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ABSTRACT

We describe a framework for multitask deep reinforcement learning guided by
policy sketches. Sketches annotate each task with a sequence of named subtasks,
providing high-level structural relationships among tasks, but not providing the
detailed guidance required by previous work on learning policy abstractions for
RL (e.g. intermediate rewards, subtask completion signals, or intrinsic motiva-
tions). Our approach associates every subtask with its own modular subpolicy,
and jointly optimizes over full task-specific policies by tying parameters across
shared subpolicies. This optimization is accomplished via a simple decoupled
actor–critic training objective that facilitates learning common behaviors from
dissimilar reward functions. We evaluate the effectiveness of our approach on a
maze navigation game and a 2-D Minecraft-inspired crafting game. Both games
feature extremely sparse rewards that can be obtained only after completing a
number of high-level subgoals (e.g. escaping from a sequence of locked rooms or
collecting and combining various ingredients in the proper order). Experiments
illustrate two main advantages of our approach. First, we outperform standard
baselines that learn task-specific or shared monolithic policies. Second, our
method naturally induces a library of primitive behaviors that can be recombined
to rapidly acquire policies for new tasks.

1 INTRODUCTION
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Figure 1: Composing policies from subpolicies. Here
we have simplified versions of two tasks (make planks
and make sticks, each associated with its own policy
(Π1 and Π2 respectively). These policies share an ini-
tial high-level action b1: both require the agent to get
wood before taking it to an appropriate crafting station.
By enforcing that the agent initially follows the same
subpolicy π1 in both tasks, we can learn a reusable rep-
resentation of their shared structure.

This paper describes a framework for learning
composable deep subpolicies in a multitask set-
ting, guided only by abstract policy sketches.
We are interested in problems like the ones
shown in Figure 1, with collections of tasks
that involve sparse rewards and long-term plan-
ning, but which share structure in the form of
common subgoals or reusable high-level ac-
tions. Our work aims to develop models that
can learn efficiently from these sparse rewards
and rapidly adapt to new tasks, by exploiting
this shared structure and translating success on
one task into progress on others. Our approach
ultimately induces a library of high-level ac-
tions directly from symbolic annotations like
the ones marked K1 and K2 in the figure.

This approach builds on a significant body of
research in reinforcement learning that focuses
on hierarchical representations of behavior. In
these approaches, a high-level controller learns
a policy over high-level actions—known var-
iously as options (Sutton et al., 1999), skills
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(Konidaris & Barto, 2007), or primitives (Hauser et al., 2008)—which are themselves implemented
as policies over low-level actions in the environment. While one line of research (e.g. Daniel
et al. (2012)) investigates learning hierarchical policies without any supervision, such hierarchies
are empirically difficult to learn directly from unconstrained interaction (Hengst, 2002). The bulk of
existing work instead relies on additional information (in the form of intermediate rewards, subtask
completion signals, or intrinsic motivations) that guide the learner toward useful high-level actions.
While effective, these approaches depend on state representations simple or structured enough that
suitable reward signals can be effectively engineered by hand.

Here we focus on multitask learning of hierarchical policies from a weaker form of supervision: at
training time, each task (τ1 and τ2 in Figure 1) is annotated with a sketch (K1 andK2) consisting of a
sequence of high-level action symbols (b1, b2 and b3)—with no information about how these actions
should be implemented. Our approach associates each such high-level action with its own low-
level subpolicy, and jointly optimizes over concatenated task-specific policies by tying parameters
across shared subpolicies. Our thesis is that even the minimal information about high-level policy
structure contained in a sketch provides enough of a learning signal to induce general, reusable
subpolicies. Crucially, sketches are totally ungrounded in the representation of the world—they
require no intervention in a simulator or environment model.

The present work may be viewed as an extension of recent approaches for learning compositional
deep architectures from structured program descriptors (Andreas et al., 2016; Reed & de Freitas,
2015). Here we focus on learning in interactive environments with reinforcement training signals.
This extension presents a variety of technical challenges. Concretely, our contributions are:

• A general paradigm for multitask, hierarchical, deep reinforcement learning guided by ab-
stract sketches of task-specific policies.

• A concrete agent architecture for learning in this paradigm, featuring a modular model
structure and multitask actor–critic training objective.

