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ABSTRACT

We propose learning to transfer learn (L2TL) to improve transfer learning on a
target dataset by judicious extraction of information from a source dataset. L2TL
considers joint optimization of vastly-shared weights between models for source
and target tasks, and employs adaptive weights for scaling of constituent losses.
The adaptation of the weights is based on reinforcement learning, guided with a
performance metric on the target validation set. We demonstrate state-of-the-art
performance of L2TL given fixed models, consistently outperforming fine-tuning
baselines on various datasets. In the regimes of small-scale target datasets and
significant label mismatch between source and target datasets, L2TL outperforms
previous work by an even larger margin.

1 INTRODUCTION

Deep neural networks excel at understanding images (He et al., |2016; |Simonyan and Zisserman,
2015; Zagoruyko and Komodakis), |2016)), text (Conneau et al.| 2017;|Devlin et al.| 2018} |Lai et al.,
2015) and audio (van den Oord et al., 2016;|Amodei et al., 2016} (Chiu et al.,|2018). The performance
of deep neural networks improves significantly with more training data (Hestness et al., 2017)). As
the applications of deep neural networks diversify and span use cases with small training datasets,
conventional training approaches are often insufficient to yield high performance. It becomes highly
beneficial to utilize extra source datasets and “transfer” the relevant information to the target training
dataset. Transfer learning, commonly in the form of obtaining a pre-trained model on a large-scale
source dataset and then further training it on the target dataset (known as fine-tuning), has become
the standard recipe for most real-world artificial intelligence applications. Compared to training from
random initialization, fine-tuning yields considerable performance improvements and convergence
speedup, as demonstrated for object recognition (Razavian et al., 2014), semantic segmentation
(Long et al.| 2015)), language understanding (Devlin et al., 2018]), speech synthesis (Arik et al., 2018),
audio-visual recognition (Moon et al., 2014} and language translation (Zoph et al.,2016).

Towards the motivation of pushing the performance of transfer learning, recent studies (Ngiam et al.,
2018; [Mahajan et all [2018} [Lee et al., |2019) have explored the direction of matching the source
and target dataset distributions. Even simple methods to encourage domain similarity, such as prior
class distribution matching in Domain Adaptive Transfer Learning (DATL) (Ngiam et al., [2018)),
are shown to be effective — indeed, in some cases, the distribution similarity is shown to be more
important than the scale of the source dataset. In this paper, our goal is to push this direction further
by introducing a novel RL-based meta-learning framework. Our framework, learning to transfer learn
(L2TL), adaptively infers the beneficial source samples directly from the performance on the target
task. There are numerous cases that source samples could have features that are implicitly relevant to
the target samples and would benefit the learning process, but they may belong to different classes.
For example, consider the classification problem for bird images. The source dataset may not contain
bird images, but may have airplane images with similar visual patterns that would aid the training of
the bird classifier. L2TL framework is designed to automatically handle such cases with its policy
learning, and can push the performance further in ways that manual source dataset selection or fixed
domain similarity methods may not be able to. We demonstrate state-of-the-art transfer learning
results given fixed models in wide range of scenarios:

e Source and target datasets from similar domains: We consistently outperform the fine-tuning
baseline with a 0.6%-1.3% relative accuracy gain on five fine-grained datasets, and consistently
outperform DATL with a 0.3%-1.5% relative accuracy gain.
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o Low-shot target dataset regime: We consistently outperform the fine-tuning baseline on five
fine-grained datasets, up to 6.5% relative accuracy gain for five samples per class.

e Source and target datasets from dissimilar domains: We outperform the fine-tuning baseline, up to
1.7% relative accuracy gain on a texture dataset and 0.7 relative AUC gain on Chest X-Ray dataset.

In addition, L2TL yields ranking of the source data samples according to their contributions to the
target task, that open horizons for new forms of interpretable insights for model developers.

