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Figure 1: We analyze conditions on the data distribution under which the Bayes-Optimal classifier
may be vulnerable to adversarial attacks and present realistic image datasets for which the Bayes-
Optimal classifier can be calculated efficiently. When the data distribution satisfies certain asym-
metries, the Bayes-Optimal classifier is vulnerable (b), but when the distribution is symmetric, the
optimal classifier is robust and adversarial attacks are perceptually meaningful (c). Our experiments
with these datasets show that CNN training consistently fails to find a robust classifier even when
the optimal classifier is robust (d), while large-margin methods often succeed (e).

ABSTRACT

Adversarial attacks on CNN classifiers can make an imperceptible change to an
input image and alter the classification result. The source of these failures is still
poorly understood, and many explanations invoke the “unreasonably linear ex-
trapolation” used by CNNs (Goodfellow et al., 2018) along with the geometry of
high dimensions.
In this paper we show that similar attacks can be used against the Bayes-Optimal
classifier for certain class distributions, while for others the optimal classifier is
robust to such attacks. We present analytical results showing conditions on the
data distribution under which all points can be made arbitrarily close to the opti-
mal decision boundary and show that this can happen even when the classes are
easy to separate, when the ideal classifier has a smooth decision surface and when
the data lies in low dimensions. We introduce new datasets of realistic images of
faces and digits where the Bayes-Optimal classifier can be calculated efficiently
and show that for some of these datasets the optimal classifier is robust and for
others it is vulnerable to adversarial examples. In systematic experiments with
many such datasets, we find that standard CNN training consistently finds a vul-
nerable classifier even when the optimal classifier is robust while large-margin
methods often find a robust classifier with the exact same training data. Our re-
sults suggest that adversarial vulnerability is not an unavoidable consequence of
machine learning in high dimensions, and may be the result of the specific dis-
tributions of commonly used datasets or of suboptimal training methods used in
current practice.

1 INTRODUCTION

Perhaps the most intriguing property of modern machine learning methods is their susceptibility to
adversarial examples (Szegedy et al., 2014; Goodfellow et al., 2018): for many powerful classifiers it
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is possible to change the input by an imperceptible amount and change the decision of the classifier.
While adversarial examples were most famously reported for Neural Network classifiers (Szegedy
et al., 2014), subsequent research has shown that other classifiers can also fall prey to similar at-
tacks (Goodfellow et al., 2018). Attempts to make classifiers robust to these attacks have generated
a tremendous amount of interest (e.g. (Schott et al., 2019) and references within), although a recent
survey argued that “There has been much work showing that basically all defenses suggested so far
in the literature do not substantially increase robustness over undefended neural networks.” (Schott
et al., 2019)

As a first step towards solving the problem, many authors have attempted to understand the source of
the failure (Goodfellow et al., 2018; Szegedy et al., 2014; Tanay & Griffin, 2016; Fawzi et al., 2018).
Intuitively the failure suggests that the decision surface learned by neural networks is “discontinuous
to a significant extent”, analogous to an attempt to discriminate the rational numbers from the rest
of the real numbers (Szegedy et al., 2014). The most prominent theory suggests that the problem is
that neural network classifiers are “unreasonably linear” combined with the fact that they operate in
high dimensions (Goodfellow et al., 2018; 2015). In high dimensions the output of a random linear
classifier can be changed by making a small change in the `∞ norm of an example. (Fawzi et al.,
2018) show a connection between the error rate of linear and quadratic classifiers and the adversarial
vulnerability and show that linear classifiers in high dimensions must be vulnerable for data that
is not linearly separable. (Ford et al., 2019) show that adversarial vulnerability is closely related
to the lack of generalization to random perturbations and that in high dimensions even moderate
failures to generalize to high amounts of noise imply the existence of adversarial examples. Shamir
et al. (2019) have also focused on the geometry of high dimensions arguing that adversarial attacks
may be a “natural consequence of the geometry of Rn with the L0 (Hamming) metric”. Jacobsen
et al. (2018) connect the problem of adversarial examples with the excessive invariance of modern
CNNs to large image transformations. Zhang et al. (2019) discuss the tradeoff between robustness
and accuracy and show a very discontinuous toy distribution where the Bayes-Optimal classifier is
not robust. Most recently, (Ilyas et al., 2019) have argued that adversarial examples are a feature,
not a bug, and showed that one can in fact obtain information about the true decision boundary
from adversarial examples. Their analysis suggests that vulnerability results from the presence of
predictive features that are not robust. They presented a synthetic dataset which was constructed to
not contain such features, and showed that CNN training on that dataset was robust. . In (Nakkiran,
2019), a similar dataset was presented without nonrobust features, but CNN training did lead to
non robust classifiers when the dataset was noisy, leading the authors to conclude that “Adversarial
Examples are Just Bugs, Too”. This result is consistent with Tanay & Griffin (2016) who show
that adversarial vulnerability is related to overfitting in learning algorithms that are not sufficiently
regularized. Similarly, Lyu & Li (2019) show theoretically and experimantally that the the details of
the training procedure can significantly change the robustness of CNNs.

