examples and notations (coeff: 3.347, corr: 0.259)
- [L9/7854](#) structures related to the declaration and manipulation of result variables in a programming context (coeff: 10.475, corr: 0.189)
- [L10/15705](#) references to file operations and data management in code (coeff: 6.145, corr: 0.215)
- [L11/13926](#) mathematical expressions and calculations (coeff: 8.203, corr: 0.154)
- [L12/1085](#) references to court cases and legal statutes (coeff: 1.839, corr: 0.220)
- [L13/536](#) technical details related to manufacturing processes (coeff: 4.417, corr: 0.178)
- [L14/10612](#) structured data or code snippets related to databases (coeff: 5.030, corr: 0.225)
- [L15/2822](#) structured data formats or code snippets related to programming (coeff: 1.632, corr: 0.176)
- [L16/6602](#) the presence of specific numerical or coding patterns in data (coeff: 6.773, corr: 0.300)
- [L17/5137](#) mathematical symbols and functions related to field theories (coeff: 8.483, corr: 0.559)
- [L18/3178](#) code or programming-related elements (coeff: 7.851, corr: 0.507)
- [L19/11641](#) technical components or elements in code (coeff: 16.336, corr: 0.414)
- [L20/12748](#) **structured data representations and their attributes** (coeff: 28.025, corr: 0.394)
- [L21/14337](#) code-related keywords and method definitions in programming contexts (coeff: 20.453, corr: 0.392)
- [L22/13921](#) elements related to database structure and definitions (coeff: 18.510, corr: 0.420)
- [L23/12349](#) technical terms related to software or code management (coeff: 5.893, corr: 0.331)
- [L24/16355](#) definitions and mathematical notation in text (coeff: 39.910, corr: 0.326)
- [L25/4307](#) occurrences of programming syntax related to object-oriented structures (coeff: 19.460, corr: 0.384)

Additional relevant features:

1296
 1297 • [L18/1127](#) references to gender and associated options/choices in forms (coeff: 4.813, corr: 0.207)
 1298 • [L19/15745](#) phrases related to decision-making and choice, particularly in the context of 1299 parenting and social interactions (coeff: 11.875, corr: 0.226)
 1300 • [L23/12048](#) terms related to racism and social injustice (coeff: 2.661, corr: 0.147)



1313 Figure 11: Top correlated features with BBQ disambig on frequency in each layer of Gemma-2 2B.



1338 Figure 12: Top correlated features with selected features from CorrSteer-P with HarmBench on 1339 coefficient in each layer of Gemma-2 2B.

HarmBench

1342 • [L1/9572](#) occurrences of the semicolon character (coeff: 5.206, corr: 0.692)
 1343 • [L2/6712](#) references to worship and its related symbols or icons (coeff: 5.699, corr: 0.692)
 1344 • [L3/16207](#) syntax elements and formatting in code or mathematical expressions (coeff: 2.583, 1345 corr: 0.686)
 1346 • [L4/3109](#) forms of the verb "to be" and its variations (coeff: 5.891, corr: 0.696)
 1347 • [L5/11099](#) sentences that include personal affirmations or declarations of identity (coeff: 16.934, corr: 0.737)
 1348 • [L6/12241](#) instances of the verb "to be" in various forms and their contexts (coeff: 7.338, 1349 corr: 0.735)

1350

- **L7/11722 phrases related to legal terms and the rejection of arguments in court cases** (coeff: 5.035, corr: **0.779**)
- **L8/8642** expressions of self-identity and subjective experience (coeff: 8.729, corr: 0.745)
- **L9/9298 strongly negative or dismissive opinions about claims and arguments** (coeff: 7.525, corr: 0.775)
- **L10/3037** references to legal issues and compliance (coeff: 6.667, corr: 0.723)
- **L11/6905** statements of identity and self-description (coeff: 13.810, corr: 0.735)
- **L12/12039** phrases related to providing assistance and support (coeff: 5.253, corr: 0.741)
- **L13/6715** text that discusses accountability and the need for forgiveness (coeff: 6.992, corr: 0.709)
- **L14/2949** statements and phrases related to political criticism and condemnation (coeff: 16.620, corr: 0.739)
- **L15/1570** judgments regarding moral and ethical standards related to exploitation and human rights issues (coeff: 23.824, corr: 0.742)
- **L16/5113** expressions of personal identity and emotional states (coeff: 21.832, corr: 0.743)
- **L17/5887** references to tools and functional capabilities related to programming or software development (coeff: 11.389, corr: 0.720)
- **L18/1411** negative statements or denials (coeff: 20.537, corr: 0.712)
- **L19/324** phrases related to legal procedures and considerations (coeff: 35.610, corr: 0.710)
- **L20/5192** questions that seek clarification or challenge assumptions (coeff: 45.662, corr: 0.718)
- **L21/7129** negative sentiments and expressions of doubt or denial (coeff: 33.225, corr: 0.721)
- **L22/3311** references to food and culinary experiences (coeff: 19.000, corr: 0.746)
- **L23/11246** instances of strong negative sentiment or rejection (coeff: 61.642, corr: 0.711)
- **L24/12773** first-person pronouns and references to personal experiences or actions (coeff: 50.332, corr: 0.699)
- **L25/3912 negative sentiments or refusals** (coeff: 57.431, corr: 0.711)

1376

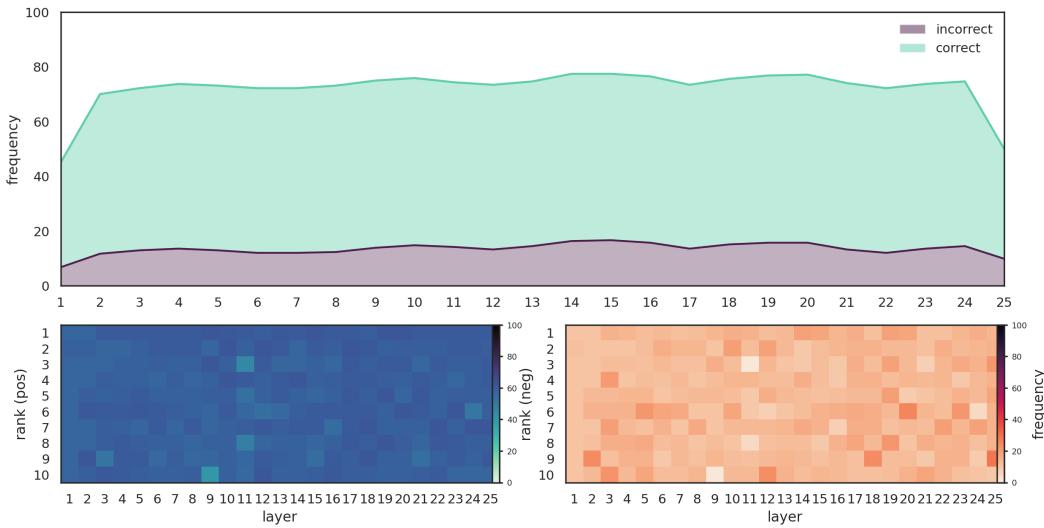


Figure 13: Top correlated features with HarmBench on frequency in each layer of Gemma-2 2B.

MMLU

1399

- **L1/13714** colons and semicolons used in lists or programming syntax (coeff: 0.403, corr: 0.140)
- **L2/6273** specific medical terminology and its implications (coeff: 1.548, corr: 0.175)
- **L3/12378** programming-related elements and commands (coeff: 1.094, corr: 0.164)
- **L4/11047** certain types of mathematical or programming syntax (coeff: 2.944, corr: 0.225)
- **L5/8581** phrases that indicate research findings or results (coeff: 0.077, corr: 0.115)

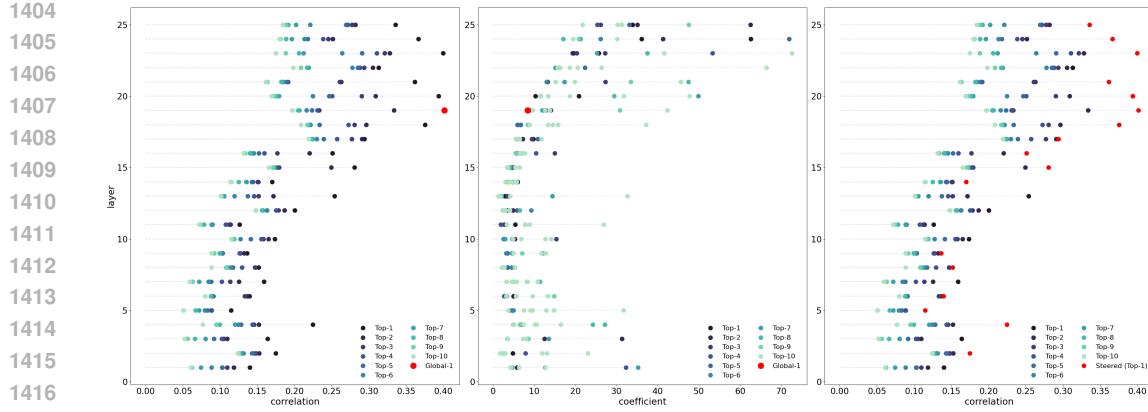


Figure 14: Top correlated features with selected features from CorrSteer-P with MMLU on coefficient in each layer of Gemma-2 2B.