We evaluate our approach on two families of tasks: a maze navigation game (Figure 3a), in which
the agent must navigate through a sequence of locked doors to reach a target room; and a 2-D
Minecraft-inspired crafting game (Figure 3b), in which the agent must acquire particular resources
by finding raw ingredients, combining them together in the proper order, and in some cases building
intermediate tools that enable the agent to alter the environment itself. In both games, the agent
receives a reward only after the final goal is accomplished. For the most challenging tasks, involving
sequences of four or five high-level actions, a task-specific agent initially following a random policy
essentially never discovers the reward signal.

We evaluate a modular agent architecture trained with guidance from policy sketches under several
different data conditions: (1) when learning the full collection of tasks jointly via reinforcement, (2)
in a zero-shot setting where a policy sketch is available for the held-out task, and (3) in a adaptation
setting, where sketches are hidden and the agent must learn a policy over high-level actions. In all
cases, our approach substantially outperforms standard policy optimization baselines.

2 RELATED WORK

The agent representation we describe in this paper belongs to the broader family of hierarchical
reinforcement learners described in the literature. As detailed in Section 3, our subpolicies may be
viewed as a relaxation of the options framework first described by Sutton et al. (1999). A large body
of work describes techniques for learning options and related abstract actions, in both single- and
multitask settings. For learning the implementation of options, most techniques rely on intermediate
supervisory signals, e.g. to encourage exploration (Kearns & Singh, 2002) or completion of pre-
defined subtasks (Kulkarni et al., 2016). An alternative family of approaches employs either post-
hoc analysis of already-learned policies to extract reusable sub-components (Stolle & Precup, 2002;
Konidaris et al., 2011). Techniques for learning options with less guidance than the present work
include Bacon & Precup (2015) and Vezhnevets et al. (2016), and other general hierarchical policy
learners include Daniel et al. (2012), Bakker & Schmidhuber (2004) and Menache et al. (2002).

Once a library of high-level actions exists, agents are faced with the problem of learning high-level
(typically semi-Markov) policies that invoke appropriate high-level actions in sequence (Precup,
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2000). The learning problem we describe in this paper is in some sense the direct dual to the
problem of learning these high-level policies. There, the agent begins with an inventory of complex
primitives and must learn to model their behavior and select among them; here we begin knowing
the names of appropriate high-level actions but nothing about how they are implemented, and must
infer implementations (but not, initially, high-level plans) from context. We expect that our approach
could be coupled with a generic learner of options policies to provide a general mechanism for
hierarchical RL; we leave this for future work.

Our approach is also inspired by a number of recent efforts toward compositional reasoning and
interaction with structured deep models. Such models have been previously used for tasks involving
question answering (Iyyer et al., 2014; Andreas et al., 2016) and relational reasoning (Socher et al.,
2012), and more recently for multi-task, multi-robot transfer problems (Devin et al., 2016). In
this work—as in existing approaches employing dynamically assembled modular networks—task-
specific training signals are propagated through a collection of composed discrete structures with
tied weights. Here the composed structures specify time-varying policies rather than feedforward
computations, and their parameters must be learned via interaction rather than direct supervision.
Another closely related family of models includes neural programmers (Neelakantan et al., 2015)
and programmer–interpreters (Reed & de Freitas, 2015), which generate discrete computational
structures but require supervision in the form of output actions or full execution traces.

A closely related line of work is the Hierarchical Abstract Machines (HAM) framework introduced
by Parr & Russell (1998). Like our approach, HAMs begin with a representation of a high-level
policy as an automaton (or a more general computer program; Andre & Russell, 2001) and use
reinforcement learning to fill in low-level details. Variations on this architecture have considered a
number of control constructs beyond the scope of the current paper (e.g. concurrency and recursion;
Marthi et al., 2004). However, because these approaches attempt to learn a single representation of
the Q function for all subtasks and contexts, they require extremely strong formal assumptions about
the form of the reward function and state representation (Andre & Russell, 2002) that the present
work avoids by decoupling the policy representation from the value function.