In this paper we give an alternative perspective on adversarial examples by focusing on Bayes-
Optimal classifiers. We ask: under what conditions on the data distribution will a large fraction
of the points be close to the optimal decision boundary? We show that it is easy to construct data
distributions in which this happens (bottom of figure 2) and seemingly similar distributions in which
this does not happen (top of figure 2). Contrary to previous explanations, adversarial attacks may
succeed when the optimal decision surface is continuous and the data does not need to lie in high
dimensions. Rather we show that the susceptibility to adversarial examples is related to the pres-
ence of asymmetries in the predictive power of different features in the data distribution, and we
show analytically that when such asymmetries exist, optimal classifiers will suffer from adversarial
examples. We introduce new datasets of realistic images for which the Bayes-Optimal classifier can
be calculated efficiently and show that for some of these datasets the optimal classifier is robust to
adversarial examples and in others it is not.1 In systematic experiments with datasets where the opti-
mal classifier is robust, we show that standard CNN training methods consistently find a non-robust
classifier even though the optimal classifier is robust, while large-margin methods often find a robust
classifier using exactly the same training data. Our results suggest that adversarial vulnerability is
not an unavoidable consequence of machine learning in high dimensions, and in many cases may be
a result of suboptimal training methods.

1The datasets and models will be made publicly available after publication.
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Figure 2: Top: examples of 2D distribution where the optimal decision boundary is far from the
datapoints. Bottom: distribution where the optimal boundary is close to many of the datapoints.

2 ANALYSIS: IS THE OPTIMAL CLASSIFIER NECESSARILY ROBUST?

We focus on a two class classification problem and denote by p1(x) the distribution of x when x is
in the first class, and similarly p2(x) for the second class. We assume that p1(x), p2(x) are known
and that the two classes have equal priors, so the Bayes-Optimal classifier simply classifies x as be-
longing to class 1 if p1(x) > p2(x) and to class 2 otherwise. It is well known that this classification
rule is optimal and no other classification rule can achieve higher accuracy (assuming of course that
p1(x), p2(x) are correct) (Duda et al., 1973). A textbook example of Bayes-Optimal classification
is when both classes are generated with a Gaussian with the same spherical covariance matrix, in
which case the optimal classifier is a linear discriminant which is orthogonal to the difference be-
tween the two means (figure 2a). In this case, if the distance between the two means is large relative
to the covariance, then almost all points are far from the decision boundary and so an adversarial
attack which only makes small changes to the input will typically fail. But as shown in the bottom
of figure 2 there are other examples where the decision boundary is close to many of the datapoints
and an adversarial attack which only makes small changes to the input will often succeed. What
distinguishes these two cases?

To gain intuition, consider the images shown in the left side of figure 3. Assume we have infinite
examples of images of Cindy Crawford and denote by p1(x) the probability of generating an image
under this distribution. Denote by p2(x) the probability of generating an image of a different person.
Under p1(x) all images have a mole, while under p2(x) this probability is very low. Thus an optimal
classifier will assign an extremely high weight to the presence of a mole in an image. This means that
by making a tiny change in the image and erasing the mole (right side of figure 3) we can drastically
change the output of the optimal classifier (and in fact drive p1(x) down to zero). Note that this is
not the same as the standard definition of overfitting (i.e. a difference between performance on the
training samples and test samples): even unseen images of Cindy Crawford that are generated from
p1(x) will have a mole present, so giving this feature high weight will not hurt generalization, but
will make the classifier susceptible to adversarial attacks. This intuition is similar to that used in the
recent work of (Ilyas et al., 2019) who argue that adversarial vulnerability is a feature, not a bug,
and results from the presence of predictive features that are not robust. The way we formalize this
intuition, below, is quite different from that of (Ilyas et al., 2019) (whose analysis focused on linear
classifiers) and also leads to quite different conclusions.

We first focus on the case where both class distributions are Gaussians, i.e. p1(x), p2(x) are both
Gaussian with means µ1, µ2 and covariances Σ1,Σ2.
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Figure 3: Intuition behind our analysis. When the distribution of one of the classes includes an
extremely predictive feature (e.g. the mole in images of Cindy Crawford), then the optimal classifier
assigns this feature an extremely large weight. This means that by changing just that one feature, an
adversary can drastically lower the probability that it be classified correctly. In the text we formalize
this intuition.

Observation 1: Let d be a direction of minimal variance under Σ1 : d = arg min d′TΣ1d
′. Let σ2

1
be the variance projecting x onto that direction when x comes from class 1. If σ1 → 0 and Σ2 is full
rank then almost any point in class 1 is arbitrarily close to the optimal decision surface.

Proof: We denote by σ2 = dTΣ2d the variance of the data in direction d under the distribution of
the second class p2. Note that by the assumption that Σ2 is full rank, this variance must be nonzero.
We write the vector x as (t, s) where t is the projection in direction d and s is a vector of projections
in directions orthogonal to d. We denote by ti the projection of µi in direction d. The decision
surface as a function of t is a solution to:(
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Now since d is a direction of minimal variance it must be an eigenvector of Σ1 so that s and t are
independent under p1 and we can write log p1(s|t) = log p1(s). Using the standard equation for
conditional Gaussians we see that p2(s|t) is a Gaussian with the following means and variances.