- L6/5275 sentences expressing doubt or conditionality in arguments (coeff: 4.939, corr: 0.140)
- L7/14726 periods and other punctuation marks that signify sentence endings or significant separations in text (coeff: 2.532, corr: 0.159)
- L8/15039 terms related to research methodologies and experimental design (coeff: 0.309, corr: 0.152)
- L9/15654 variations of the word "correct" in various contexts (coeff: 0.414, corr: 0.136)
- L10/11729 coding attributes and properties related to light types in a 3D programming context (coeff: 2.919, corr: 0.174)
- L11/13204 code syntax and structure, particularly related to variable assignments and function calls (coeff: 5.369, corr: 0.126)
- L12/6392 XML-like structured data elements (coeff: 1.033, corr: 0.200)
- L13/12281 mathematical expressions and concepts related to positive values (coeff: 0.919, corr: 0.254)
- L14/7 significant scientific findings and their specific details (coeff: 6.002, corr: 0.170)
- L15/8678 phrases related to announcements or updates (coeff: 4.906, corr: 0.281)
- L16/12421 programming constructs and their structures within code snippets (coeff: 5.593, corr: 0.251)
- L17/13214 error messages and diagnostic codes (coeff: 9.790, corr: 0.294)
- L18/1127 references to gender and associated options/choices in forms (coeff: 4.805, corr: 0.376)
- L19/2174 input fields and value assignments in a form-like structure (coeff: 8.405, corr: 0.402)
- L20/12748 **structured data representations and their attributes** (coeff: 20.884, corr: 0.394)
- L21/14337 code-related keywords and method definitions in programming contexts (coeff: 13.228, corr: 0.362)
- L22/5939 technical jargon and terminology related to chemistry and biochemistry (coeff: 5.582, corr: 0.313)
- L23/10424 statistical terms and symbols related to data analysis and significance testing (coeff: 25.724, corr: 0.400)
- L24/16355 definitions and mathematical notation in text (coeff: 36.077, corr: 0.367)
- L25/10388 phrases related to health-related actions and topics (coeff: 33.899, corr: 0.336)

MMLU-Pro

- L1/9317 phrases related to changes in social and organizational dynamics (coeff: 1.859, corr: 0.169)
- L2/3714 mathematical notation, specifically related to set notation and expressions involving functions (coeff: 0.761, corr: 0.226)

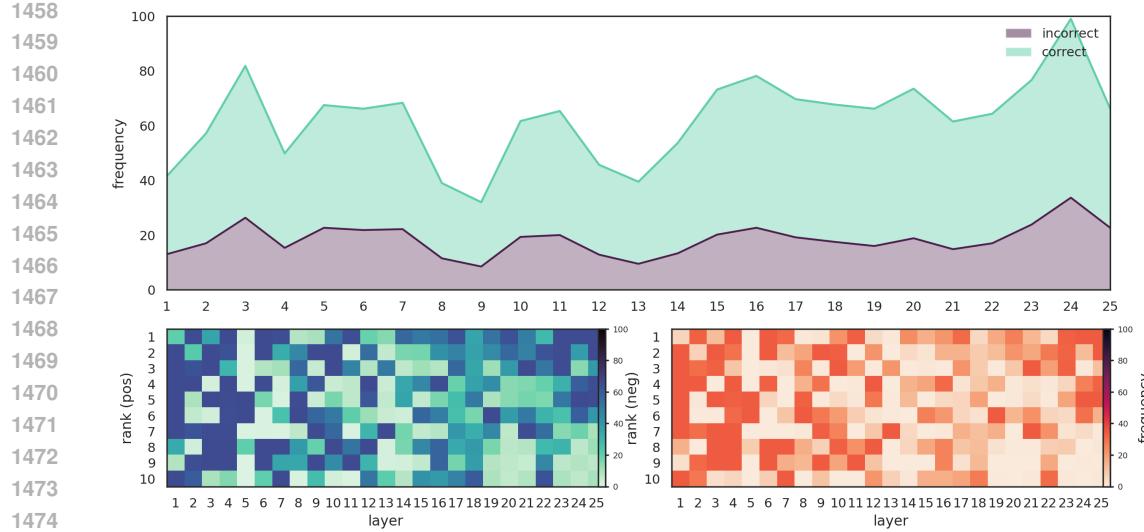


Figure 15: Top correlated features with MMLU on frequency in each layer of Gemma-2 2B.

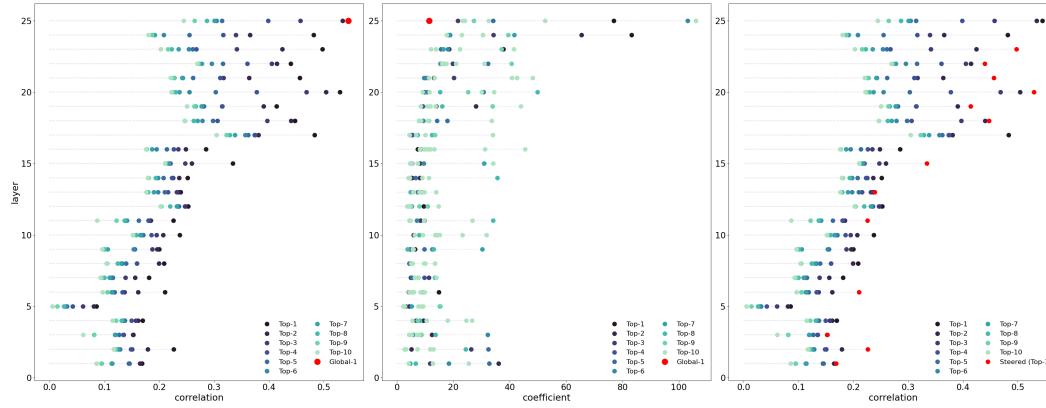


Figure 16: Top correlated features with selected features from CorrSteer-P with MMLU-Pro on coefficient in each layer of Gemma-2 2B.

- L3/11980 statements providing answers or conclusions regarding questions or hypotheses (coeff: 3.699, corr: 0.153)
- L4/15960 terms related to medical procedures and conditions (coeff: 6.817, corr: 0.170)
- L5/7502 expressions of honesty and self-awareness in discourse (coeff: 2.187, corr: 0.086)
- L6/6201 numeric representations of system specifications or configurations (coeff: 14.877, corr: 0.210)
- L7/8790 structured data formats and their attributes (coeff: 1.209, corr: 0.182)
- L8/11297 structured data and programming constructs (coeff: 2.176, corr: 0.209)
- L9/15336 references to mathematical or computational problems and their solutions (coeff: 6.407, corr: 0.200)
- L10/10805 terms related to medical conditions and biological factors (coeff: 1.277, corr: 0.237)
- L11/1909 affirmative or negative responses in the context of questions (coeff: 2.296, corr: 0.226)
- L12/14752 legal and governmental terms related to authority and judgment (coeff: 1.369, corr: 0.253)
- L13/12991 mathematical operations and expressions (coeff: 2.560, corr: 0.239)
- L14/10780 comments and documentation markers in code (coeff: 1.455, corr: 0.252)

1512

- L15/2262 references to variable declarations and data structures in programming contexts (coeff: 1.183, corr: 0.334)
- L16/3142 mathematical symbols and notation used in equations (coeff: 5.691, corr: 0.285)
- L17/1175 mathematical expressions and applications related to programming or data structures (coeff: 3.091, corr: 0.483)
- L18/682 function declarations and their return types in a programming context (coeff: 3.406, corr: 0.448)
- L19/11641 technical components or elements in code (coeff: 2.144, corr: 0.414)
- L20/12748 **structured data representations and their attributes** (coeff: 7.134, corr: 0.529)
- L21/1944 code structures and syntax related to programming and mathematics (coeff: 9.251, corr: 0.456)
- L22/12947 scientific terminology related to healthcare and medical research (coeff: 11.241, corr: 0.440)
- L23/5752 associations and relationships among scientific variables and observations (coeff: 10.133, corr: 0.497)
- L24/8188 syntax related to code structure and operations (coeff: 11.861, corr: 0.482)
- L25/8643 scientific terms and concepts related to biochemistry and cellular processes (coeff: 11.439, corr: **0.545**)

1530

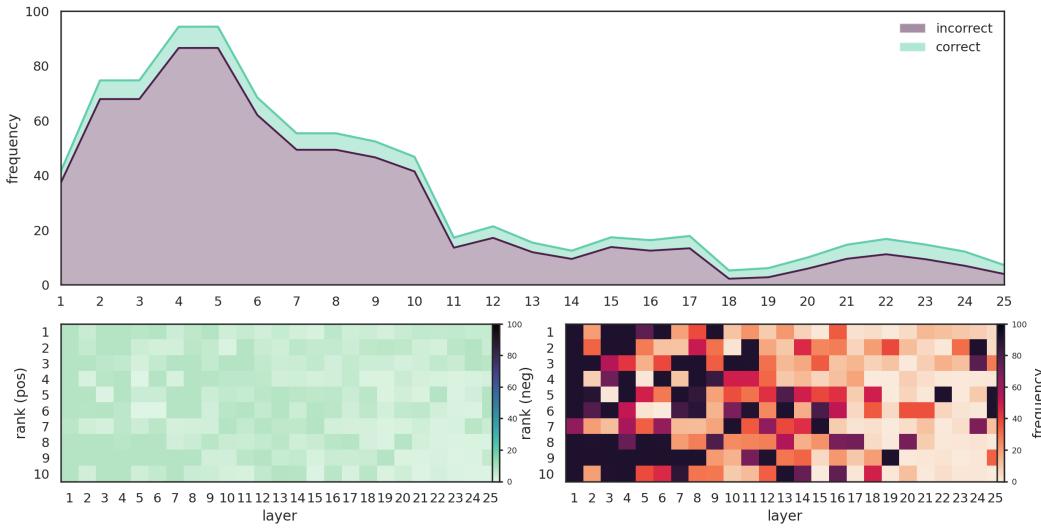


Figure 17: Top correlated features with MMLU-Pro on frequency in each layer of Gemma-2 2B.