Our approach also bears some resemblance to the instruction following literature in natural language
processing. Existing work on instruction following falls into two broad categories: approaches that
require a highly structured (typically logical) action and world representations (Chen & Mooney,
2011; Artzi & Zettlemoyer, 2013; Andreas & Klein, 2015; Tellex et al., 2011), and approaches that
require detailed supervision of action sequences or dense reward signals essentially equivalent to
full action traces (Branavan et al., 2009; Vogel & Jurafsky, 2010; Mei et al., 2016). By contrast,
the framework we describe here involves no formal or logical language for describing plans, and
no supervised action sequences. Additionally, the modular model described in this paper natrually
supports adaptation to tasks where no sketches are available, while all existing instruction following
models learn a joint policy over instructions and actions, and are unable to function in the absence
of instructions.

3 LEARNING MODULAR POLICIES

We consider a multitask reinforcement learning problem arising from a family of infinite-horizon
discounted Markov decision processes in a shared environment. This environment is specified by
a tuple (S,A, P, γ), with S a set of states, A a set of low-level actions, P : S × A × S → R
a transition probability distribution, and γ a discount factor. Each task τ ∈ T is then specified
by a pair (Rτ , ρτ ), with Rτ : S → R a task-specific reward function and ρτ : S → R an initial
distribution over states. For a fixed sequence {(si, ai)} of states and actions obtained from a rollout
of a given policy, we will denote the empirical return starting in state si as qi :=

∑∞
j=i γ

jR(sj). In
addition to the components of a standard multitask RL problem, we assume that tasks are annotated
with sketches Kτ , each consisting of a sequence (bτ1, bτ2, . . .) of high-level symbolic labels drawn
from a fixed vocabulary B. Our model associates each of these symbols with a randomly initialized
modular subpolicy. By sharing each subpolicy across all tasks annotated with the corresponding
symbol, our approach naturally learns the shared abstraction for the corresponding subtask, without
requiring any information about the grounding of that task to be explicitly specified by annotation.
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3.1 MODEL

We exploit the structural information provided by sketches by constructing for each symbol b a
corresponding subpolicy πb. At each timestep, a subpolicy may select either a low-level action
a ∈ A or a special STOP action. We denote the augmented state space A+ := A ∪ {STOP}. While
this framework is agnostic to the implementation of subpolicies, we are especially interested in the
case where subpolicies are specified by deep networks. As shown in Figure 2, the experiments
in this paper represent each πb as a neural network whose input is a representation of the current
state, and whose output is a distribution over A+. While all action spaces in our experiments are
discrete, it is straightforward to instead allow this last layer to parameterize a mixed distribution
over an underlying continuous action space and the STOP action. These subpolicies may be viewed
as options of the kind described by Sutton et al. (1999), with the key distinction that they have no
initiation semantics, but are instead invokable everywhere, and have no explicit representation as
a function from an initial state to a distribution over final states (instead implicitly using the STOP
action to terminate).

Given a sketch, a task-specific policy Πτ is formed by concatenating its associated subpolicies in
sequence. In particular, the high-level policy maintains a subpolicy index i (initially 0), and executes
actions from πbi until the STOP symbol is emitted, at which point control is passed to πbi+1 . We may
thus think of Πτ as inducing a Markov chain over the state space S × B, with transitions given by:

(s, bi) → (s′, bi) with probability
∑
a∈A πbi(a|s) · P (s′|s, a)

→ (s, bi+1) with probability πbi(STOP|s)
Note that Πτ is semi-Markov with respect to projection of the augmented state space S ×B onto the
underlying state space S. We denote the complete family of task-specific policies Π :=

⋃
τ{Πτ},

and let each πb be an arbitrary function of the current environment state parameterized by some
weight vector θb. The learning problem is to optimize over all θb to maximize the sum of expected
discounted rewards J(Π) :=

∑
τ J(Πτ ) :=

∑
τ Esi∼Πτ

[∑
i γ

iRτ (si)
]

across all tasks τ ∈ T .

3.2 POLICY OPTIMIZATION
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Figure 2: Model overview. Each subpol-
icy π is uniquely associated with a symbol b
implemented as a neural network that maps
from a state si to distributions overA+, and
chooses an action ai by sampling from this
distribution. Whenever the STOP action is
sampled, control advances to the next sub-
policy in the sketch.