µs|t = µs + Σst2 (t− t2) (2)

Σs|t = Σss2 − Σst2
1
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Σts2 (3)

where Σss2 ,Σ
st
2 are the appropriate submatrices of the covariance matrix Σ2.

As σ1 → 0 then t → t1 so we can approximate log p2(s|t) with a Gaussian with the following
means and variances:

µs|t = µs + Σst2 (t1 − t2) (4)

Σs|t = Σss2 − Σst2
1
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2

Σts2 (5)

Note that now neither the mean nor the variances depend on t. This means that the decision surface
for t is a solution to the following equation:(
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where the right hand side is a constant that does not depend on t or σ1. As σ1

σ2
approaches zero,

the solutions of this equation approach t1. And because σ1 → 0 almost all samples from the first
Gaussian will be close to t1 so moving x by a tiny amount in direction d will change the optimal
decision. �

As can be seen from equation 6, we do not need σ1 to be exactly equal to zero for the decision
surface to be close to the datapoints. It is enough for σ1 to be significantly smaller than the mini-
mal variance of Σ2. Figures 2a,b,e,f illustrate this dependence: when the minimal variances in both
Gaussians is similar then the decision boundary is far from most points (top), but when there is a
strong asymmetry in the minimal variances then the decision boundary becomes close to the data-
points in one of the classes. In (Tanay & Griffin, 2016), the existence of directions of small variance
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was suggested as a possible explanation for adversarial examples by invoking overfitting: when such
directions exist, a linear classifier may fail to learn the optimal decision boundary. Our analysis, on
the other hand, is for the Bayes-Optimal classifier which by definition does not overfit.

We now assume that the distribution in each class can be represented as a mixture model:

pi(x) =
∑
k

πikpik(x) (7)

where πik represent the prior probability of component k in pi and pik is the probability distribution
of that component.

We also assume that within each class, the components are well separated, i.e. that for each datapoint
the assignment probabilities put all their mass on one of the components. More formally, denote by
gk(x) the assignment probability of a datapoint x to component k:

gik(x) =
πikpik(x)∑
j πijpij(x)

(8)

then we assume that for each x, gik(x) = δ(k − k∗i (x)) where k∗i (x) is the index of the component
that is most likely to have generated x under probability pi(x). Under this assumption the probability
of generating a point x under p1 is simply:

πk∗1 (x)p1k∗1 (x)(x) (9)

We will also assume that for well separated components, within each distribution, the assigned
component does not change when we perturb x by a small amount k∗i (x) = k∗i (x + ε) where ε is a
small perturbation.

Observation 2: Assume that both classes are generated by well separated Gaussian mixtures. Let
Σ1k be the covariance matrix of the kth Gaussian in the mixture for class 1. If there exists a Gaussian
j in class 2 such that Σ1k and Σ2j satisfy the asymmetry conditions of observation 1, then almost
any point generated by that Gaussian is close to the optimal decision boundary.

Proof: We simply apply observation 1 to the two Gaussians, Σ1k in class 1 and Σ2j in class 2.
By observation 1, we can make all points generated by the Gaussian in class 1 more likely to have
been generated by the Gaussian in class 2, by moving a tiny amount. By the well separatedness
asssumption, the original Gaussian in class 1 is still more probable than all the other Gaussians in
the same class, so the point will now be classified as coming from class 2 by the Bayes-Optimal
classifier. �

Figures 2d,h illustrate the importance of asymmetry in data generated from a Gaussian Mixture
Model. In the top figure, both classes are generated from a mixture of two Gaussians, whose min-
imal variance in the same. In the bottom figure, each class data is generated by a mixture of three
Gaussians: the two original Gaussian plus a third isotropic Gaussian that has low mixing proportion
but very large variance. Once this third Gaussian is present in the other class, the Bayes-Optimal
decision surface becomes very close to all points in both classes (except for those generated by the
rare, broad Gaussian).

2.1 NON GAUSSIAN DISTRIBUTIONS

A natural question following observation 1 is to what extent the result depends on the Gaussian
distribution. To address this, we now consider discrete distributions. We assume that every instance
x is described by quantized features that can take on a discrete number of values. For example,
the features can be wavelet coefficients of an image that are discretized into 256 possible values.
This means that p1(f), p2(f) are simply very large tables that give the probability of observing
a particular discrete set of image features given each of the classes. Of course learning such a
large table is infeasible without additional assumptions, but recall that we are analyzing the Bayes-
Optimal case, where we assume p1(f), p2(f) are known.