GSM8K

- L1/13475 specific quantitative or statistical information (coeff: 9.936, corr: 0.251)
- L2/2098 references to leadership and management isolation in workplace contexts (coeff: 3.080, corr: 0.180)
- L3/8338 significant quantities within code snippets, likely indicating important operations or constructs (coeff: 6.302, corr: 0.250)
- L4/687 HTML tags and attributes related to layout and styling (coeff: 2.037, corr: 0.188)
- L5/697 terms related to price dynamics and economic relationships (coeff: 6.091, corr: 0.193)
- L6/13460 references to safety and regulatory issues in automobile contexts (coeff: 9.501, corr: 0.219)
- L7/9514 structured data or code snippets, potentially relating to geographical regions and associated identifiers (coeff: 1.309, corr: 0.167)
- L8/2024 names of notable performance venues and cultural institutions (coeff: 14.384, corr: 0.210)

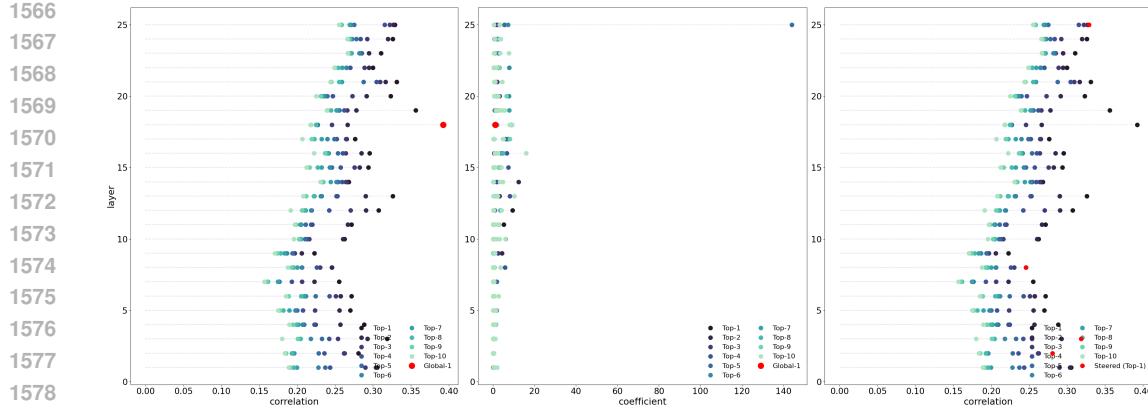


Figure 18: Top correlated features with selected features from CorrSteer-P with GSM8K on coefficient in each layer of Gemma-2 2B.

- L9/15115 discussions related to crime scene investigations and forensic evidence (coeff: 5.074, corr: 0.188)
- L10/2794 elements of conversation or dialogue (coeff: 5.602, corr: 0.188)
- L11/7313 mathematical equations and expressions (coeff: 26.252, corr: 0.176)
- L12/12707 technical or scientific terminology related to systems and processes (coeff: 2.860, corr: 0.245)
- L13/14319 code snippets and their associated structures within documents (coeff: 2.731, corr: 0.253)
- L14/4217 expressions of emotional reactions and feedback (coeff: 3.772, corr: 0.246)
- L15/1685 instances of structured data or messages indicating communication or queries (coeff: 7.282, corr: 0.255)
- L16/14919 instances of unique identifiers or markers in a dataset (coeff: 24.774, corr: 0.223)
- L17/7185 curly braces and structured programming syntax elements (coeff: 6.245, corr: 0.252)
- L18/3732 code syntax elements such as brackets and semicolons (coeff: 4.064, corr: 0.249)
- L19/2015 structures related to function definitions and method calls in programming code (coeff: 8.802, corr: 0.277)
- L20/15616 elements of code structure and syntax in programming contexts (coeff: 4.350, corr: 0.258)
- L21/12547 phrases and words that express confusion or dissatisfaction with situations (coeff: 24.211, corr: 0.251)
- L22/7903 **mathematical notation and symbols used in equations** (coeff: 7.295, corr: 0.313)
- L23/12425 **mathematical expressions and symbols** (coeff: 19.202, corr: 0.294)
- L24/2274 **programming syntax and structure specific to coding languages** (coeff: 10.205, corr: 0.348)
- L25/3469 technical aspects related to semiconductor devices and their manufacturing processes (coeff: 23.158, corr: 0.284)

SimpleQA

- L1/14904 references to Congress and legislative processes (coeff: 0.263, corr: 0.192)
- L2/1089 terms and concepts related to integrals and the importance of integration in various contexts (coeff: 0.225, corr: 0.228)
- L3/12843 terms related to durability and long-lasting qualities (coeff: 0.219, corr: 0.178)
- L8/10825 punctuation marks and special characters (coeff: 5.194, corr: 0.296)
- L9/9228 punctuation marks, especially periods and quotation marks (coeff: 4.712, corr: 0.323)

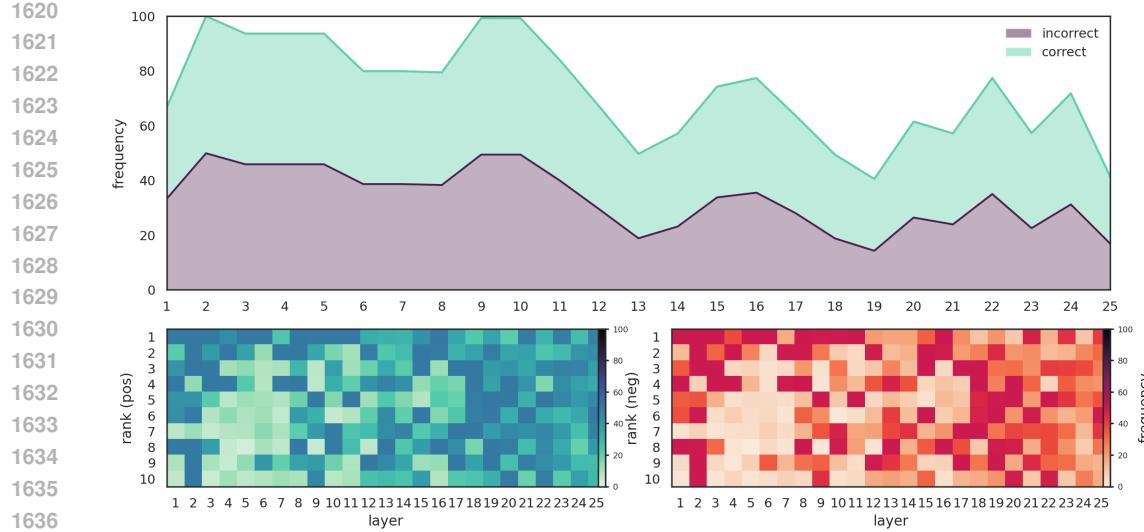


Figure 19: Top correlated features with GSM8K on frequency in each layer of Gemma-2 2B.

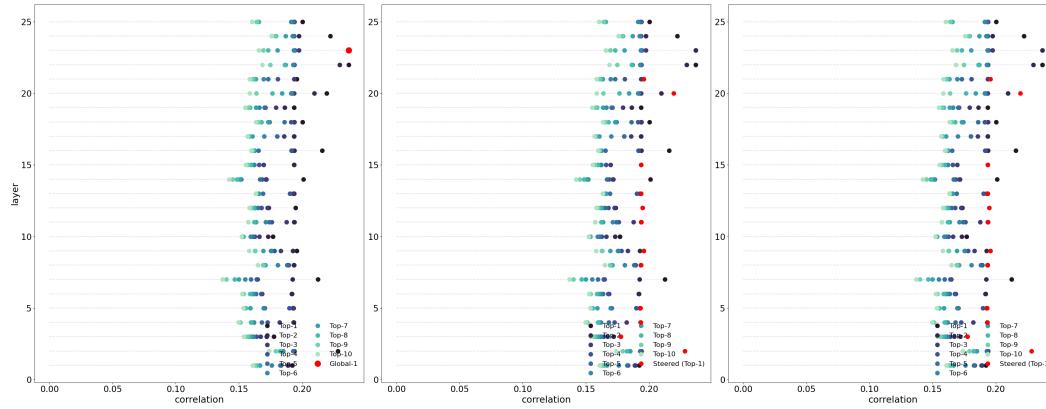
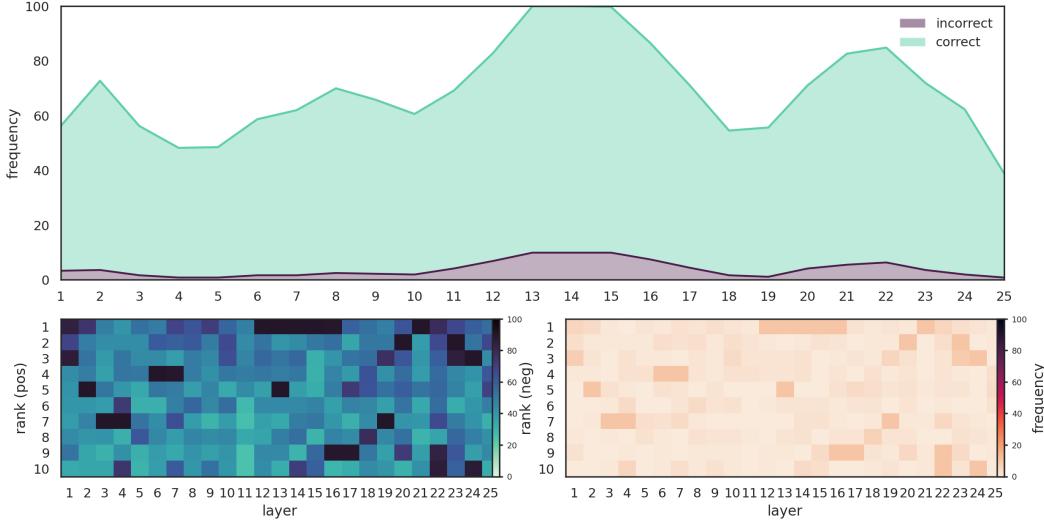


Figure 20: Top correlated features with selected features from CorrSteer-P with SimpleQA on coefficient in each layer of Gemma-2 2B.