Here that optimization is accomplished via a simple de-
coupled actor–critic method. In a standard policy gradi-
ent approach, with a single policy π with parameters θ,
we compute gradient steps of the form (Williams, 1992):

∇θJ(π) =
∑
i

(
∇θ log π(ai|si)

)(
qi − c(s)

)
, (1)

where the baseline or “critic” c can be chosen indepen-
dently of the future without introducing bias into the gra-
dient. Recalling our previous definition of qi as the em-
pirical return starting from si, this form of the gradient
corresponds to a generalized advantage estimator (Schul-
man et al., 2015) with λ = 1. Here c achieves close to the
optimal variance (Greensmith et al., 2004) when it is set
exactly equal to the state-value function Vπ(si) = Eπqi
for the target policy π starting in state si.

The situation becomes slightly more complicated when generalizing to modular policies built by
sequencing subpolicies. In this case, we will have one subpolicy per symbol but one critic per
task. This is because subpolicies πb might participate in a number of composed policies Πτ , each
associated with its own reward function Rτ . Thus individual subpolicies are not uniquely identified
with value functions, and the aforementioned subpolicy-specific state-value estimator is no longer
well-defined. We extend the actor–critic method to incorporate the decoupling of policies from value
functions by allowing the critic to vary per-sample (that is, per-task-and-timestep) depending on the
reward function with which the sample is associated. Noting that∇θbJ(Π) =

∑
t:b∈Kτ ∇θbJ(Πτ ),

i.e. the expected reward across all tasks in which πb participates, we have:

∇θJ(Π) =
∑
τ

∇θJ(Πτ ) =
∑
τ

∑
i

(
∇θb log πb(aτi|sτi)

)(
qi − cτ (sτi)

)
, (2)
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where each state-action pair (sτi, aτi) was selected by the subpolicy πb in the context of the task τ .

Now minimization of the gradient variance requires that each cτ actually depend on the task identity.
(This follows immediately by applying the corresponding argument in Greensmith et al. (2004)
individually to each term in the sum over τ in Equation 2.) Because the value function is itself
unknown, an approximation must be estimated from data. Here we allow these cτ to be implemented
with an arbitrary function approximator parameterized by a vector ητ . This is trained to minimize a
squared error criterion, with gradients given by

∇ητ
[

1

2

∑
i

(qi − cτ (si))
2

]
=
∑
i

(
∇ητ cτ (si)

)(
qi − cτ (si)

)
. (3)

Alternative forms of the advantage estimator (e.g. the TD residual Rτ (si) + Vτ (si+1) − γVτ (si)
or any other member of the GAE family) can be easily substituted by simply maintaining one such
estimator per task. Experiments (Section 4.3) show that conditioning on both the state and the
task identity results in noticeable performance improvements, suggesting that the variance reduction
provided by this objective is important for efficient joint learning of modular policies.

Algorithm 1 DO-STEP(Π, curriculum)

1: D ← ∅
2: while |D| < D do
3: τ ∼ curriculum(·) . sample task τ from curriculum (Section 3.3)
4: d = {(si, ai, bi = Kτ,i, qi, τ), . . .} ∼ Πτ . do rollout
5: D ← D ∪ d

6: for b ∈ B, τ ∈ T do
7: d = {(si, ai, b′, qi, τ ′) ∈ D : b′ = b, τ ′ = τ}
8: θb ← θb − α

D

∑
d

(
∇ log πb(ai|si)

)(
qi − cτ (si)

)
. update policy

9: ητ ← ητ − β
D

∑
d

(
∇cτ (si)

)(
qi − cτ (si)

)
. update critic

The complete procedure for computing a single gradient step is given in Algorithm 1. (The outer
training loop over these steps, which is driven by a curriculum learning procedure, is described in
the following section and specified in Algorithm 2.) This is an on-policy algorithm. In each step, the
agent samples tasks from a task distribution provided by a curriculum (described in the following
subsection). The current family of policies Π is used to perform rollouts in each sampled task,
accumulating the resulting tuples of (states, low-level actions, high-level symbols, rewards, and task
identities) into a dataset D. Once D reaches a maximum size D, it is used to compute gradients
w.r.t. both policy and critic parameters, and the parameter vectors are updated accordingly. The step
sizes α and β in Algorithm 1 can be chosen adaptively using any first-order method.