Observation 3: Assume there exists a feature i and a quantization level k so that p1(fi = k) → 1.
Assume also that for any feature vector f , p2(f) > 0. Then almost any point in class 1 is one
quantization level away from the optimal decision boundary.
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Proof: We again write f = (s, t) where s is the ith feature and t are all other features.

p1(s, t) = p1(s)p1(t|s); (10)

Now assume that p1(s) approaches 1 for s = k and 0 otherwise. This means that for almost any
point in class 1 the value of that feature is equal to k. We now change the feature by one quantization
level and obtain a new feature vector (s̃, t) and p1(s̃, t) = p1(s̃)p1(t|s̃) = 0. On the other hand, by
the assumption p2(s̃, t) > 0 so that this point would now be classified as belonging to class 2. �

As in the Gaussian case, we do not need p1(s) to be exactly equal to a delta function for the decision
surface to be close to most points. It is enough that p1(s̃)p1(s̃)

be much smaller than the minimal values
of p2 for the decision to be flipped when we replace s with s̃. Figures 2g,c illustrate this depen-
dence. In both cases, the data is sampled from a discrete distribution where the features are simply
discretization of the two spatial coordinates into 100 levels each. In other words, p1 and p2 are
tables of size 10, 000 and each entry in the table represents the probability of generating a point at
one of the 10, 000 possible locations. In the top example, the minimal value of the probability table
is approximately the same in both classes, while in the bottom example, there is a strong asymmetry
and the decision boundary becomes close to all points in one of the classes.

Observation 4: Assume that both classes are generated by well separated discrete feature distribu-
tions. Let p1k(f) be be the kth table of feature distributions under class 1. If there exists a j in class
2 such that p1k(f), p2j(f) satisfy the asymmetry conditions of observation 2, then almost any point
generated by that component is close to the optimal decision boundary.

The proof is identical to the proof of observation 2.

3 DATASETS OF REALISTIC IMAGES WITH EFFICIENT CALCULATION OF THE
BAYES-OPTIMAL CLASSIFIER

In order to connect the discussion of optimal classifiers with datsets that can be used with modern
classifiers, we introduce new datasets of realistic images of faces and digits for which the Bayes-
Optimal classifier can be calculated efficiently. We do this by leveraging recent advances in genera-
tive modeling of full images (Goodfellow, 2016; Richardson & Weiss, 2018).

To create these datasets, we start with a labeled training set (e.g. MNIST) with two classes. We
then train a separate Mixture of Factor Analyzers (MFA) model p1(x), p2(x) on images from the
two classes. The MFA model (Ghahramani et al., 1996) is a standard density model: it models each
density as a mixture of Gaussians where the covariance of each Gaussian is the sum of a low rank
matrix and a diagonal one (see appendix for details). We now create a new training set by sampling
images from the two models, and similarly a new test set. Since these datasets were created by
sampling from a known model, we can calculate the Bayes-Optimal classifier. At the same time,
the images are realistic and MFA models have been shown to capture much of the variability of the
images in the original data (Richardson & Weiss, 2018). The top of figure 4 shows samples from
the p1(x), p2(x) when the MFA were learned separately from the ”male” and ”female” attributes in
the CelebA dataset (Liu et al., 2015). More samples from other datasets including digits and faces
can be found in the appendix. While these samples are typically somewhat blurred, it can be seen
they are realistic and highly variable. In fact, in many real world applications one needs to classify
somewhat blurry images (e.g. analyzing faces in surveillance videos).

In order to investigate the importance of asymmetry in the variances, we created symmetric and
asymmetric variants of these datasets. In the symmetric version, we regularized the MFA so that
all covariance matrices had the same minimal variance. In the asymmetric version, we added to
each MFA model one additional “outlier” component: it had a diagonal covariance with much larger
minimal variance than all the other covariances and a mean which is close to the mean of the data.

The advantage of using a MFA model over other generative models such as VAEs or GANs (Kingma
& Welling, 2014; Gulrajani et al., 2017) is that the log likelihood of any image can be calculated
efficiently. Specifically we follow (Richardson & Weiss, 2018) and find the Gaussian component
that is most likely to have generated the image, and then evaluate the likelihood of the image given
that Gaussian. We can then use this log likelihood to classify an image as belonging to one of the
two classes (e.g. ”male” or ”female”). Since the data were generated by the assumed distributions,
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Male/Female Asymmetric: (L2 = 0.9)
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Figure 4: We introduce new datasets of realistic images for which the Bayes-Optimal classifier can
be calculated efficiently. The vulnerability of the optimal classifier depends on the presence of asym-
metries. Each result shows the original images, adversarial images and perturbations (magnified for
visibility as necessary). Histogram of the perturbations in pixel values (0-255) are on the right.

this classifier is Bayes-Optimal. Indeed in all datasets we created, the accuracy of the classifier was
close to 100%. We now asked: is this Bayes-Optimal classifier robust to adversarial attacks?

Unlike our theoretical results, deciding whether or not a real classifier is robust or not requires an
operational definition of what constitutes a ”tiny” or ”imperceptible” perturbation. We follow the
standard practice of calculating the mean L2 perturbation of an adversarial attack. In other words,
we allow the adversary an unlimited budget in attacking the classifiers, and we then measure how
large (in terms of Euclidean norm) a perturbation was required to cross the decision boundary. The
mean is calculated only over successful attacks, when the original sample was correctly classified
and the adversarial example was not. Since this definition is sensitive to outliers and the particular
choice of Euclidean norm, we also examined the histograms of changes made to each pixel in the
adversarial attack. Finally, we visually inspected the adversarial images.