2 RELATED WORK

Adaptive transfer learning: There is a long history of transfer learning for neural networks, partic-
ularly in the form of fine-tuning (Yosinski et al., 2014)) (Girshick et al., 2014])). Various directions
were recently considered to improve standard fine-tuning. One direction is carefully choosing which
portion of the network to adapt while optimizing the information extraction from the source dataset.
In (Guo et al, [2019), a policy network is used to make routing decisions on whether to pass the
input through the fine-tuned or the pre-trained layers. In (Li et al.||2018), a regularization scheme is
proposed to promote the similarity of the fine-tuned model with the pre-trained model as a favorable
inductive bias. Another direction is carefully choosing which input samples are relevant to the target
task, as in our paper. (Ge and Yul 2017) uses filter bank responses to select nearest neighbor source
samples and demonstrates improved performance. In (Cui et al.,|2018]), domain similarity between
source and target datasets is quantified using Earth Mover’s Distance (EMD). Transfer learning is
demonstrated to benefit from pre-training on a source domain that is similar in EMD. With a simple
greedy subset creation selection criteria, promising results are shown for improving the target test set
performance. Domain adaptive transfer learning (DATL) (Ngiam et al., 2018)) employs probabilistic
shaping, where the value is proportional to the ratios of estimated label prior probabilities. L2TL
does not use an indirect similarity metric like proximity of filter bank responses, EMD or prior class
probabilities. Instead, it aims to assign weights to optimize the target set metric directly.

Reweighing training examples: Reweighing of constituent training terms has been considered for
various performance goals. (Ren et al., [2019) applies gradient descent-based meta-learning with
the goal of providing noise robustness and class balance in learning. Focal loss (Lin et al.,|2017) is
another soft weighting scheme that emphasizes harder examples. In (Jiang et al.| 2018)), a student-
teacher training framework is utilized such that the teacher model provides a curriculum via a sample
weighting scheme for the student model to focus on samples whose labels are likely to be correct.
(Ghorbani and Zou, [2019) studies the value of examples by estimating the data Shapley value, and
it shows that removing examples with low values would not harm performance. Reweighting of
examples is also used in self-paced learning (Kumar et al.l 2010) where the weights are optimized to
learn easier examples first. Different from these, our paper focuses on optimizing the weights for
each class, with the purpose of improving the transfer learning performance.

Meta-learning: Meta-learning broadly refers to learning to learn frameworks (Schmidhuber et al.,
1997) whose goal is to improve the adaptation to a new task with the information extracted from
other tasks. Meta learners are typically based on inspiration from known learning algorithms like
gradient descent (Finn et al.,[2017) or derived from black box neural networks (Santoro et al., 2016).
In few-shot learning, the use of validation loss as a meta-objective has been explored (Ravi and
Larochelle, 2017). However, for optimization problems with non-differentiable objectives like neural
architecture search, RL-based meta-learning is shown to be a promising approach (Zoph and Le,
2017;|Pham et al.,[2018). RL-based optimization has successfully been applied in many search spaces,
e.g. learning a data augmentation policy (Cubuk et al.,|2018). The specific form of meta-learning
application in L2TL is novel — it employs guidance on the source dataset information extraction with
the reward from the target validation dataset performance. Different from few-shot learning, we
consider a more common real-world scenario where an easily accessible source dataset is integrated.

3 LEARNING FROM SOURCE AND TARGET DATASETS

We consider a training objective function £(€2, (s, {1, A, as, at) that is jointly optimized for a
source dataset Dg and a target dataset D in the general form:

Bs BT
L=l Y Maj,y;:®) - Ls(fs(w;2,Cs),95) + il - Y Lo(fr(ah; @,6),08), (1)
=1 k=1

