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Abstract

Deep Neural Networks have become commercially viable in fields like machine
vision, speech/language processing, data acquisition among other applications.
Convolutional Neural Networks (CNNs), Recurrent Neural Network (RNNs) and
their variants in some conditions have achieved performance better than human
experts. However, existing deep network models are incompatible with low power
devices or mission-critical applications due to either high computational & latency
cost or memory storage, which makes them unfit to scale. Moreover, less effort has
been put in making the architectural improvements modular or model-agnostic. In
the developing regions of the world, efficient and frugal learning frameworks will
have a huge socio-economic impact. AI can be a game-changer by enabling unique
strategies to facilitate social good through domain-experts if ML-prototyping
is intuitive. Thus, this paper serves a dual purpose, first is to present easily
implementable structural modifications, and second is to provide a comparative
overview of prevalent compression techniques. Finally, we conclude this paper
discussing and proposing possible challenges in these areas.

1 Introduction

The deep learning networks which are being deployed commercially are GPU-hungry. State-of-
the-art models in-lieu of delivering superb performance often contain billions of parameters. Such
requirements are a critical hindrance in low-resource applications. While model quality has been
shown to scale with model and data-set size (Hestness et al., 2017), the heavy resources required to
train them can be prohibitive, especially in regions with low research budgets. More importantly,
the current motivation for network design stems from beating the ’state-of-the-art’. These metrics
are un-intuitive, and don’t provide actionable feedback towards improvement (Anderson-Cook et
al., 2019). As Goodhart’s Law states- “When a measure becomes a target, it ceases to be a good
measure”, such metrics instead lead to models that are incomprehensible for further development
(Lipton and Steinhardt, 2019). Various methodologies have been used to reduce the architectural
complexity of such models (Simard, Steinkraus, and Platt, 2003). Residual Networks (ResNets)
(He et al., 2016) and SqueezeNet (Iandola et al., 2017) achieve better classification results despite
very small parameter count. Although, as shown in (Dubey, Chatterjee, and Ahuja, 2018), these
compact-nets also have remnant redundancies.
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In this work we shed light on some methodologies for giving a jump-start to development pipelines
aimed at leveraging the power of deep networks. This compilation should provide an intuitive
platform for designing an existing model while also providing directions to conduct ablative studies.

2 Deep Learning for Good

Most non-profit organizations do not have a specialized workforce of data scientists, and engineers.
With all the modern technology available to humankind, humble farmers across the world are still
at the mercy of the environment for their livelihood. Remote Health Diagnostics in parts of the
developing world still hasn’t hit a critical point. While no silver bullet, machine learning can be an
invaluable tool in a wide array of applications. It is quite evident that these problems already have
baseline solutions using AI, although from a realistic perspective these are still out of reach from the
populace. Neural Networks which will not be a luxury (Ferreira et al., 2019) to deploy can empower
local officials and regional scientists. AI can be truly transformative if it receives contributions from
all over the globe. Its significance as a tool depends on technology-penetration and adoption scale.

Domain-experts can use AI tools to harness innovations in Agriculture (Rußwurm et al., 2019),
Climate Science (Kim et al., 2019), Healthcare (Koushik, Amores, and Maes, 2018) (Rawat, Li, and
Yu, 2019) etc. However, these solutions will not come to fruition unless machine learning models are
proficient both in terms of cost-effectiveness and ease of development. We address this two-pronged
requirement by listing ideas to facilitate prototyping for real-world applications and also giving a
gentle introduction to compact/compressed networks.

3 Prototyping-based improvements for Applied ML

In the ML community, it is well-known that data augmentation can be very beneficial for model
performance (Goodfellow, Bengio, and Courville, 2016). Similarly, adding Gaussian Noise during
training enhances validation and reduces overfitting (An, 1996). Also, cyclic learning rates have
been shown to enhance training of the neural-nets to achieve faster convergence (Smith, 2015).
Such tricks-of-the-trade are immensely useful during early stages of model design, especially for AI
practitioners from eclectic backgrounds.

While there is a huge demand for AI-based solutions in other fields such as medical, disaster relief
and management, such cross-disciplinary efforts will only succeed when deep learning models are
frugal and easily customizable. The current trend of shipping black-box or non-interpretable neural
networks is a serious bottleneck for custom-model development since they’re counter-intuitive and
unreliable. Thus, ease of prototyping is a crucial step forward.

Due to a meteoric rise in the general area of machine learning research, it is difficult to keep track of
all the remarkable contributions while working on well-established theories. Hence, here we will
focus on other such emerging techniques. In Table 1 (3.5), we summarize various techniques (Swish,
OctConv, SwapOut, ZoneOut, Population-based Augmentation), and give an overview in Figure 1.