In all 15 datasets, we found that these three methods of defining robustness are consistent. For the
face images, when the mean L2 is less than 1.5, then the adversarial images are almost indistinguish-
able from the original images, and the vast majority of the pixels in the adversarial images are within
5/255 intensity levels from their original value. On the other hand, when the mean L2 is around 3,
then the adversarial images are perceptually quite different from the original ones, and many pixels
differ by more than 5/255 from their original values. Similar definitions of robustness were used in
previous reports (Schott et al., 2019; Carlini et al., 2019).

We used a simple gradient attack in which we take a small step in the direction of the gradient
of the MFA log likelihood (see appendix for details). Similar results are achieved with a standard
implementation (Papernot et al., 2016) of the CW-L2 attack (Carlini & Wagner, 2017).

As shown in figure 4 the difference between the symmetric datasets and asymmetric datasets is
dramatic (see appendix for similar results on other classes). When there exists a large asymmetry
between the minimal variances of different Gaussians, the conditions of observation 3 hold, and
a tiny imperceptible change is sufficient to fool the Bayes-Optimal classifier. However, when all
Gaussians have the same minimal variance, the adversary needs to make much larger changes and
the adversarial examples become perceptually meaningful.

4 EXPERIMENTS: WHY ARE CNNS SO BRITTLE?

Given our analysis, the fact that modern machine learning methods are often susceptible to tiny
adversarial attacks may be due to two very different reasons (figure 5). One reason could be that
the data distribution is asymmetric, so that the Bayes-Optimal classifier is not robust, and hence it
is not surprising that a CNN is also not robust. A second possible reason is illustrated in figure 5b:
here the data distribution is symmetric and the Bayes-Optimal classifier is robust, yet SGD starting
from a bad initial condition finds a brittle classifier. If this is the case, then the brittleness is not
due to the data distribution but rather a failure of the learning method. Indeed (Tanay & Griffin,
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Figure 5: Why are CNNs so brittle? Is it because the data distributions are asymmetric so that the
optimal classifier is also brittle (left) or is due to non optimal learning in cases where the optimal
classifier is robust (right)?

2016; Nakkiran, 2019) have presented toy distributions where the optimal classifier is robust but
suboptimal learning fails to find it.

In order to separate the contribution of the dataset from the estimation method in the vulnerability
of machine learning methods, we trained a CNN on samples from all 15 ”symmetric” datasets de-
scribed in section 3, and measured the vulnerability on the learned CNN. We used the standard CNN
implementation available as part of the CleverHans library. We asked: will the CNN find a brittle
classifier even though the optimal one is robust?

Results are shown in figure 6. In all 15 cases, the CNN found a high accuracy classifier that was
vulnerable to small adversarial attacks, even though the optimal classifier is robust. The difference
is most dramatic in the celebA tasks, where the CNN adversarial examples are almost indistin-
guishable from the original images (examples of the attacks on different datasets are shown in the
appendix). In the easier, MNIST tasks, the CNN adversarial perturbations are still significantly
smaller than those of the Bayes-Optimal classifier and less perceptually meaningful. While there are
many possible architectures and optimization methods for CNNs, we did not find any improvement
in the CNN robustness in our attempts to change the number of filters, layers, training iterations etc.
In particular, (Schmidt et al., 2018) have argued that one needs more training examples to achieve
robust classification, so we systematically varied the amount of training images (generated dynam-
ically at each SGD iteration), and found no significant improvement in robustness as we increased
the number of training examples up to 1 million examples (see appendix for details). Even adver-
sarial training of the CNN (using the method of (Zhang et al., 2019)) did not significantly improve
robustness.

Is it possible to learn a robust classifier for these datasets from finite training data? To answer that
question, we then trained linear and RBF support vector machine classifiers on exactly the same
datasets. The linear SVM attempts to maximize the margin while maintaining high accuracy, but
since the optimal classifier is nonlinear it ends up learning a brittle classifier. More importantly,
with an appropriate bandwidth parameter RBF SVMs often find a robust classifier when trained on
exactly the same data (when the bandwidth parameter is too large, the RBF performs similarly to a
linear SVM). Returning to figure 5, our results strongly support the hypothesis that for these cases
brittleness is due to suboptimal learning methods, even when the data distributions are symmetric
and the optimal classifier is robust.

5 DISCUSSION

Since the initial discovery of adversarial examples for CNNs there has been much discussion
whether they are a ”bug” that is specific to neural networks or a ”feature” of high dimensional
geometry. On the one hand, our results show that even the Bayes-Optimal classifier may be suscep-
tible to tiny adversarial perturbations, and this can happen in low dimensions and when the optimal
classification function is smooth. Perhaps more significantly, our analysis has also enabled us to
construct realistic datasets for which the Bayes-Optimal classifier is robust. We find that standard
CNN training consistently fail to find a robust classifier for these datasets, while large-margin meth-
ods can succeed when training on exactly the same data. This suggests that in some situations,
the presence of adversarial examples represents a failure of current, suboptimal, learning methods,
rather than being an unavoidable property of learning in high dimensions.
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CelebA MNIST
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Figure 6: Adversarial attack perturbation sizes (mean L2 norm) for different models for all symmet-
ric datasets.