- L10/13244 information related to military casualties and incidents (coeff: 2.760, corr: 0.270)
- L11/5734 sections or punctuation that denote lists or explanations (coeff: 4.304, corr: 0.243)
- L12/12342 symbols and mathematical notation related to expressions or equations in mathematical contexts (coeff: 15.373, corr: 0.282)
- L13/10964 mathematical terms and symbols (coeff: 16.622, corr: 0.274)
- L14/7655 structured data, such as XML or JSON formats (coeff: 16.195, corr: 0.275)
- L15/5114 terms related to evaluation and validation processes (coeff: 23.117, corr: 0.248)
- L16/1547 code or programming-related syntax (coeff: 21.527, corr: 0.283)
- L17/10813 references to movies, actors, and significant film industry terms (coeff: 9.662, corr: 0.243)
- L18/8615 legal terminology and concepts related to judicial authority and precedent (coeff: 9.006, corr: 0.282)
- L19/2998 elements related to research findings, including factors, conclusions, and reasoning (coeff: 13.956, corr: 0.245)
- L20/9419 names of individuals and titles (coeff: 10.648, corr: 0.272)
- L21/15170 isolated segments of code or technical content (coeff: 36.804, corr: 0.264)

1674
 1675 • [L22/11042](#) punctuation marks that indicate the start or end of lists or key points in a text
 1676 (coeff: 28.482, corr: 0.294)
 1677 • [L23/8993](#) structured API documentation elements and syntax (coeff: 23.447, corr: 0.280)
 1678 • [L24/4448](#) terms related to scientific analysis and results reporting (coeff: 16.649, corr:
 1679 0.287)
 1680 • [L25/7968](#) elements related to health assessments and metrics (coeff: 9.863, corr: 0.307)

1681



1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700 Figure 21: Top correlated features with XSTest on frequency in each layer of Gemma-2 2B.
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727

A.11.2 LLAMA-3.1-8B

BBQ (Ambiguous)

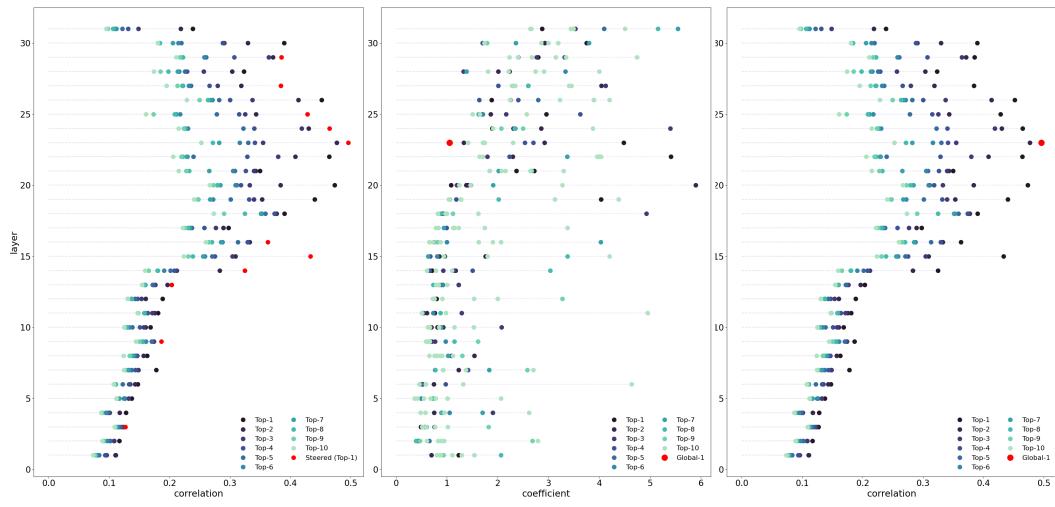


Figure 22: Top correlated features with selected features from CorrSteer-P with BBQ ambig on coefficient in each layer of LLaMA-3.1 8B.

- L1/23207 phrases related to legal or regulatory frameworks (coeff: 0.463, corr: 0.111)
- L2/2680 titles and key information related to television series episodes (coeff: 0.002, corr: 0.117)
- L3/23846 discussions around societal structures and issues related to mental health and crime (coeff: 0.487, corr: 0.127)
- L4/30896 occurrences of numerical values and references to measurements (coeff: 0.089, corr: 0.128)
- L5/18555 instances of past and present tense verbs, particularly focusing on actions and conditions (coeff: 0.193, corr: 0.137)
- L6/25246 technical terms and code snippets related to software development and programming logic (coeff: 0.277, corr: 0.147)
- L7/11878 specific numerical identifiers and related metadata in technical documents (coeff: 0.365, corr: 0.178)
- L8/4790 keywords related to data structures and programming concepts (coeff: 0.172, corr: 0.163)
- L9/2700 references to extraterrestrial or paranormal beings and phenomena (coeff: 0.354, corr: 0.187)
- L10/23355 **phrases or constructs that emphasize comparison or simile** (coeff: 0.812, corr: 0.168)
- L11/18132 references to specific books, movies, or artworks (coeff: 0.167, corr: 0.181)
- L12/14096 references to specific locations or settings in various contexts (coeff: 0.084, corr: 0.189)
- L13/26526 references to error handling in programming (coeff: 0.493, corr: 0.203)
- L14/13393 statistical percentages and survey data (coeff: 0.192, corr: 0.324)
- L15/25166 **themes of neutrality and balance in discourse** (coeff: 0.259, corr: 0.433)
- L16/21816 phrases related to financial or economic assessments (coeff: 0.543, corr: 0.363)
- L17/5782 references to equality and equity in rights and opportunities (coeff: 0.368, corr: 0.298)
- L18/28196 references to knowledge, learning, and understanding in various contexts (coeff: 0.303, corr: 0.390)
- L19/29460 **discussions about extremes and balance** (coeff: 0.811, corr: 0.440)
- L20/13319 **expressions of mixed opinions or complex character evaluations** (coeff: 1.413, corr: 0.473)

- [L21/8518](#) references to articles and citations in academic databases (coeff: 2.719, corr: 0.349)
- [L22/28263](#) **percentages and statistical data concerning opinions or responses** (coeff: 1.024, corr: 0.464)
- [L23/638](#) formal structures and procedures within organizational contexts (coeff: 1.054, corr: **0.496**)
- [L24/19174](#) code constructs and control flow keywords related to conditions and returns (coeff: 1.890, corr: 0.465)
- [L25/10753](#) **expressions of perception or belief in social dynamics** (coeff: 1.147, corr: 0.428)
- [L26/27899](#) code structure and logical operations involving object hierarchy and data types (coeff: 1.025, corr: 0.452)
- [L27/1765](#) quantitative data related to project development and financial metrics (coeff: 2.597, corr: 0.384)
- [L28/21019](#) financial data and statistics related to development projects (coeff: 0.856, corr: 0.323)
- [L29/17998](#) code snippets related to JavaScript or Java programming functions and structures (coeff: 1.735, corr: 0.385)
- [L30/17084](#) numerical data related to financial projections and resource development (coeff: 1.308, corr: 0.390)
- [L31/10728](#) auxiliary verbs and words indicating obligation or possibility (coeff: 1.530, corr: 0.239)

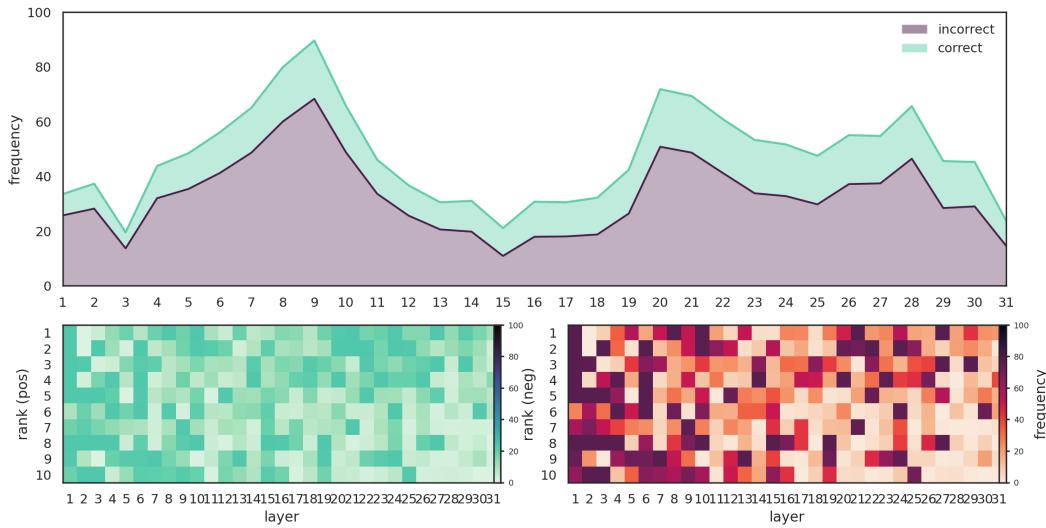


Figure 23: Top correlated features with BBQ ambig on frequency in each layer of LLaMA-3.1 8B.

BBQ (Disambiguous)

- [L1/5891](#) technical terms and references in programming and development contexts (coeff: 0.154, corr: 0.086)
- [L2/21865](#) references to essays, articles, and related writing concepts (coeff: 0.784, corr: 0.084)
- [L3/3413](#) elements related to user engagement and user-friendly design (coeff: 0.332, corr: 0.100)
- [L4/3712](#) elements related to programming and computation (coeff: 0.458, corr: 0.086)
- [L5/18066](#) references to educational administration and school district issues (coeff: 0.229, corr: 0.118)
- [L6/28294](#) references to machine learning models and recommendation systems (coeff: 0.301, corr: 0.119)

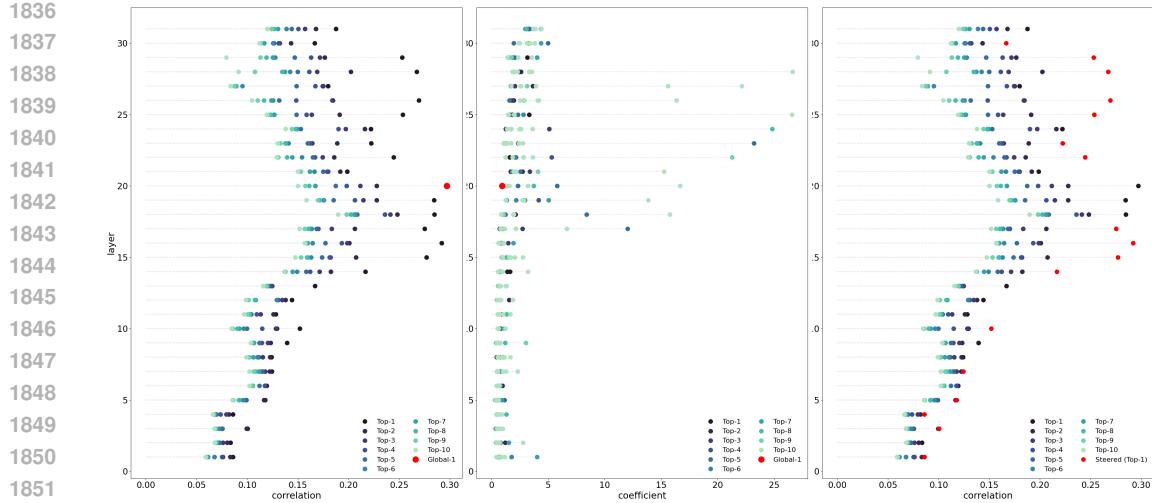


Figure 24: Top correlated features with selected features from CorrSteer-P with BBQ disambig on coefficient in each layer of LLaMA-3.1 8B.