"Function arguments are not often shown in the paper for notational convenience.
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where (x,y) are the input and output pairs (z;,y; ~ Dg, ., yj, ~ DT) Bs and Br are the source
and target batch smeﬂ as[i] and o [i] are the scaling coefficients at ‘" iteration, \ is the importance
weighing function, fg(-; Q2 Cs) and fr(-; €, {t) are encoding functions for the source and the target
datasets with trainable parameters €2, (g and ¢’} To maximally benefit from the source dataset,
a vast majority of the trainable parameters should be shared. If we consider the decompositions,
fs(:92.Cs) = hs(Cs) 0 g Q) and f7(5 2, Cr) = hr(:Cr) 0 g(-; @), g can be a high capacity
function with large number of trainable parameters that can be represented with a deep neural
network, and hAr and hg are low capacity functions with small number of parameters that can be
represented with very shallow neural networksEl The learmng goal of Eq. |1] llS to generalize to unseen
samples from a held-out target validation dataset, and maximize a target performance metric R on

it: Zw’,y’NDfF R(fr(z';€,¢r),y)). R may or may not be differentiable with respect to z and y

such as the top-1 accuracy or area under the curve (AUC) for classification. fl, C:r are the pre-trained
weights optimized in Eq. [[] Without transfer learning, i.e., when only the target dataset is considered,
as[i] = 0 and au[i] = 1 for all i. In fine-tuning, the optimization is first considered for the source
dataset for Ng steps with uniform welghmg of the samples A\(x,y) = 1, and then for the target

dataset using the pre-trained weights (2 CT, ie.

(ol at) = {5 )5 Ve @

Next, we describe our method towards optimal learning from source and target datasets.

4 LEARNING TO TRANSFER LEARN
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Figure 1: Overall diagram of L2TL. Dashed boxes correspond to trainable functions.

We propose learning to transfer learn (L2TL) framework (shown in Fig. [I) to learn the weight
assignment adaptively, rather than using a fixed weight assignment function A(z, y; ®) to measure
the relatedness between the source domain and the target domain. Learning of the adaptive weights
in L2TL is guided by the performance metric R on a held-out target validation dataset. Thus, beyond
targeting general relatedness, the framework directly targets relatedness for the specific goal of
improvement in target evaluation performance.

Batch approximations may be optimal for different batch sizes for source and target dataset and thus may
employ different batch normalization parametrization.

*In f(-; W) representation, W denote the trainable parameters.
4Source datasets are typically much larger and contain more classes, hence hs may have higher number of
parameters than hp.
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Algorithm 1: L2TL — Learning to Transfer Learn

N < number of training iterations

fori < 1to N do

ls < 0,0; <0

for j < 1t0 Bs do
Sample x;,y; from Dg
Calculate classification loss Lg(z;, y;; €2, (s)
Calculate example weight A(z;, y,; ®)

| ls=1ls+ X Lg

ls = Q- ls

for k < 1 to Br do

Sample z}, y;. from Dy

Calculate classification loss Ly (x},, yy.; 2, (1)

L ly=1;+ Ly
Update €2, (s, (T using stochastic gradient descent with loss I5 + [;
r<0

for k < 1t0 Bp do

Sample ), y;, from Dy

Calculate reward R( fr(z},),y;,)
Lr=r+R
| Update ® with reward r using policy gradient

While optimizing for A\(x, y; ®), one straightforward option for scaling coefficients would be al-
ternating them between (1,0) and (0, 1) — i.e. training the source dataset until convergence with
optimized & and then training the target dataset until convergence with the pre-trained weights
from the source dataset. Yet, the approach may potentially require many alternating update steps
and the computational cost may become prohibitively high. Instead, we design the policy model
in L2TL to output («as[i], c¢[i]) along with )\E] The policy optimization step is decoupled from the
gradient-descent based optimization for €2, (g and (1. Updates are reflected to the policy model via
the information embodied in €2 and (. Algorithm. [[|overviews the training updates steps.

In the first phase of a learning iteration, we apply gradient decent-based optimization to learn the
encoder weights €2, and the classifier layer weights (g, (T to minimize the loss function L:

Q, (s, ¢ = argming, ., ., L(®;Q, (s, r). 3)

In this learning phase, the policy model is fixed, and its actions are sampled to determine weights.
The loss might be skewed when most of source dataset samples in a batch are unrelated, while
some batches contain more related examples. To ease this problem, we sample a larger batch and
dynamically select more related examples. At each iteration, we sample a training batch of size
Mg - Bg, and use the top Bg of them with the highest weights for training updates. This approach
also yields computational benefits as the gradients would not be computed for most source dataset
samples until convergence.