Figure 1: Modular Prototyping Techniques
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3.1 Swish

Swish (Ramachandran, Zoph, and Le, 2018) is an activation function (as shown in Fig.2):

f(x) = xσ(βx)

where σ(z) = 1
1+exp(−z)

. Also, β can be defined as a constant (generally, 1) or a trainable parameter
(especially helpful when encountering many dead ReLUs). Swish is non-monotonic but, like ReLU,
bounded from below and unbounded from above. Its advantages are observable in deeper networks
since it better handles vanishing gradients. It has a tendency to speed-up learning (despite using
higher dropout), but may suffer from over-fitting in simpler tasks. It is highly recommended for
dealing with complex data sets.

Figure 2: Swish instead of ReLU in a DNN

Can we replace ReLU with Swish everywhere? This is a tricky question to answer since ReLU
has been extensively studied and is currently the most deployed activation function. Swish, at the cost
of an increased training time, performs better on standard benchmarks than most of the other variants
of ReLU and SELU (Klambauer et al., 2017). But there are no comparative results on adversarial
training and generative models. A recent work on flow-based generative models (Chen et al., 2019b)
coined a new swish function called Lipswish to address the vanishing gradient function in generative
models. Although its promising, the present literature does not offer enough case studies to conclude
that swish would outperform other linear activation functions in every other scenario.

Google’s MobileNetV3 (Howard et al., 2019) achieves state-of-the-art results for mobile vision tasks
and uses a Swish variant (hard-swish) which is faster and quantization-friendly.

3.2 Octave Convolution (OctConv)

There are a lot of spatial redundancies in CNN frameworks, thus OctConv (Chen et al., 2019c)
enhances efficiency by leveraging low/high-frequency features independently. This characteristic also
boosts classification performance due to better global context knowledge from a widened receptive
field. It is a plug-and-play, orthogonal unit to substitute regular convolutions (2D and 3D) without
any modifications to the network structure. To the best of our knowledge, OctConv has been used
to stabilize GAN training (Durall, Pfreundt, and Keuper, 2019) and also reacts well with model
compression (Zhou et al., 2019). It can be combined with techniques to decrease channel-wise
redundancy (ex. depth-wise convolutions) and even for topological-improvements.

3.3 Regularizers

3.3.1 Swapout

Swapout (Singh, Hoiem, and Forsyth, 2016) is a stochastic training method that shows stable
improvements using efficient parameter utilization. It can be seen as a clever merge of the two
regularization techniques that is, dropout (Srivastava et al., 2014) and stochastic-depth (Huang et
al., 2016), outperforming both in stand-alone comparisons. Also, linear decay of parameters (less
dropping on early layers, more on later ones) significantly improves its results. Relatively shallow
Swapout networks give similar performance to extremely deep ResNets.

JumpOut (Wang, Zhou, and Bilmes, 2019) is an orthogonal method which improves regularization
and generalization by actively normalizing dropout rate based on active neurons. The compute
overhead is relatively negligible, and it can be used with other versions of dropout.

Excitation Dropout (Zunino et al., 2018) takes cue from plasticity in brains where there may be
alternate routes concerning a specific function. It disables the neurons most-contributing to network
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prediction for enhancing model resilience. This inherently improves generalization, achieves evenly-
distributed activations (higher neuronal utilization) and maintains post-compression robustness.

3.3.2 Zoneout

In the hidden units of RNNs, instead of drop-out, one can use zoneout (Krueger et al., 2016). In this
method, unit activations are stochastically replaced with the preceeding time-step activations instead
of removing them. This modification achieves higher performance than alternative regularizers,
especially in speech processing applications. It seems to be inherently robust to changes in hidden
state while streamlining information-flow through the network.

3.4 Population-based Augmentation (PBA)

Data augmentation has proved to be a valuable resource during training of deep learning models
(Perez and Wang, 2017). Although, still there are no well-defined rules to select augmentation
policies for a DNN. Population-based Augmentation or PBA (Ho et al., 2019) searches from a set
of several operations and seeks out an effective combination. A carefully chosen policy enhances
generalization and robustness but is a time-consuming process. AutoAugment (Cubuk et al., 2019) is
the state-of-the-art method but is extremely compute-intensive, however, faster alternatives such as
Fast AutoAugment (Lim et al., 2019) using density-matching based policy search are promising.