- **L7/7762** specific language constructs related to coordination and organization (coeff: 0.416, corr: 0.124)
- **L8/25466** terms related to hierarchical structures or classifications (coeff: 1.032, corr: 0.124)
- **L9/5313** key concepts related to project management and planning (coeff: 0.645, corr: 0.139)
- **L10/13407 negative actions and attitudes that hinder interpersonal relationships and community engagement** (coeff: 0.256, corr: 0.152)
- **L11/18350** references to institutions and systems regarding public services (coeff: 0.900, corr: 0.128)
- **L12/13336 phrases and concepts related to community and social interactions** (coeff: 0.377, corr: 0.144)
- **L13/15793** negation phrases and words indicating absence or lack (coeff: 0.695, corr: 0.167)
- **L14/31962** details related to physical displacement or movement in a spatial context (coeff: 1.384, corr: 0.217)
- **L15/2128** references to programming elements and constructs (coeff: 0.977, corr: 0.277)
- **L16/6219 code-related syntax and structures within programming languages** (coeff: 0.830, corr: **0.292**)
- **L17/12610** technical terminology related to programming and software development (coeff: 0.706, corr: 0.275)
- **L18/16458** HTML tags and structured data elements (coeff: 2.113, corr: 0.285)
- **L19/6432** numerical values and the structure of dates or game scores (coeff: 0.909, corr: 0.284)
- **L20/28406** tokens related to timestamps, specifically date and time formats (coeff: 0.942, corr: 0.297)
- **L21/15538** references to time management techniques and motivational strategies (coeff: 0.388, corr: 0.199)
- **L22/11286** monetary amounts or financial figures (coeff: 0.531, corr: 0.245)
- **L23/30672** phrases involving the concept of answers or responses (coeff: 1.211, corr: 0.222)
- **L24/5888** references to answers or responses in discussions or questions (coeff: 1.152, corr: 0.222)
- **L25/22713** mathematical notations and symbols (coeff: 1.235, corr: 0.253)
- **L26/22133** names of authors and their affiliations in academic contexts (coeff: 1.953, corr: 0.269)
- **L27/12321** structural elements and parameters in programming code or data structures (coeff: 0.539, corr: 0.180)

1890
 1891 • **L28/23202 specific numbers and their context within factual statements** (coeff: 1.897, corr: 0.267)
 1892 • **L29/3168 keywords related to health and medical terminology** (coeff: 3.175, corr: 0.253)
 1893 • **L30/22450 terms and phrases related to health and medical conditions** (coeff: 3.219, corr: 0.167)
 1894 • **L31/18173 procedural commands and technical instructions related to software and settings** (coeff: 1.440, corr: 0.188)

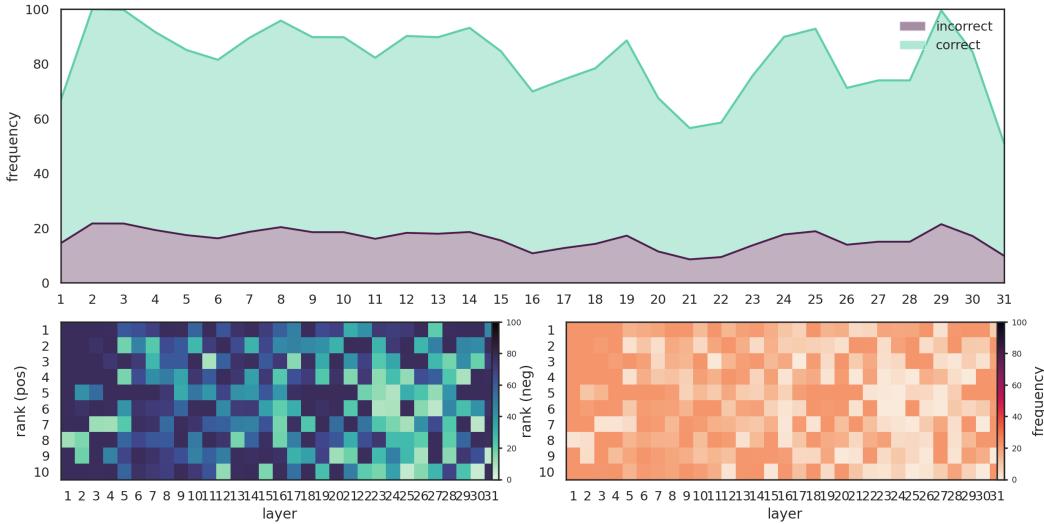


Figure 25: Top correlated features with BBQ disambig on frequency in each layer of LLaMA-3.1 8B.

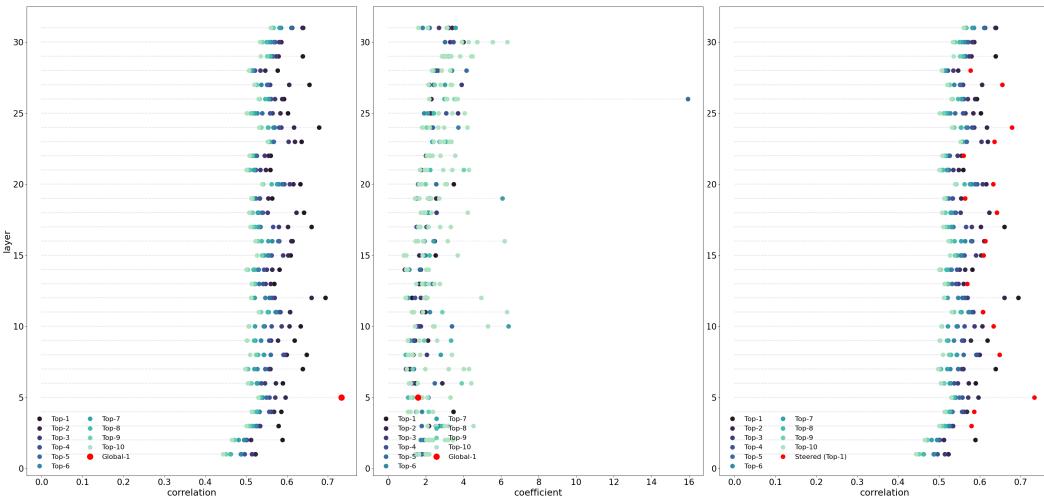


Figure 26: Top correlated features with selected features from CorrSteer-P with HarmBench on coefficient in each layer of LLaMA-3.1 8B.

HarmBench

1939
 1940 • **L1/15747 repetitive phrases or expressions related to certainty or emphasis** (coeff: 0.491, corr: 0.524)
 1941 • **L2/25715 references to collective experiences and communal responsibility** (coeff: 1.032, corr: 0.590)
 1942 • **L3/23621 negations and assertions related to existence and actions** (coeff: 1.116, corr: 0.580)

1944 • **L4/26750 first-person pronouns indicating personal experiences and thoughts** (coeff: 3.468, corr: 0.586)

1945 • **L5/300 instances of political criticism and hypocrisy** (coeff: 1.587, corr: **0.734**)

1946 • **L6/21616 discussions about legality, morality, and the implications of actions in ethical contexts** (coeff: 1.458, corr: 0.590)

1947 • **L7/17622 phrases related to trust and loyalty in political contexts** (coeff: 1.128, corr: 0.639)

1948 • **L8/6508 expressions related to the condemnation of sexual assault and violence** (coeff: 1.322, corr: 0.648)

1949 • **L9/27026 concepts related to limits and responsibilities in relationships and societal interactions** (coeff: 1.425, corr: 0.619)

1950 • **L10/9364 expressions of moral outrage and condemnation regarding social and ethical issues** (coeff: 1.324, corr: 0.633)

1951 • **L11/16561 expressions of personal opinion and moral judgments** (coeff: 1.810, corr: 0.608)

1952 • **L12/5839 strong statements against violence and discrimination** (coeff: 1.271, corr: 0.694)

1953 • **L13/15443 emotional expressions of affection or attachment** (coeff: 1.637, corr: 0.569)

1954 • **L14/22046 phrases and sentiments associated with moral judgments and emotional responses** (coeff: 0.750, corr: 0.582)

1955 • **L15/5498 phrases related to environmental and climate impact** (coeff: 0.696, corr: 0.609)

1956 • **L16/8375 topics related to stigma and mental health awareness** (coeff: 0.938, corr: 0.614)

1957 • **L17/15876 expressions of self-doubt or uncertainty** (coeff: 0.582, corr: 0.660)

1958 • **L18/6210 phrases related to educational support and challenges faced by teachers** (coeff: 0.964, corr: 0.641)

1959 • **L19/5854 references to seeking medical advice and guidance** (coeff: 1.148, corr: 0.564)

1960 • **L20/11388 elements related to moral and ethical dilemmas** (coeff: 3.490, corr: 0.633)

1961 • **L21/9674 references to racism and social justice issues** (coeff: 0.712, corr: 0.559)

1962 • **L22/4650 expressions of self-awareness and personal growth mixed with skepticism towards collective beliefs** (coeff: 2.235, corr: 0.560)

1963 • **L23/28291 phrases discussing social justice and advocacy for marginalized communities** (coeff: 2.165, corr: 0.636)

1964 • **L24/21055 phrases related to self-identity and personal reflection** (coeff: 2.357, corr: 0.679)

1965 • **L25/16450 themes of emotional struggle and interpersonal relationships** (coeff: 2.415, corr: 0.602)

1966 • **L26/6648 phrases indicating moral judgment or hypocrisy in political discourse** (coeff: 1.541, corr: 0.593)

1967 • **L27/10654 expressions of emotional conflict and personal reflection** (coeff: 1.653, corr: 0.655)

1968 • **L28/522 themes of courage and resilience in writing** (coeff: 0.915, corr: 0.578)

1969 • **L29/13883 complex emotional responses and reflections on interpersonal relationships** (coeff: 2.977, corr: 0.639)

1970 • **L30/4588 expressions of emotional needs and desires in relationships** (coeff: 1.480, corr: 0.586)

1971 • **L31/31181 references to familial relationships and memorial details** (coeff: 1.218, corr: 0.639)