In the second phase of a learning iteration, the goal is to optimize policy weight ® that maximizes the
evaluation metric ;. on the target validation set with given encoder weights from the first phase:

m@ax RD'T(Q,CASK:F; D). @

We treat this step as an RL problem, such that the policy model outputs the actions for A(z, y; ®) and «
towards optimization of a reward. In its general form A(z, y; @) may yield a very high dimensionality
for optimization of ®. For simplicity, we consider sample-independent modeling of A(z,y; ®),
similar to (Ngiam et all [2018), i.e., A(z,y; ®) = A(y; ®). For more efficient optimization, we
discretize the possible values of A(y; ®) into pre-defined number of actions, in the range A(y) € [0, 1].
We define n actions, such that each action k € [0,n — 1] corresponds to a weight value k/(n — 1).

SWithout loss of generality, we can optimize a single weight c,[i] (setting a;[i] = 1) as the optimization is
scale invariant.
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For example, when n = 11, the weight values are [0,0.1,0.2,...,1.0]. We also discretize the
possible values for «, using n’ actions. Each action &’ corresponds to Sk’/(n’ — 1), where 3 is a
hyperparameter to constrain the value range of . The search space has n’ x (cg)™ possibilities,
where cg is the number of classes in the source dataset. When training the policy model, we use policy
gradient to maximize the reward on the target dataset Dy, using a batch size of Bp. We use the
evaluation mode for the convolutional encoder. At iteration ¢, we denote the advantage A; = Ry — by,
where b, is the baseline. Following (Pham et al.,|2018)), we use the moving average baseline to reduce
variance, i.e., b = (1 — v)b; + yR:, where = is the decay rate. The policy gradient is computed
using REINFORCE (Williams, |1992) and optimized using Adam (Kingma and Ba} 2014)).

5 EXPERIMENTS

We demonstrate the performance of L2TL in various scenarios. As the source dataset, we use the
ImageNet dataset (Russakovsky et al., [2015) containing 1.28M images from 1K classes, and also
a much larger internal dataset, named as ANON dataset, containing ~300M images from 18,291
classes to demonstrate scalability. Target datasets are chosen based on the scenarios. Hyperparameters
of the encoder models are chosen from the published baselines and policy model parameters are
cross-validated on a validation set. All hyperparameters are presented in Appendix B. For datasets
that the testing accuracy is reported using the model trained on training and validation examples,
L2TL is first trained on the training split using the reward from the validation set. Then, the learned
control variables are then used to train the joint model on the training and validation examples. We
do not use the test set during model training. For the fine-tuning experiments, we also use best set of
hyperparameters evaluated on the validation set. The results are averaged over three runs.

5.1 SOURCE AND TARGET DATASETS FROM SIMILAR DOMAINS

We initially consider the scenario of target datasets with classes that mostly exist in the source dataset.
In this scenario, DATL (Ngiam et al.| 2018)) was proven to be effective. We evaluate L2TL on five
datasets focusing on different subsets. The detailed dataset splits are presented in Appendix A. The
reward is measured on the validation set using top-1 accuracy.

Table 1: Transfer learning performance with ImageNet source dataset, compared to MixDCNN
(Wang et al.| 2015), EMD (Cui et al.| [2018), OPAM (Peng et al.| |2017) and DATL (Ngiam et al.,
2018) (* denotes the results fine-tuning baseline from (Ngiam et al., 2018)).