3.5 Adversarial Training for Free

Adversarial attacks can cause malfunctioning in other intelligent models through malicious inputs
(Papernot et al., 2016), similar to optical illusions in human-vision. A natural defence is Adversarial
training of a deep network which is very compute-intensive (Xie et al., 2018). This "free" tech-
nique (Shafahi et al., 2019) proposes an effective solution where instead of using separate gradient
computations for each update during one simultaneous backward pass, simultaneous updates are
applied on the model parameters and image-perturbations. This method also differs from previous
approaches since it is orthogonal to other defenses, faster and applicable on big networks including
high-resolution data sets ex. Imagenet (Krizhevsky, Sutskever, and Hinton, 2012).

Table 1: Summary of prototyping-based improvements for DNNs
Technique Group Brief Pros Cons

Swish Activation
Function

Non-monotonic,
small bump for -ve
input

Trains Deeper-Nets,
faster convergence.
Works with GANs

Over-fitting,
slower epochs and
inference (~15%)

OctConv Convolution
Operation

It bifurcates feature
map tensors into low
& high frequencies

Saves computa-
tion and memory.
Boosts accuracy.
Stabilizes GAN
training

More hypertuning,
Compatibility with
other compression
methods untested

SwapOut Regularizer

Dropout + random
skipping connec-
tions to generalize,
Bonds parameters
across layers

Prevents co-
adaptation in
neurons(units) &
across network
layers

Testing for best
training schedules,

ZoneOut Regularizer
(RNNs)

Preserves hid-
den units (unlike
dropout), regularize
transition dynamics

Robust to Hidden-
state changes,
boosts gradient
propagation

Not suitable for
ResNets, More
tests required for
variants ex. GRU*

PBA Augmentation
Hyperparameter
search using evolu-
tionary algorithms

Low compute-cost
and memory. Effec-
tive optimization.

Not the most opti-
mal result, Lacks
extensive testing

Adversarial
Training
for Free

Model
Robustness

Reuse the gradient
info for concurrent
updates to parame-
ter & perturbation

Low compute and
memory required.
Multiple adversarial
updates possible

Untested with
other adversarial
defense methods

(*GRUs= Gated Recurrent Units)
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4 Compact Networks

In a cloud-based environment with abundant computational capabilities, enabled by multiple graphical
processing units (GPUs), such massive memory requirements may not be considered a restriction
(Chollet, 2016). However, in case of mobile devices (ex. Robots, Internet of Things) with limited
computational capabilities, such resource intensive deep neural networks cannot be readily applied
(Sarkar, Pradhan, and Ghose, 2019). The exploitation of deep learning on sensory-devices, including
smartphones (Lane, Georgiev, and Qendro, 2015) (Haffari et al., 2018), has pointed out this as a
major hurdle to wide spread use.

Nowadays, sparsity is also used to refer to the proportion of a neural networks weights that are zero
valued. Moreover, it has been shown empirically that DNNs can tolerate high levels of sparsity
(Narang et al., 2017), and this property has been leveraged to significantly reduce the cost associated
with implementing deep-nets, and to enable the deployment of state-of-the-art models in severely
resource constrained environments (van den Oord et al., 2016). Higher sparsity corresponds to fewer
weights, and smaller computational and storage requirements (Gale, Elsen, and Hooker, 2019).

Thus, the design of deep neural networks that require less storage and computation power has
established itself as a new research direction. Particularly, the modification of large cumbersome
models that reduces the memory requirements while retaining as much of its performance as possible
is referred to as compression of neural networks (Han et al., 2015). Another direction is the design of
more memory efficient network architectures from scratch (Hinton, Vinyals, and Dean, 2015).

In the following segment, we trace the foundational ideas of the prevalent methods for model-
compression (Cheng et al., 2017), briefly comment on their key characteristics and tabulate their Pros
& Cons. In Table 2 (3.5), we summarize four types of compression methods (Pruning, Quantization,
Knowledge Distillation and Tensor Vectorization/Low-Rank Factorization).

4.1 Pruning

Despite the utilization of powerful regularization techniques like dropout or weight decay, some
weights of a network will always contribute more to the prediction than others (Han et al., 2015). The
process of removing the less contributing weights to compress (and/or further regularize) the network
is called pruning (Han, Mao, and Dally, 2016). After some weights have been pruned, the network
typically has to be fine tuned again to have it adapt to the change (Wen et al., 2016).

4.2 Quantization

Quantization is decreasing the (dispensable) numerical precision of a model. Its a popular approach
for data compression and several methods have emerged for neural network acceleration as well
(Krishnamoorthi, 2018). The most common methods are: scalar/vector quantization, and fixed-point
quantization. However, experimentally (Google, 2019) it has been revealed that methods like k-means
quantization do not improve speed or storage requirements in practice. Since the weight matrix has to
be reconstructed to 32-bit floats from 8 or 16 bit floats during inference, the process is often referred
as pseudo quantization in the community. It is different from real quantization where each weight is
permanently encoded using fewer bits.