MMLU

1972 • **L1/4557 specific numeric values and measurements related to instructions or guidelines** (coeff: 0.695, corr: 0.094)

1973 • **L2/27893 terms related to technology, specifically graphics processing units (GPUs) and their applications** (coeff: 0.348, corr: 0.157)

1974 • **L3/204 terms and concepts related to financial metrics and performance evaluation** (coeff: 1.037, corr: 0.139)

1975 • **L4/23545 questions that lead to detailed inquiries or clarifications** (coeff: 1.142, corr: 0.131)

1976 • **L5/17458 terms related to theoretical concepts and methodologies in scientific discussions** (coeff: 0.497, corr: 0.124)

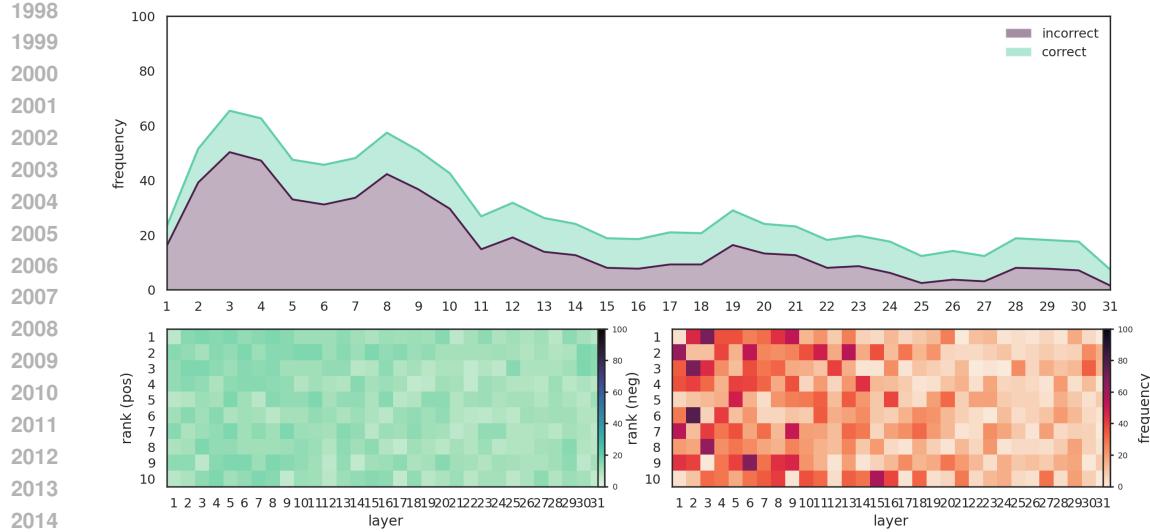


Figure 27: Top correlated features with HarmBench on frequency in each layer of LLaMA-3.1 8B.

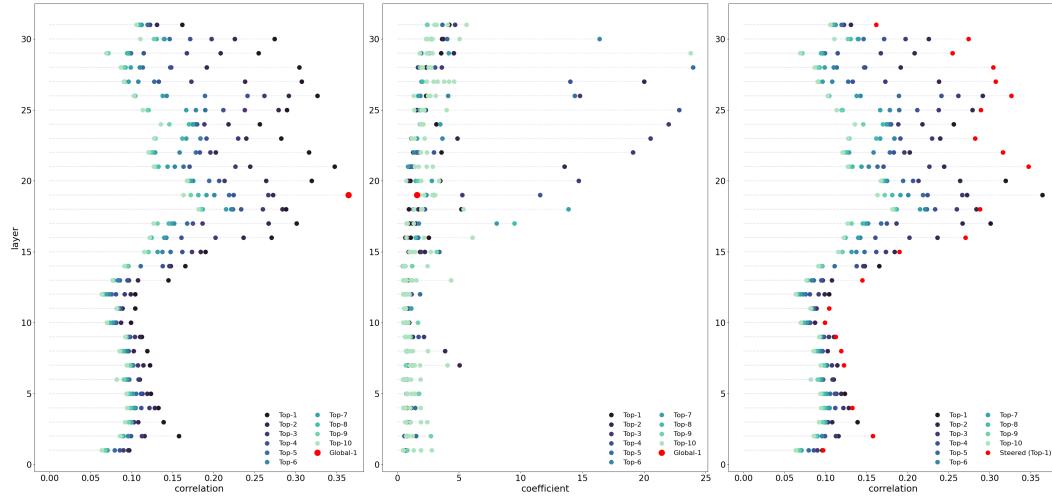


Figure 28: Top correlated features with selected features from CorrSteer-P with MMLU ambig on coefficient in each layer of LLaMA-3.1 8B.

- **L6/650** specific identifiers, particularly those related to content or lists (coeff: 0.780, corr: 0.110)
- **L7/13659** references to lists, particularly those pertaining to security or classification contexts (coeff: 0.885, corr: 0.118)
- **L8/1649** key terms related to organizational assistance and functionality within various contexts (coeff: 0.871, corr: 0.116)
- **L9/19730** various forms of interviews and discussions related to current events or cultural topics (coeff: 0.397, corr: 0.108)
- **L10/20495** terms related to requirements and definitions within various contexts (coeff: 0.949, corr: 0.099)
- **L11/20851** legal and academic terminology related to charges and reports (coeff: 0.897, corr: 0.100)
- **L12/26346** specific nouns and proper names related to various contexts (coeff: 0.454, corr: 0.104)

- **L13/551** terms related to medical results and actions taken toward health management (coeff: 0.830, corr: 0.143)
- **L14/11013** phrases indicating relationships between people or entities (coeff: 0.366, corr: 0.165)
- **L15/9446** expressions of passion and enthusiasm in various contexts (coeff: 0.327, corr: 0.195)
- **L16/6219** code-related syntax and structures within programming languages (coeff: 1.094, corr: 0.274)
- **L17/26604** references to programming concepts and structures (coeff: 0.957, corr: 0.301)
- **L18/28750** structured data elements and patterns, possibly related to programming or data analysis (coeff: 0.936, corr: 0.288)
- **L19/6432** numerical values and the structure of dates or game scores (coeff: 1.587, corr: 0.365)
- **L20/28406** tokens related to timestamps, specifically date and time formats (coeff: 1.051, corr: 0.319)
- **L21/15538** references to time management techniques and motivational strategies (coeff: 1.014, corr: **0.347**)
- **L22/11286** monetary amounts or financial figures (coeff: 1.269, corr: 0.322)
- **L23/15096** phrases related to significant life events and milestones (coeff: 1.125, corr: 0.281)
- **L24/18010** references to dates and significant life events (coeff: 1.631, corr: 0.256)
- **L25/22713** mathematical notations and symbols (coeff: 1.209, corr: 0.287)
- **L26/22133** names of authors and their affiliations in academic contexts (coeff: 2.331, corr: 0.331)
- **L27/19268** references to academic qualifications, research, and involvement in educational activities (coeff: 0.826, corr: 0.310)
- **L28/23202** **specific numbers and their context within factual statements** (coeff: 2.318, corr: 0.307)
- **L29/3168** keywords related to health and medical terminology (coeff: 3.545, corr: 0.255)
- **L30/23403** terms associated with uncertainty and error (coeff: 0.986, corr: 0.274)
- **L31/6722** instances of code-related syntax and formatting (coeff: 0.538, corr: 0.159)

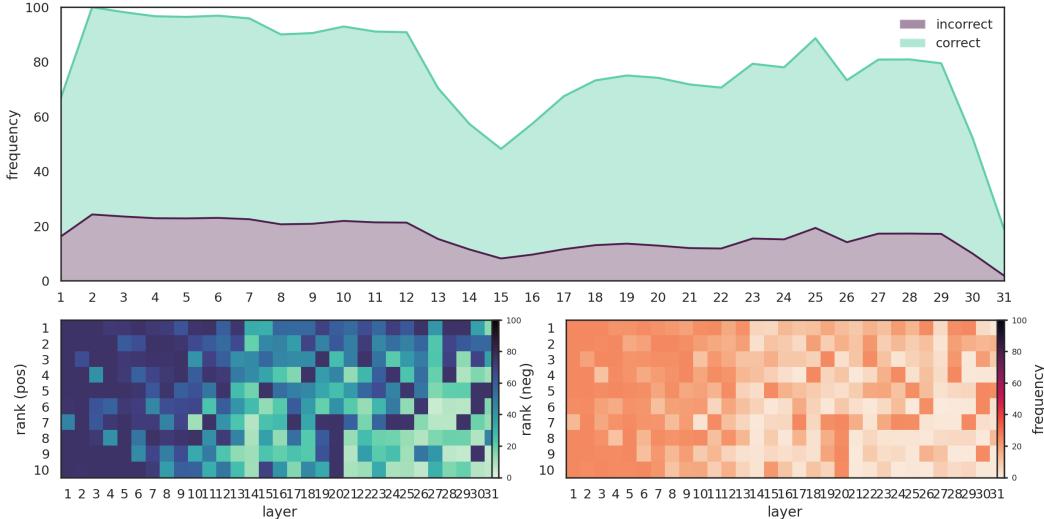


Figure 29: Top correlated features with MMLU on frequency in each layer of LLaMA-3.1 8B.