Target dataset test accuracy (%)

Method Birds | Pets Cars | Aircraft | Food

MixDCNN 74.8 - - 82.5 -
EMD - - 91.3 85.5 88.7

OPAM - 93.8 | 922 - -
Fine-tuning® | 77.2 | 933 | 91.5 88.8 88.7
DATL* 76.6 | 94.1 92.1 87.8 88.9
Fine-tuning 77.1 93.1 92.0 88.2 88.4
L2TL 78.1 | 944 | 92.6 89.1 89.2

Table 2: Results on the test set for Birds using images from ANON.

Method Accuracy (%)
Fine-tuning 74.9
DATL 81.7
L2TL 82.4

The results of L2TL along with fine-tuning and DATL benchmarks are shown in Table|l] As can
be seen, L2TL outperforms fine-tuning across all the datasets with 0.6%-1.3% relative accuracy
difference, which demonstrates the strength of L2TL in selecting related source examples across
various domains. DATL performs worse than fine-tuning on Birdsnap and Aircraft, unlike L2TL.
This underlines the importance of leveraging the visual similarity in the ways beyond the label match
as in DATL. The results using ANON, shown in Table 2] shows that L2TL preserves its benefits in
learning relatedness for much larger scale datasets.
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Table 3: Top chosen classes from ImageNet source dataset that are related to the target datasets. For
Birds, the top source class is “bea eater” which is one of the bird species in ImageNet. The second
top “aepyceros melampus” is an antelope that has narrow mouth, which is similar to some birds with
sharp spout. The “valley” also matches the background in some images. For Cars, we interestingly
observe the high-weight class “barrel, cask™, which indeed include wheels and car-looking body
types in many images. ‘“Terrapin” is a reptile that crawls on the ground with four legs, whose shape
looks like vehicles in some way. For Food, the high-weight classes are the least relevant intuitively
but still contain classes with visually-relevant patterns — e.g., “caldron, cauldron” may contain images
with food inside, but most “seashore, coast” are less related to food.

Target dataset | Source classes (weights)
bee eater (1.0); aepyceros melampus (0.95); sea cradle (0.92); barracouta (0.91)
Birds valley (0.90); sombrero (0.86); rosehip (0.84); Scottish deerhound (0.82);
coral reef (0.88); prayer rug (0.88); koala (0.84); fire salamander (0.81)
Pets Irish setter (0.79); Arabian camel (0.78); Irish terrier (0.74); leaf beetle (0.72);
desktop computer (0.80); butternut squash (0.76); barrel, cask (0.65);
Cars weevil (0.60); pool table (0.56); clumber (0.54); passenger car (0.50);
bagel, beigel (0.97); ballplayer, baseball player (0.84); freight car (0.80);
Aircraft teapot (0.83); crate (0.78); velvet (0.74); electric locomotive (0.68);
caldron, cauldron (0.84); menu (0.81); seashore, coast, seacoast (0.74)
Food acorn squash (0.73); dining table, board (0.67); globe artichoke (0.67);

Analysis of high-weight source samples: To build insights on the learned weights, we sample 10k
actions from the policy and rank the source labels according to their weights. Table [3] shows the
classes with the highest weights and Fig. 2] visualize a few representative examples from them. These
demonstrate that L2TL can judiciously extract the related classes from the source based on the

pattern/shape of the objects, or background scenes.
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Figure 2: Representative examples from the source datasets with high weight from L2TL for different
target datasets. In most cases, we observe them to be highly-related to the target dataset.

Effectiveness of RL: We study the effectiveness of RL training comparing it to two baselines: (i)
random search: where the policy model is not optimized and random actions are chosen as the
policy output, and (ii) uniform weights: a constant importance weight is assigned to all training
samples. Note that for these baselines, « is still optimized via policy gradient. The hyperparameters
are cross-validated on the validation set. We show the best results of the baselines. As shown in
Fig. 3] L2TL outperforms both after sufficient number of iterations, demonstrating the importance of
reweighting via policy gradient.