4.3 Knowledge Distillation

The thought in knowledge distillation is to "mimic" knowledge of a (large) teacher model into a
smaller and efficient (student) model by learning the softmax-based class distributions. The cross
entropy difference in the predictions from both the models is calculated while doing a forward pass
during training, and is added to the student-model’s loss value. In this method, the student also learns
“dark knowledge” (Hinton, Vinyals, and Dean, 2014) of the closely associated categories from the
teacher-model in addition to learning from ground-truth labels.

Although knowledge-distillation based techniques are very promising, and achieving impressive
results in reducing compute-cost and complexity, they are currently severely restrictive in a sense that
only models having softmax-based classification tasks can be distilled.
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4.4 Vectorization/Tensor Decomposition (Low-Rank Factorization)

The core thought behind Matrix factorization (MF) is that by exploiting latent structures inherent
to the data set we can obtain compressed feature representations (Denton et al., 2014). Tensor
Decompositions are higher order matrix decomposition, leveraging redundancy in 4D tensors (Conv
Kernels). Thus, any reductions in the convolutional layers would improve inference speed since Conv.
operations are heavy. This method is controversial for requiring robust re-training since the model’s
learning is altered, but many consider the gains worthwhile. In its various forms, it is a popular
tool for dimensionality-reduction, unsupervised clustering, and can be used in combination to other
compression methods.

Table 2: Summary of common model-compression techniques
(*Conv= Convolutional Layer, FC=Fully-Connected)

Technique Pruning Quantization Distillation Vectorization

Description
Sharing or remov-
ing redundant pa-
rameters

Reducing the
model’s numeri-
cal precision

Learning smaller
models from big
ones (mimic)

Approximate a
weight matrix by
sum minimization

Application*
Conv/FC-layer.
(on synapses
and/or neurons)

Post-Training
(or quantization-
aware training)

Conv & FC-layer
(across network) Conv/FC-layer

Pros
Reduces size,
complexity and
over-fitting

Faster Inference
(Even better when
Activations are
quantized too)

Significant
reduction in
computational-
cost and size

High compression
and speed-up

Cons Longer Training,
more hyper-tuning

Hardware depen-
dant benefits

Overfitting, works
only for (Softmax)
classifications

Rigorous Retrain-
ing, Small ranks
may hurt model

5 Conclusion

The first-half of the paper is oriented towards discussing various techniques in the recent literature that
would expedite early-stage prototyping and favour AI adoption in diverse domains and applications.
It also gives pragmatic insights about improving network performance (training time, accuracy etc.)
and thus could be of interest to the ML community as well. These techniques would bring maximum
benefit when built with efficiency at their core. So, in the second-half we gave an overview of the
main concepts and approaches to model compression. This paper presents the precursory tool-kit
necessary for building and training an efficient network from scratch. In the following section we
discuss on the prevalent issues related to implementing these various tools and how that may impact
the future direction of research.

6 Discussion and Future Directions

We discussed the feasibility of compressing models for disk size and memory usage at negligible
accuracy losses. Compressing for speed, on the other hand, is tricky in practice (Chen et al., 2019a).
It can depend on faster integer multiplication or sparse matrix multiplication, here machine learning
research hits the reality of computing (hardware) architecture. As evident in recent literature, there is
a booming interest in Compact Networks for compatibility with small-scale embedded systems.

While we tried to provide a brief and yet comprehensive overview on the recent advancements made
in network architecture design to the readers, we also discovered huge gaps in the existing literature
on detailed comparative studies on various prototyping techniques in this rapidly evolving field. For
example, we have presented a detailed discussion on the merits of using swish activation function
compared to other linear activation functions for both generative and classification models. But while
we explored the literature for similar analysis on other techniques such as swapout or zoneout, we
could not find enough empirical analysis to comment about the generalizability of these approach
across domain and model specifications. Exploring detailed analysis on these techniques would be
beneficial to the deep learning community and might lead to exciting new findings. We believe such
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studies will also reveal the limitation of these various prototyping techniques and help us establish
more elaborate standards when it comes to building deep networks from the scratch.

Another interesting area we did not explore in this paper is Interpretable and Explainable Network
Architectures (Chen et al., 2016), (Zhou et al., 2017). This field has a lot of potential and will be
essential for building trust in AI Systems as well as setting-up benchmarks for future research. There
is also a dire need of developing mathematical framework that would help us analyse and understand
behaviour of neural networks under the influence of various activation or regularization functions.
The existing literature relies heavily on empirical case studies for performance analysis and are often
designed specifically for a particular problem. Often these kind of practices do not transfer well
across different domains and lead to a lot of trial-and-error runs before one can narrow down the
specifications that works well for their problem.
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