3.3 CURRICULUM LEARNING

For complex tasks, like the one depicted in Figure 3b, it is difficult for the agent to discover any states
with positive reward until many subpolicy behaviors have already been learned. It is thus a better use
of the learner’s time to focus on “easy” tasks, where many rollouts will result in high reward from
which appropriate subpolicy behavior can be inferred. But there is a fundamental tradeoff involved
here: if the learner spends too much time on easy tasks before being made aware of the existence
of harder ones, it may overfit and learn subpolicies that no longer generalize or exhibit the desired
structural properties.

To avoid both of these problems, we use a curriculum learning scheme (Bengio et al., 2009) that
allows the model to smoothly scale up from easy tasks to more difficult ones while avoiding overfit-
ting. Initially the model is presented with tasks associated with short sketches. Once average reward
on all these tasks reaches a certain threshold, the length limit is incremented. We assume that re-
wards across tasks are normalized with maximum achievable reward 0 < qi < 1. Let Êrτ denote
the empirical estimate of the expected reward for the current policy on task t. Then at each timestep,
tasks are sampled in proportion to 1 − Êrτ , which by assumption must be positive. Experiments
show that both components of this curriculum learning scheme improve the rate at which the model
converges to a good policy (Section 4.3).
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The complete curriculum-based training procedure is specified in Algorithm 2. Initially, the max-
imum sketch length `max is set to one, and the curriculum initialized to sample length-1 tasks uni-
formly. (Neither of the environments we consider in this paper feature any length-1 tasks; in this
case, observe that Algorithm 2 will simply advance to length-2 tasks without any parameter updates.)
For each setting of `max, the algorithm uses the current collection of task policies Π to compute and
apply the gradient step described in Algorithm 1. The rollouts obtained from the call to DO-STEP

can also be used to compute reward estimates Êrτ ; these estimates determine a new task distribution
for the curriculum. The inner loop is repeated until the reward threshold rmin is exceeded, at which
point `max is incremented and the process repeated over a (now-expanded) collection of tasks.

4 EXPERIMENTS

As described in the introduction, we evaluate the performance of our approach in two environments:
a maze navigation game and a crafting game. Both games involve nontrivial low-level control:
agents must learn to avoid obstacles and interact with various kinds of objects. But the environments
also feature hierarchical structure: rewards are accessible only after the agent has completed two to
five high-level actions in the appropriate sequence.

In all our experiments, we implement each subpolicy as a multilayer perceptron with ReLU nonlin-
earities and a hidden layer with 128 hidden units, and each critic as a linear function of the current
state. Each subpolicy network receives as input a set of features describing the current state of the
environment, and outputs a distribution over actions. The agent acts at every timestep by sampling
from this distribution. The gradient steps given in lines 8 and 9 of Algorithm 1 are implemented us-
ing RMSPROP (Tieleman, 2012) with a step size of 0.001 and gradient clipping to a unit norm. We
take the batch size parameter D in Algorithm 1 to be 2000, and set γ = 0.9 in both environments.
For curriculum learning, the improvement threshold rgood is set to 0.8.

4.1 ENVIRONMENTS

The maze environment (Figure 3a) corresponds closely to the the “light world” described by
Konidaris & Barto (2007). The agent is placed in a discrete world consisting of a series of rooms,
some of which are connected by doors. Some doors require that the agent first pick up a key to
open them. For our experiments, each task corresponds to a goal room (always at the same position
relative to the agent’s starting position) that the agent must reach by navigating through a sequence
of intermediate rooms. The agent has one sensor on each side of its body, which reports the distance
to keys, closed doors, and open doors in the corresponding direction. Sketches specify a particular
sequence of directions for the agent to traverse between rooms to reach the goal. Mazes are sampled
with random sizes and random decisions about whether to connect rooms with open doors, locked
doors, or no doors. The sketch always corresponds to a viable traversal from the start to the goal
position, but other (possibly shorter) traversals may also exist.