Low-shot regime: In the extreme regime of very small number of training examples, generalizing
to unseen examples is most challenging as the model can be prone to overfitting. Fig. [ shows
performance in the small data regime for the same datasets. In most cases, we observe significant
increase in performance when the number of examples per class is smaller. For five examples per
class, the gap is as high as 6.5% (for Stanford Car). We observe that the gap between the L2TL and
the fine-tune baseline often becomes smaller when more examples are used, but still remains as high
as 1.5% when 60 examples per class are used (for Birdsnap). The results show that L2TL can yield
significant improvements in real-world tasks where the number of training examples are limited.
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Figure 3: Performance comparison between L2TL, random search and uniform weights. The curves
are more oscillatory at the beginning, but become stable later during the training.
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Figure 4: Number of examples per class vs. top-1 accuracy for L2TL and fine-tuning

5.2 SOURCE AND TARGET DATASETS FROM DISSIMILAR DOMAINS
In this section, we consider two target datasets with classes that do not exist in source dataset:

e Describable Textures Dataset (DTD) dataset (Cimpoi et al.||2014)): It contains textural images in
the wild from 47 classes such as striped and matted. The dataset has 20 splits and we evaluate the
testing results on the first split. Each training, validation, and testing split has 1,880 images.

o Chest X-Ray Dataset CheXpert ([rvin et al| |2019): This medical dataset has been recently
introduced for chest radiograph interpretation. It consists of 224,316 chest radiographs of 65,240
patients labeled for 14 observations as positive, negative, or uncertain. Following (Irvin et al.,
2019), we report AUC on five classes and we regard “uncertain” examples as positiveﬁ For L2TL,
we use the mean AUC as the reward.

Table [ shows the results for DTD. We observe that ImageNet fine-tuning greatly improves the
classification results. L2TL further improves the fine-tuning baseline by 1.5%, demonstrating the
significance of L2TL enabling the use of related source classes instead of using all classes. For the
low-shot example case, we observe a more than 5% gain when only 10 examples are provided per
class, validating the effectiveness of L2TL in more accurate transfer learning. Fig. [5|shows that L2TL
is able to utilize visual similarities between the source and the target classes.

Table 4: Results on the test set for DTD on split 1.

Method Acc
Random Init 57.4
Fine-tuning 70.3
L2TL 72.0
10-shot, Fine-tuning | 55.0
10-shot, L2TL 60.1

Table 5] shows the results for CheXpert. L2TL performs better than the fine-tuning baseline by an
AUC margin of .007. There are not many straightforward visual similarities to humans between
ImageNet and CheXpert, but L2TL is still capable of discovering them to improve performance.

°QOur reproduced results are matched with (Irvin et al.;|2019) on mean AUC. However, there are variances as
we can see that for some classes, we achieve slightly worse than (Irvin et al.,[2019). This may because of the
small number of validation examples (200) used.
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Figure 5: Top source classes with the highest weight from ImageNet while transferring to DTD target.
Representative images from each ImageNet class are shown along with related examples from DTD.
The similarities occur in the form of texture pattern for most DTD classes. For example, “praire
chicken” images from ImageNet typically contain patterns very relevant to “lined” from DTD.

Table 5: AUC comparisons (based on the same evaluation protocol as in (Irvin et al.,|2019)) on the
CheXpert dataset. * denotes the results reported in (Irvin et al.| 2019).

Method Atelectasis | Cardiomegaly | Consolidation | Edema | Pleural Effusion | Mean
Fine-tuning* .858 .832 .899 941 934 .893
Fine-tuning .852 .838 .900 .945 928 .893
L2TL 861 844 915 948 932 900

6 COMPUTATIONAL COST OF TRAINING

Table [6] presents the computational cost for fine-tuning, DATL and L2TL. In DATL, given a new
target dataset, a new model has to be trained on the resampled data until convergence. This step is
time-consuming for large-scale source datasets. In L2TL, the transfer learning step is more expensive
than fine-tuning, as it requires the computation on both source and target datasets. Yet, it only requires
a single training pass on the source dataset, and yields much lower training time compared to DATL.

Table 6: Computational cost of training using Inception-V3 on Cloud TPU v2 when the source dataset
is ImageNet. The last column of total time assumes availability of a pre-trained source model.