MMLU-Pro

- **L1/2403** specific numeric values and measurements related to instructions or guidelines (coeff: 0.286, corr: 0.216)
- **L2/85** phrases related to service expectations and quality assurance

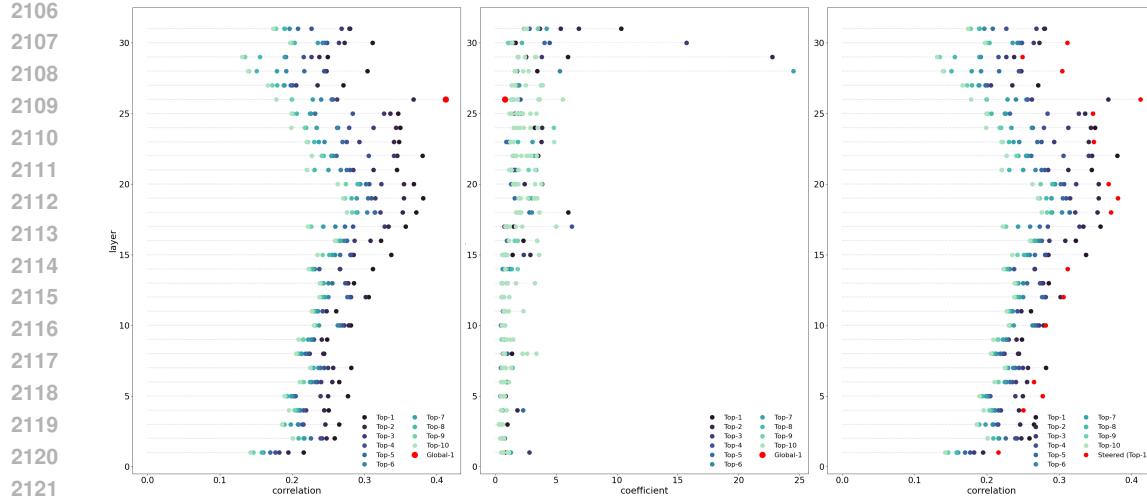


Figure 30: Top correlated features with selected features from CorrSteer-P with MMLU-Pro ambiguity on coefficient in each layer of LLaMA-3.1 8B.

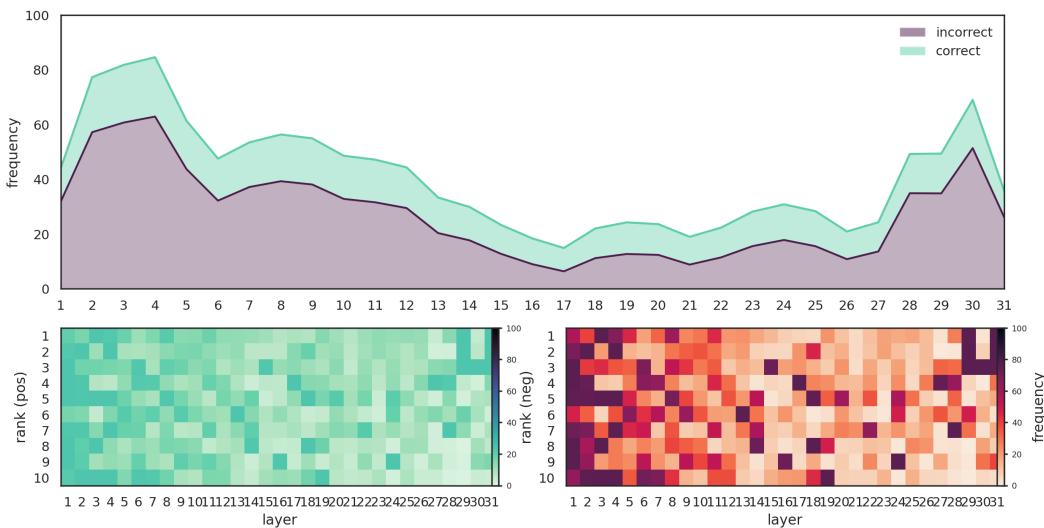
(coeff: 0.212, corr: 0.259)

- [L3/204](#) terms and concepts related to financial metrics and performance evaluation (coeff: 0.996, corr: 0.265)
- [L4/14539](#) content related to sources and references in articles (coeff: 0.432, corr: 0.250)
- [L5/2831](#) references to urgency and scheduling events (coeff: 0.348, corr: 0.277)
- [L6/7784](#) instances of various relational and transactional terms within context (coeff: 0.153, corr: 0.265)
- [L7/22238](#) references to examples or lists in discussions or reports (coeff: 0.446, corr: 0.282)
- [L8/7704](#) keywords related to television series and their reception (coeff: 0.630, corr: 0.244)
- [L9/4007](#) references to various types of businesses and their classifications (coeff: 0.298, corr: 0.248)
- [L10/3783](#) key phrases and concepts related to business development and investment processes (coeff: 0.454, corr: 0.281)
- [L11/7301](#) components of structured data or content organization (coeff: 0.807, corr: 0.261)
- [L12/28750](#) financial terms and conditions related to trading or commerce (coeff: 0.563, corr: 0.306)
- [L13/16587](#) phrases indicating action or involvement in events or developments (coeff: 0.366, corr: 0.285)
- [L14/28135](#) references to specific geographic locations or entities (coeff: 0.490, corr: 0.312)
- [L15/9446](#) expressions of passion and enthusiasm in various contexts (coeff: 0.425, corr: 0.337)
- **L16/6219 code-related syntax and structures within programming languages (coeff: 0.342, corr: 0.323)**
- **L17/26604 references to programming concepts and structures (coeff: 0.469, corr: 0.357)**
- [L18/2624](#) references to criminal activity and associated legal consequences (coeff: 0.478, corr: 0.371)
- **L19/6432 numerical values and the structure of dates or game scores (coeff: 0.966, corr: 0.381)**
- [L20/28406](#) tokens related to timestamps, specifically date and time formats (coeff: 0.628, corr: 0.368)
- [L21/15538](#) references to time management techniques and motivational strategies (coeff: 0.391, corr: 0.345)
- [L22/11286](#) monetary amounts or financial figures (coeff: 0.697, corr: 0.380)
- [L23/21146](#) programming and coding structures, particularly related to network protocols and data handling (coeff: 0.853, corr: 0.348)

2160

- [L24/7967](#) references to specific locations or addresses (coeff: 0.837, corr: 0.350)
- [L25/16619](#) instances of authorship and attribution in the text (coeff: 0.864, corr: 0.347)
- **L26/22133 names of authors and their affiliations in academic contexts (coeff: 0.813, corr: 0.413)**
- **L27/19268 references to academic qualifications, research, and involvement in educational activities (coeff: 0.318, corr: 0.271)**
- [L28/23202](#) specific numbers and their context within factual statements (coeff: 1.120, corr: 0.304)
- [L29/12442](#) patterns related to digital platforms and software updates (coeff: 2.528, corr: 0.249)
- [L30/19427](#) specific numerical values and statistical data (coeff: 0.374, corr: 0.311)
- [L31/9926](#) numbers, particularly in relation to financial data and statistics (coeff: 10.348, corr: 0.280)

2172



2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

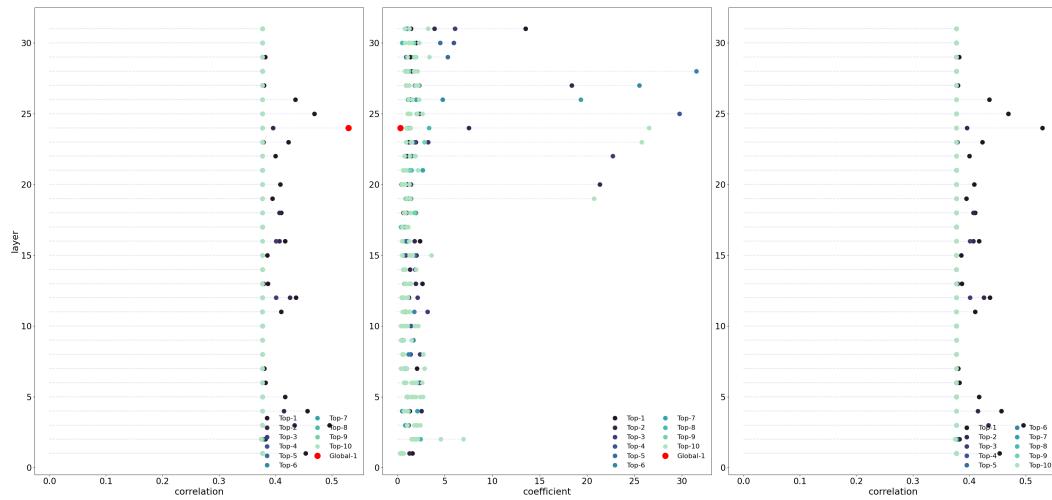


Figure 32: Top correlated features with SimpleQA on frequency in each layer of LLaMA-3.1 8B.

2214 • [L1/28160](#) references to height, specifically focusing on the term "tall" (coeff: 1.580, corr: 0.454)
 2215 • [L2/16190](#) references to geographical locations, particularly islands (coeff: 0.148, corr: 0.383)
 2216 • [L3/24193](#) references to deserts and desert-related imagery (coeff: 0.541, corr: 0.496)
 2217 • [L4/25100](#) references to dumpster rental services and pricing (coeff: 0.205, corr: 0.457)
 2218 • [L5/15924](#) the occurrence of the word "in" and its context within the text (coeff: 0.396, corr: 0.418)
 2219 • [L6/7008](#) references to artificial entities and technologies (coeff: 2.402, corr: 0.383)
 2220 • [L7/6257](#) terms and phrases related to artificial elements or creations (coeff: 2.049, corr: 0.381)
 2221 • [L8/30264](#) phrases or terms that indicate suitability or excellence in context (coeff: 0.029, corr: 0.377)
 2222 • [L9/23784](#) programming-related keywords and constructs (coeff: 0.089, corr: 0.377)
 2223 • [L10/30120](#) phrases that encourage action or reminders related to specific tasks (coeff: 0.057, corr: 0.377)
 2224 • [L11/962](#) conjunctions that introduce reasoning or causation (coeff: 0.396, corr: 0.410)
 2225 • [L12/31391](#) references to authors and their written works (coeff: 0.472, corr: 0.437)
 2226 • **L13/19013 references to biological family classifications (coeff: 2.618, corr: 0.387)**
 2227 • [L14/12579](#) references to global outreach and international presence (coeff: 0.077, corr: 0.377)
 2228 • **L15/18867 references to biological classifications, specifically family names in taxonomy (coeff: 2.004, corr: 0.386)**
 2229 • **L16/22032 biological classifications of species, particularly family and genus names (coeff: 2.364, corr: 0.417)**
 2230 • [L17/30566](#) phrases related to ownership or affiliation (coeff: 0.884, corr: 0.377)
 2231 • [L18/24624](#) specific terms associated with the media and entertainment industry (coeff: 0.952, corr: 0.410)
 2232 • [L19/25841](#) references to personal growth and transformation experiences (coeff: 1.140, corr: 0.395)
 2233 • [L20/23840](#) references to legislative districts and redistricting processes (coeff: 0.438, corr: 0.409)
 2234 • [L21/9851](#) references to volcanic activity (coeff: 0.258, corr: 0.377)
 2235 • [L22/20579](#) references to educational programs and initiatives (coeff: 0.744, corr: 0.400)
 2236 • [L23/11708](#) complex arguments and perspectives in academic discourse (coeff: 0.323, corr: 0.423)
 2237 • **L24/14877 specific procedural or data-related elements in formal documents (coeff: 0.292, corr: 0.530)**
 2238 • [L25/18055](#) words associated with appreciation and commendation (coeff: 0.542, corr: 0.469)
 2239 • [L26/10617](#) emotional expressions and relationships in personal narratives (coeff: 0.317, corr: 0.435)
 2240 • [L27/135](#) activities related to travel and tourism (coeff: 0.924, corr: 0.380)
 2241 • [L28/29877](#) references to the concept of "home." (coeff: 0.964, corr: 0.377)
 2242 • [L29/4392](#) references to clothing and dress codes, particularly in relation to gender identity and expression (coeff: 0.410, corr: 0.382)
 2243 • [L30/22633](#) public methods in a programming context (coeff: 0.310, corr: 0.377)
 2244 • [L31/6171](#) references to artificial intelligence and its related concepts (coeff: 1.429, corr: 0.377)