The crafting environment (Figure 3b) is inspired by the popular game Minecraft, but is imple-
mented in a 2-D grid world. The agent may interact with some objects in the world by facing them

Algorithm 2 TRAIN-POLICIES()
1: Π = INIT() . initialize subpolicies randomly
2: `max ← 1
3: loop
4: rmin ←∞
5: curriculum(·) = Unif(T ′) . initialize `max-step curriculum uniformly
6: T ′ = {τ ∈ T : |Kτ | ≤ `max}
7: while rmin < rgood do
8: DO-STEP(Π, curriculum) . update parameters (Algorithm 1)
9: Z =

∑
t∈T ′ [1− Êrτ ]

10: curriculum(t) = 1[τ ∈ T ′](1− Êrτ )/Z ∀τ ∈ T
11: rmin ← minτ Êrτ
12: `max ← `max + 1
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Figure 3: Example tasks from the environments used in this paper. (a) In the maze environment, the agent must
reach a goal position by traversing right (1), down (2) and down again (3) through a sequence of rooms, some
of which may have locked doors. (b) In the crafting environment, an agent seeking to pick up the gold nugget
in the top corner must first collect wood (1) and iron (2), use a workbench to turn them into a bridge (3), and
use the bridge to cross the water (4).

and executing a special INTERACT action. Interacting with raw materials initially scattered around
the environment causes them to be added to an inventory. Interacting with different crafting stations
causes objects in the agent’s inventory to be combined or transformed into other objects. Each task
in this game corresponds to some crafted object the agent must produce; the most complicated goals
require the agent to also craft intermediate ingredients, and in some cases build tools (like a pickaxe
and a bridge) to reach ingredients located in initially inaccessible regions of the environment.

A complete listing of tasks and sketches is given in Appendix A.

4.2 MULTITASK LEARNING

The primary experimental question in this paper is whether the extra structure provided by policy
sketches alone is enough to enable fast learning of coupled policies across tasks. To evaluate this, we
compare our modular approach to two policy gradient baselines—one that learns an independent
policy for each task and one that learns a joint policy across all tasks—as well as a critic-only Q
reader baseline. For the independent model, task-specific policies are represented by networks with
the same structure as the modular subpolicies. The joint model conditions both on these environment
features, as well as a feature vector encoding the complete sketch. The Q reader forms the same joint
state and action space described in Section 3.1, and learns a single feedforward network to map from
both environment states and representations of action symbols onto Q values. This baseline can be
viewed either as a chain-structured hierarchical abstract machine with a learned state abstractor
(Andre & Russell, 2002), or as a standard instruction following baseline from the natural language
processing literature (Vogel & Jurafsky, 2010).

(a) (b) (c)

Figure 4: Comparing modular learning from sketches with standard RL baselines. Modular is the approach
described in this paper, while Independent learns a separate policy for each task, Joint learns a shared policy
that conditions on the task identity, and Q reader learns a single network to map from states and action symbols
to Q values. Performance for the best iteration of the (off-policy) Q reader is plotted. (a) Performance of
the three models in the maze environment. (b) Performance in the crafting environment. (c) Individual task
performance for the modular model in the crafting domain. Colors correspond to task length. It can be seen that
the sharp steps in the learning curve correspond to increases of `max in the curriculum. The modular approach
is eventually able to achieve high reward on all tasks, while the baseline models perform considerably worse
on average.
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(a) (b)

Figure 5: Ablation experiments. (a) The critic: lines labeled “task” include a baseline that varies with the task
identity, while lines labeled “state” include a baseline that varies with the state identity. Estimating a baseline
that depends on both the representation of the current state and the identity of the current task is better than
either alone or a constant baseline. (b) The curriculum: lines labeled “length” use a curriculum with iteratively
increasing lengths, while lines labeled “weight” sample tasks in inverse proportion to their current reward.
Adjusting the sampling distribution based on both task length and performance return improves convergence.

Learning curves for baselines and the modular model are shown in Figure 4. It can be seen that in
both the maze domain and the crafting domain, our approach substantially outperforms the baselines:
it induces policies with substantially higher average reward and converges more quickly than the
policy gradient baselines. It can further be seen in Figure 4c that after policies have been learned on
simple tasks, the model is able to rapidly adapt to more complex ones, even when the longer tasks
involve high-level actions not required for any of the short tasks (Appendix A).

Having demonstrated the overall effectiveness of our approach, our remaining experiments explore
(1) the importance of various components of the training procedure, and (2) the learned models’
ability to generalize or adapt to held-out tasks. For compactness, we restrict our consideration on
the crafting domain, which features a larger and more diverse range of tasks and high-level actions.

4.3 ABLATIONS

In addition to the overall modular parameter-tying structure induced by our sketches, the key com-
ponents of our training procedure are the decoupled critic and the curriculum. Our next experiments
investigate the extent to which these are necessary for good performance.