We are by no means advocating a return to using RBF SVMs rather than CNNs. Rather, we believe
that explicit regularization methods for CNNs may enable learning robust classifiers while maintain-
ing the power of deep architectures. Recent theoretical work on gradient descent methods suggests
that they implicitly reward large margin classifiers in both shallow and deep architectures (Soudry
et al., 2018; Poggio et al., 2017; Lyu & Li, 2019) although convergence to a large margin classifier
may require exponential time.

While our experiments have focused on the ”symmetric” datasets, where there is no tradeoff between
accuracy and robustness, there is no reason to believe that real datasets will be symmetric rather than
asymmetric. As our analysis has shown, if the real datasets do have strong asymmetries, then the
Bayes-Optimal classifier will not be robust. Nevertheless, improved learning algorithms should
allow us to trade off robustness and accuracy in a principled manner, as can currently be done in
the training of shallow architectures such as SVMs. In the appendix, we show results with trained
models on real data for the CelebA Male/Female task. Although we cannot calculate the Bayes
Optimal classifier, the trend is similar to what we saw in the synthetic data: CNNs and Linear SVMs
learn very vulnerable models, while the RBF SVM learns a classifier that is robust and can only be
fooled when the adversary makes perceptually meaningful changes.

In general, when trying to understand a complex effect, it is often useful to disentangle the different
causes. The Bayes-Optimal perspective on adversarial examples identifies two possible causes:
asymmmetries in the datasets and suboptimal learning. Furthermore, it allows us to disentangle
these two possible causes by creating synthetic datasets in which one of the two causes can be
clearly implicated. We are optimistic that such an approach will be of great use in developing new
learning algorithms that are practical and robust.
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A SYMMETRIC VS. ASYMMETRIC

Figure 7 presents additional examples comparing symmetric and asymmetric datasets and the rela-
tive robustness of their Bayes-Optimal classifiers to adversarial examples.

Smiling/NotSmiling Asymmetric: (L2 = 0.8)

Smiling/NotSmiling Symmetric: (L2 = 3.1)

0/6 Asymmetric: (L2 = 0.5)

0/6 Symmetric: (L2 = 3.0)

Figure 7: The vulnerability of the optimal classifier depends on the presence of asymmetries. Each
result shows the original images, adversarial images and perturbations (magnified for visibility as
necessary). In the symmetric datasets, attacking the optimal classifier requires large and perceptually
meanigfull perturbations.

B MODELS

In this section we provide additional information about the different classification models – archi-
tecture, hyper-parameters and training procedure.
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Figure 8: A Mixture of Factor Analyzers (MFA) model for toy data in R3 (sampled 3D helix –
blue points). The latent dimension is 2 – each component is a Gaussian on a learned 2-dimensional
hyperplane with added axis-aligned noise.

B.1 MFA

A Mixture of Factor Analyzers (MFA) (Ghahramani et al., 1996) is a Gaussian Mixture Model where
each component is a Factor Analyzer parameterized by a low rank plus diagonal covariance matrix.
MFA provides a good tradeoff between the non-expressive diagonal-covariance model and a full-
covariance model, which is too computationally expensive for high-dimensional data such as full
images.

The model for a single Factor Analyzer component is:

x = Az + µ+ ε , z ∼ N (0, I) , ε ∼ N (0, D) , (11)

where A is the rectangular factor loading matrix, z is a low-dimensional latent factors vector, µ
is the mean and ε is the added noise with a diagonal covariance D. This results in the Gaussian
distribution x ∼ N (µ, AAT +D). The MFA is a mixture of such Gaussians. Figure 8 demonstrates
the MFA model for toy data.

The MFA model was trained using the code provided by Richardson & Weiss (2018). The models
are trained using Stochastic Gradient Descent. The training data (CelebA, MNIST) is first split by
the desired binary attribute (e.g. Smiling / Not Smiling) and then a separate MFA model was trained
independently for each subset of training samples. Because of imbalance in the number of samples
per class in CelebA, we set the number of components as the number of samples divided by 1000.
For MNIST we used a fixed value of 25 components per class. We chose an MFA latent dimension
of 10 for CelebA and 6 for MNIST.

To allow attacking the MFA model with standard adversarial attacks such as CW-L2, we imple-
mented it in TensorFlow as a standard CleverHans (Papernot et al., 2016) model.

B.2 BAYES-OPTIMAL

The MFA model is the Bayes-Optimal classifier when the data is sampled from the model. We
modified the trained MFA models to define pairs of Bayes-optimal models.

A single Factor Analyzer component is defined by a mean vector µ, a rectangular matrix A and
per-pixel noise variance D (diagonal). The component distribution is then x ∼ N (µ, AAT +D).