Method Number of iterations Time per iterations Total time
Pre- Transfer Pre- Transfer From With pre-trained
training | learning | training | learning scratch source model
Fine-tuning | 213,000 20,000 0.14s 0.21s 9.5h 1.2h
DATL 713,000 20,000 0.14s 0.21s 28.9h 20.6h
L2TL 213,000 20,000 0.14s 0.75s 12.5h 4.2h

7 CONCLUSIONS AND FUTURE WORK

We propose a novel RL-based framework, L2TL, to improve transfer learning on a target dataset by
careful extraction of information from a source dataset. L2TL considers joint optimization of models
for source and target tasks, while using adaptive weights for scaling of constituent loss terms. We use
the performance metric on the target validation set as the reward to train the policy model, which
outputs the weights for each source class adaptively. We demonstrate state-of-the-art performance
of L2TL for various datasets. The performance benefit of L2TL typically gets more significant as
the target dataset size gets smaller. Our framework does not utilize an explicit similarity metric, but
learns source class weights to directly optimize the target dataset performance. In cases where source
and target datasets come from substantially different domains, L2TL still yields clear improvements.
This improvement often comes from utilizing the source dataset classes that have relevant visual
patterns despite belonging to a substantially different class.

Our general L2TL framework can be pushed beyond the approximations in this paper. A search space
with a higher optimization granularity is expected to improve the results. Modeling the x dependence
of the A(z,y; ®) function using a policy gradient can be a promising step towards that approach
(particularly for the datasets with high intra-class variance, such a model can help to select particular
samples within the class) albeit likely accompanied by increased computational complexity.
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A DATASET SPLITS OF THE FINE-GRAINED DATASETS

Table 7: Details for five fine-grained datasets: Birdsnap (Birds) (Berg et al., 2014}, Oxford-IIIT Pets
(Pets) (Parkhi et al.| |2012), Stanford Cars (Cars) (Krause et al.)), FGVC Aircraft (Aircraft) (Maj1 et al.,
2013), and Food-101 (Food) (Bossard et al.,[2014).

Birds Pets Cars | Aircraft | Food
# of classes 500 37 196 100 101
# of train examples | 42,405 | 2,940 | 6,494 3,334 68,175
# of valid examples | 4,981 740 1,650 3,333 7,575
# of test examples 2,443 | 3,669 | 8,041 3,333 25,250

B HYPERPARAMETERS

When the source dataset is ImageNet, we use batch size Bs = 256, Br = 256, Bp = 1024 and a batch
multiplier Mg = 5 for all the experiments. For the ANON dataset, to reduce the number of training iterations,
we use Bs = 1,024. The number of actions n’ for « is 100.

We use the Inception-V3 architecture for all the experiments except CheXpert. For target dataset, we searched
the initial learning rate from {0.001, 0.005,0.01,0.05,0.1,0.15,0.2, 0.4}, weight decay from {0,4 x 107°}.
All the datasets are optimized by SGD with momentum 0.9. We use the single central crop during evaluation.
The learning rate is cosine decayed after first 2,000 iterations warmup. The number of training iterations is
20,000. When optimizing our policy model, we the Adam optimizer with a fixed learning rate 0.0001. As policy
model parameters, we set 5 = 0.5 and v = 0.05 for all the experiments. We followed the standard image
preprocessing procedure for Inception-V3 on both the source images and the target images.

For CheXpert, we use the DenseNet-121 architecture Huang et al.[(2017) and following the evaluation protocol
specified in|Irvin et al.|(2019)), where ten crops are used for evaluation and 30 checkpoints are ensemble to obtain
the final results. We cross validate weight decay and initial learning rate, where the weight decay is searched in
[0, 0.0001] and the learning rate searched in range [0.5, 0.8, 1.0, 1.3, 1.5, 2.0]. All other hyperparameters are
same as above. We use the same input preprocessing as described in https://github.com/zoogzog/
chexnet.
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