To evaluate the the critic, we consider three ablations: (1) removing the dependence of the model on
the environment state, in which case the baseline is a single scalar per task; (2) removing the depen-
dence of the model on the task, in which case the baseline is a conventional generalized advantage
estimator; and (3) removing both, in which case the baseline is a single scalar, as in a vanilla policy
gradient approach. Results are shown in Figure 5a. Introducing both state and task dependence into
the baseline leads to faster convergence of the model: the approach with a constant baseline achieves
less than half the overall performance of the full critic after 3 million episodes. Introducing task and
state dependence independently improve this performance; combining them gives the best result.

We also investigate two aspects of our curriculum learning scheme: starting with short examples
and moving to long ones, and sampling tasks in inverse proportion to their accumulated reward.
Experiments are shown in Figure 5b. We again see that both components are essential for good
performance. Sampling uniformly across all tasks of the target length results in slow convergence.

4.4 ZERO-SHOT AND ADAPTATION LEARNING

In our final experiments, we consider the model’s ability to generalize to new tasks unseen at training
time. We consider two evaluation conditions: a zero-shot setting, in which the model is provided a
sketch for the new task and must immediately achieve good performance, and a adaptation setting,
in which no sketch is provided and the model must learn the form of a suitable sketch by interacting
with the new task.
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Model MT 0-S Ad.

Independent .44 – <.1
Joint .49 <.1 –
Modular .89 .77 .76

Table 1: Model performance under var-
ious evaluation conditions. MT is the
multitask training condition described
in Section 4.2, while 0-S and Ad. are re-
spectively the zero-shot and adaptation
experiments described in Section 4.4.

We hold out two length-four tasks from the full inventory used
in Section 4.2, and train on the remaining tasks. For zero-
shot experiments, we simply form the concatenated policy de-
scribed by the sketches of the held-out tasks, and repeatedly
execute this policy (without learning) in order to obtain an
estimate of its effectiveness. For adaptation experiments, we
consider ordinary reinforcement learning over B rather than
A, implementing the high-level learner with the same agent
architecture as described in Section 3.1. Note that the Inde-
pendent baseline cannot be applied to the zero-shot evalua-
tion, while the joint baseline cannot be applied to the adapta-
tion baseline (because it depends on pre-specified sketch fea-

tures). Results are shown in Table 1. The held-out tasks are sufficiently challenging that the baselines
are unable to obtain more than negligible reward, while the modular model does comparatively well.

5 CONCLUSIONS

We have described an approach for multitask learning of neural network policies guided by symbolic
policy sketches. By associating each symbol appearing in a sketch with a modular neural subpolicy,
we have shown that it is possible to build agents that share behavior across tasks in order to achieve
success in tasks with sparse and delayed rewards. This process induces an inventory of reusable and
interpretable subpolicies which can be employed for zero-shot generalization when further sketches
are available, and hierarchical reinforcement learning when they are not. Our work suggests that
these sketches, which are easy to produce and require no grounding in the environment, provide an
effective scaffold for learning hierarchical policies from minimal supervision. We have released our
code at http://github.com/jacobandreas/psketch.
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A TASKS AND SKETCHES

The complete list of tasks, sketches, and symbols is given below. Tasks marked with an asterisk∗ are
held out for the generalization experiments described in Section 4.4, but included in the multitask
training experiments in Sections 4.2 and 4.3.

Goal Sketch

Maze environment
goal1 left left
goal2 left down
goal3 right down
goal4 up left
goal5 up right
goal6 up right up
goal7 down right up
goal8 left left down
goal9 right down down
goal10 left up right

Crafting environment
make plank get wood use toolshed
make stick get wood use workbench
make cloth get grass use factory
make rope get grass use toolshed
make bridge get iron get wood use factory
make bed∗ get wood use toolshed get grass use workbench
make axe∗ get wood use workbench get iron use toolshed
make shears get wood use workbench get iron use workbench
get gold get iron get wood use factory use bridge
get gem get wood use workbench get iron use toolshed use axe

12


	Introduction
	Related Work
	Learning Modular Policies
	Model
	Policy optimization
	Curriculum learning

	Experiments
	Environments
	Multitask learning
	Ablations
	Zero-shot and adaptation learning

	Conclusions
	Tasks and Sketches