For the symmetric models, we simply fixed all noise variance values in D to a small value (std of
0.001). For the asymmetric case we added two outlier components (one for each class) that are
modifications from the dataset global mean in directions of low-variance: We performed PCA over
the entire dataset and took the eigenvector for the 50th largest eigenvalue as this direction, where the
mean of one outlier is in the positive direction and the mean of the other in the negative one. We set
A = 0 and D = 0.5 for both outliers, making them spherical gaussians around the two means.
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B.3 CNN

We used the reference fully-convolutional network implemented as part of the CleverHans library
(ModelAllConvolutional). The architecture consists of 2D convolution layers with a kernel size
of 3 followed by Leaky ReLU activations and average pooling. We set the basic number of fil-
ters (nb filters) to the minimal required number that achieves 100% classification accuracy on our
datasets. All other hyper-parameters were left at their default values (calculated automatically by
the library according to the image resolution). Optimization method is Adam. The reported results
are not sensitive to the specific architecture (e.g. number of layers, channel depth) and training
parameters.

B.4 LINEAR SVM

We used the standard 2-class linear SVC implementation provided by sklearn (no hyper-parameters).
Linear SVM is trained directly on the vectorized image samples. The learned model consists of a
weight vector W and a scalar bias b. The decision for a sample x is simply sign(WTx+ b).

B.5 RBF SVM

We used sklearn for the Radial Basis Function (RBF) kernel SVM as well. A single hyper-parameter
is required, γ = 1

2σ2 . We chose the highest γ value that still provides a high classification accuracy.

C ATTACKS

C.1 CW-L2

The Carlini & Wagner L2 attack (Carlini & Wagner, 2017) is a recommended strong attack that
minimizes the perturbation L2 norm. The attack minimizes a weighted combination of a classifi-
cation loss with the perturbation L2 size. The relative weight is a parameter that is found using a
binary-search. We used the CleverHans implementation with the following hyper-parameters: 500
iterations, 3 binary-searches and a learning rate of 0.01.

C.2 LD-GRAD

Since the MFA and SVM models provides a simple closed-form expression for the likelihood and
its gradient, we implemented a simple and fast version of a gradient-attack for these models. Our
attack performs multiple (typically 3) steps in the direction of the gradient of the difference in log-
likelihood between the source and target Gaussian components. We compute the required step size
to cross the gap in the log-likelihood between the source and the target components. We repeated
some of the experiments with the (much slower) CW-L2 attack and verified that the results are
similar (i.e. models that are shown to be robust to the LD-Grad attack are also robust to the CW-L2
attack with similar perturbation magnitudes).

D ADDITIONAL RESULTS

In this section we provide additional experimental results for the different datasets, attributes and
models. Table 1 lists the clean and adversarial classification accuracy of all models for all datasets
and attributes.

D.1 CNN – LONGER TRAINING AND WIDER NETWORKS

As shown in Figure 6, unlike the Bayes-optimal and the SVM RBF classifiers, CNNs trained on the
symmetric datasets are vulnerable to adversarial examples (required perturbation size is small). Here
we investigate the effect of longer training with additional training samples and of wider networks.

We trained a CNN with 8 convolution layers and tested different values for the width (number of
output channels) of the first layer. Each second layer has a stride of 2 and the width is doubled, so
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Dataset / Attribute Bayes-Optimal CNN Linear SVM RBF SVM
CelebA / Bangs 100% (0%) 100% (0%) 100% (0%) 96% (18%)
CelebA / Black Hair 100% (0%) 98% (2%) 100% (0%) 96% (26%)
CelebA / Brown Hair 100% (0%) 99% (1%) 100% (0%) 86% (16%)
CelebA / Heavy Makeup 100% (0%) 100% (0%) 100% (0%) 96% (14%)
CelebA / High Cheekbones 100% (0%) 100% (0%) 100% (0%) 96% (10%)
CelebA / Male 100% (0%) 100% (0%) 100% (0%) 100% (8%)
CelebA / Mouth Slightly Open 100% (0%) 100% (0%) 100% (0%) 94% (8%)
CelebA / No Beard 100% (0%) 100% (0%) 100% (0%) 94% (10%)
CelebA / Smiling 100% (0%) 100% (0%) 100% (0%) 96% (10%)
CelebA / Wearing Earrings 100% (0%) 99% (1%) 100% (0%) 94% (16%)
CelebA / Wearing Lipstick 100% (0%) 100% (0%) 100% (0%) 92% (18%)
CelebA / Eyeglasses 100% (0%) 100% (0%) 100% (0%) 100% (22%)
MNIST / 06 100% (0%) 100% (0%) 100% (0%) 100% (4%)
MNIST / 27 100% (0%) 100% (0%) 100% (0%) 100% (7%)
MNIST / 45 100% (0%) 100% (0%) 100% (0%) 100% (8%)

Table 1: Classification accuracy values for the different symmetric datasets for the original and
adversarial (in brackets) samples.
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Figure 9: Training wider CNNs with more samples does not improve the adversarial robustness.
The Bayes-optimal classifiers are shown as dashed lines.

the width of the final layer was 16 times that of the first layer. To test the effect of longer training
with more samples, we modified the training procedure so that new samples from the symmetric
dataset were generated dynamically. We trained the networks for a total of 1 million samples, in
mini-batches of 50. The results are shown in Figure 9, indicating that wider networks and more data
does not improve robustness.