XSTest

2262 • [L1/6754](#) references to studies and publications (coeff: 0.256, corr: 0.367)
 2263 • [L2/5332](#) names and characteristics associated with aviation or flight (coeff: 0.276, corr: 0.331)
 2264 • [L3/16461](#) terms related to marine life and conservation efforts (coeff: 1.265, corr: 0.394)
 2265 • [L4/2446](#) proper nouns and specific entities (coeff: 0.310, corr: 0.334)
 2266 • [L5/25000](#) names of notable individuals and places related to historical or cultural significance (coeff: 0.862, corr: 0.354)

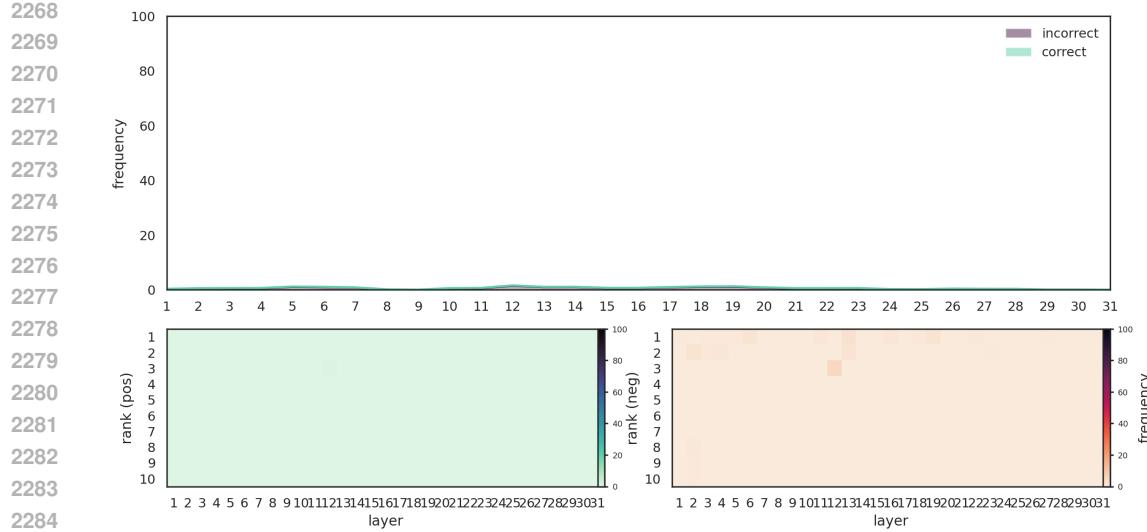


Figure 33: Top correlated features with SimpleQA on frequency in each layer of LLaMA-3.1 8B.

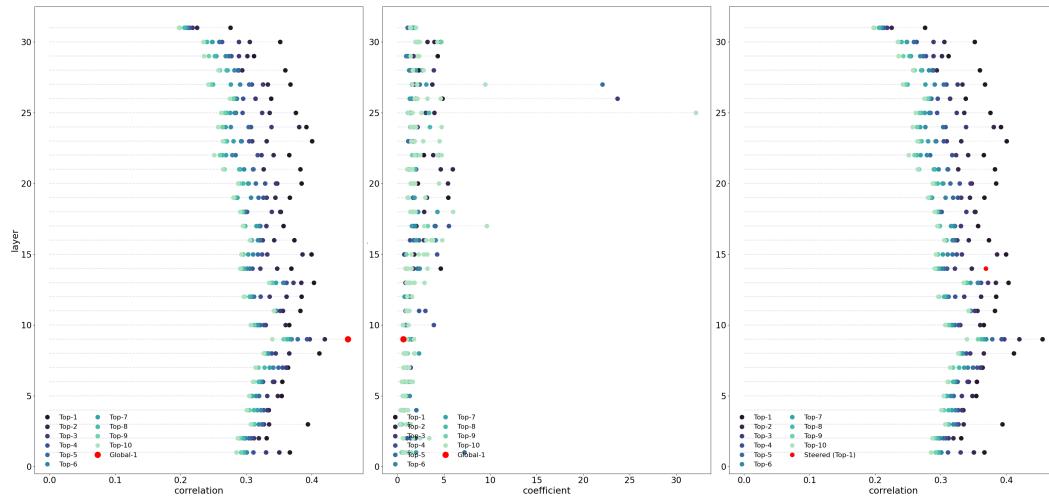


Figure 34: Top correlated features with XSTest on frequency in each layer of LLaMA-3.1 8B.

- **L6/10424** information related to personal details and statistics about individuals (coeff: 0.220, corr: 0.355)
- **L7/20235** words and phrases associated with measurement or assessment (coeff: 0.784, corr: 0.364)
- **L8/22807** concepts related to capital budgeting and investment decision-making (coeff: 0.420, corr: 0.411)
- **L9/16423 references to specific organizations, laws, or conditions related to societal issues (coeff: 0.636, corr: 0.455)**
- **L10/11238** phrases related to collaboration and community involvement (coeff: 0.880, corr: 0.365)
- **L11/29172 legal terminology related to civil rights and obligations (coeff: 0.618, corr: 0.383)**
- **L12/19663 negative descriptors or concepts related to cowardice and existence (coeff: 0.735, corr: 0.384)**
- **L13/19506 numeric or alphanumeric strings and specific identifiers (coeff: 0.608, corr: 0.403)**

- **L14/13505** structured question-answer formats and indicators of a discussion or inquiry (coeff: 4.659, corr: 0.369)
- **L15/23853** references to female characters and their relationships in narratives (coeff: 0.682, corr: 0.400)
- **L16/1652** names and identifiers related to locations and organizations (coeff: 1.220, corr: 0.373)
- **L17/21476** references to influential figures in scientific history and significant concepts from their work (coeff: 2.046, corr: 0.357)
- **L18/25543** names and specific references related to individuals, locations, and organizations in a political context (coeff: 0.941, corr: 0.353)
- **L19/2102** significant historical events and their impact on society (coeff: 1.691, corr: 0.366)
- **L20/21486** various references to awards, accolades, and notable achievements within literary and cinematic contexts (coeff: 2.183, corr: 0.385)
- **L21/8477** references to influential figures and their contributions in various contexts (coeff: 2.008, corr: 0.383)
- **L22/16870** references to disasters and their impacts (coeff: 2.837, corr: 0.366)
- **L23/15524** references to specific events or characters in films (coeff: 1.834, corr: 0.400)
- **L24/15231** references to specific events or characters in films (coeff: 1.747, corr: 0.392)
- **L25/16855** references to corporate entities and financial transactions (coeff: 0.763, corr: 0.375)
- **L26/1578** references to specific individuals or organizations involved in social causes or environmental conservation (coeff: 0.948, corr: 0.338)
- **L27/11758** connections to authoritative figures and organizational roles (coeff: 1.300, corr: 0.367)
- **L28/425** instances of specific names and organizational references in a text (coeff: 2.291, corr: 0.360)
- **L29/17372** terms related to health and illness (coeff: 0.888, corr: 0.312)
- **L30/11223** titles and descriptors of programs or services related to community support (coeff: 4.643, corr: 0.352)
- **L31/2111** descriptions and features of software products (coeff: 1.614, corr: 0.276)

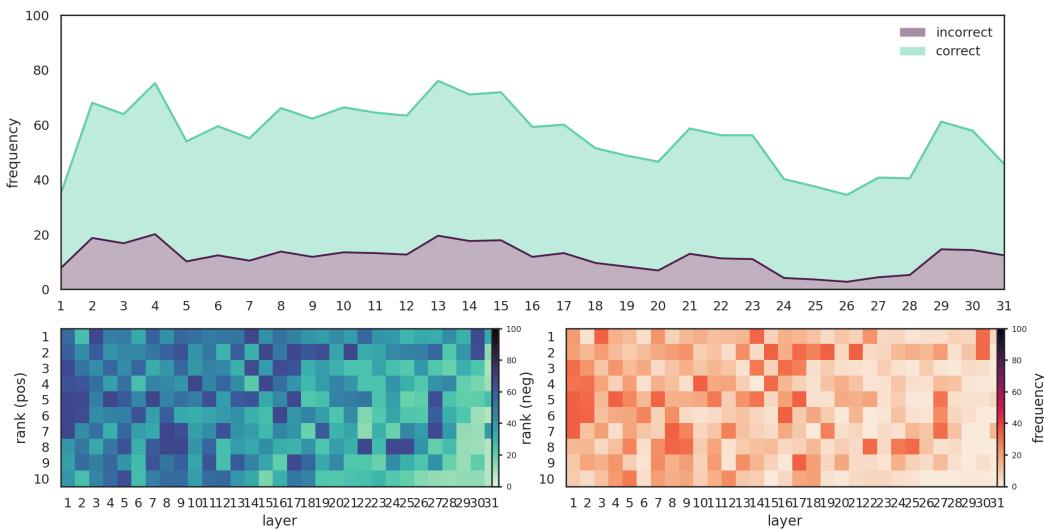


Figure 35: Top correlated features with XSTest on frequency in each layer of LLaMA-3.1 8B.