D.2 INCREASING THE DATA NOISE VARIANCE

As described in Appendix B.1, in the main experiments we fixed the noise standard deviation (the
added diagonal part of the MFA covariance) of all Gaussians in the model that generated the sym-
metric dataset to σ = 0.001. Here we verify that our results are not sensitive to this value. We
increased the noise std to 50 times the original value. At these levels (Figure 10, left) the noise is
clearly visible in the data samples. As can be seen (Figure 10, right), the effect on the robustness of
trained CNN models is minor. As expected, the Bayes-Optimal model does not change its decision
boundary and remains robust.

D.3 ROBUST (ADVERSARIAL) CNN TRAINING

To test the effect of adversarial training on the CNN model for the symmetric dataset, we used
the method proposed by Zhang et al. (2019), which won the NeurIPS 2018 Adversarial Vision
Challenge (Robust Model Track). Although slightly more robust, the robustified CNN is still far
from the Bayes-optimal model (Figure 11).
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Figure 10: Increasing the noise standard deviation by a factor of 50 has no effect on the robustness
of the Bayes-Optimal models (dashed lines) and only a small effect on the robustness CNNs trained
on the noisy samples.
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Figure 11: The effect of robust (adversarial) training per Zhang et al. (2019) with β = 10 (favouring
robustness), shown together with the Bayes-optimal for reference.

D.4 RESULTS ON REAL DATA

D.4.1 TRAINING ON SYMMETRIC DATA AND TESTING ON REAL DATA

To estimate how close our symmetric datasets are to the real datasets, we tested the CNNs that were
trained on the symmetric dataset on real test samples and compared the test accuracy to that of CNNs
that were trained on the real training data. As can be seen in Table 2, there is an average accuracy
reduction of just 5%, indicating that the symmetric datasets are not that far from the original data.

D.4.2 TRAINING AND TESTING ON REAL DATA

Our experiments on the symmetric data (Figure 6) showed that, on all tested datasets, SVM with
RBF kernel manage to find a decision boundary that is almost as robust as the optimal one, while
CNNs and Linear SVMs find (probably due to two different reasons) a vulnerable boundary, which
can be attacked with a much smaller perturbation size.

One can ask, do these results represent the real data? To answer this questions we trained the three
models on one of the real datasets – CelebA Male/Female and indeed, as shown in Figure 12 the

Dataset / Attribute Real Train Data Symmetric Train Data
CelebA / Male 92.3% 88%
CelebA / Smiling 89.5% 85.6%
CelebA / Bangs 94.3% 90.4%
CelebA / Heavy Makeup 86.3% 79.9%
CelebA / Eyeglasses 98.4% 91.7%

Table 2: Real test images classification accuracy for CNNs trained on real training data vs CNNs
trained on samples from the symmetric dataset. Accuracy shown is for the robust CNNs.
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Original
Image

Adversarial
CNN

Adversarial
Linear SVM

Adversarial
RBF SVM

Model: CNN Lin. SVM RBF. SVM
Clean accuracy 96.3% 90.0% 89.3%
Adversarial accuracy 3.7% 10% 16%
Mean attack L2 0.59 0.15 2.99

Figure 12: Results of trained models and adversarial attacks on real data.

Orig

Optimal 0 16 32 48 64

3.14

CNN 0 16 32 48 64

0.86

Lin. SVM 0 16 32 48 64

0.58

RBF SVM 0 16 32 48 64

2.23

Figure 13: Samples, perturbations and histograms for CelebA attribute ’Smiling’

results are similar to the synthetic symmetric dataset – CNN and Linear SVM are vulnerable and
RBF SVM is robust.

Note that unlike our proposed symmetric data, in which the ”gold standard” optimal classifier is
both robust and accurate, on real data, which may contains variance asymmetries, different models
might reach different trade-off points between accuracy and robustness. In particular, it is known
that RBF SVM accuracy is highly influenced by the hyperparameters C, γ and we performed only
a minimal search to obtain these results. In future work, it would be interesting to explore the full
regularization path as in (Hastie et al., 2004).

D.5 ADDITIONAL RESULTS FOR THE SYMMETRIC DATASET

Figures 13-18 show original and adversarial samples and perturbations as well as histograms of the
perturbations in pixel values for all models in different symmetric datasets (the number at the top of
each histogram is the mean perturbation L2 over all test samples).
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Figure 14: Samples, perturbations and histograms for CelebA attribute ’Eyeglasses’
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Figure 15: Samples, perturbations and histograms for CelebA attribute ’No Beard’
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Figure 16: Samples, perturbations and histograms for CelebA attribute ’Heavy Makeup’
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Figure 17: Samples, perturbations and histograms for MNIST digits 0 vs. 6

Orig

Optimal 0 16 32 48 64

3.16

CNN 0 16 32 48 64

2.22

Lin. SVM 0 16 32 48 64

1.02

RBF SVM 0 16 32 48 64

2.83

Figure 18: Samples, perturbations and histograms for MNIST digits 4 vs. 5
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