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ABSTRACT

Despite its omnipresence in robotics application, the nature of spatial knowledge
and the mechanisms that underlie its emergence in autonomous agents are still
poorly understood. Recent theoretical work suggests that the concept of space
can be grounded by capturing invariants induced by the structure of space in an
agent’s raw sensorimotor experience. Moreover, it is hypothesized that capturing
these invariants is beneficial for a naive agent trying to predict its sensorimotor
experience. Under certain exploratory conditions, spatial representations should
thus emerge as a byproduct of learning to predict. We propose a simple sensori-
motor predictive scheme, apply it to different agents and types of exploration, and
evaluate the pertinence of this hypothesis. We show that a naive agent can capture
the topology and metric regularity of its spatial configuration without any a priori
knowledge, nor extraneous supervision.

1 INTRODUCTION

Space appears to be a pervasive concept in our perception of the world, and as such plays a central
role in most artificial perception systems, in particular in computer vision and robotics applications.
Yet its fundamental nature and the mechanisms that could lead to its emergence in an artificial
system still remain poorly understood, despite some noteworthy contributions (Kant, 1781; Poincaré,
1895; Nicod, 1924). In most cases, the problem is circumvented by implementing prior knowledge
in the system regarding the structure of space, and how motor and sensory information convey
spatial properties (for instance through a kinematics model (Siciliano & Khatib, 2016), or a sensor
model (Cadena et al., 2016)). In more recent years, and with the developments of machine learning
techniques, approaches with less hand-engineered priors developed to solve spatial tasks ((Kahn
et al., 2017; Quillen et al., 2018; Levine et al., 2018; Smolyanskiy et al., 2017) to name a few).
However they tend to set aside the specificity of spatial experiences in favor of a global assessment
of the agent’s performance, leaving the question of the origin and structure of spatial knowledge
largely open.

Nevertheless, recent work presented in (Laflaquière et al., 2018), directly addresses the grounding
of spatial knowledge. It gives a theoretical perspective on how a naive agent could build a notion
of spatial configuration, in an unsupervised way. The approach takes inspiration from philosophi-
cal ideas formulated more than a century ago by H.Poincaré (Poincaré, 1895), and from the more
recent Sensori-Motor Contingencies Theory (SMCT) which puts forward an unsupervised sensori-
motor grounding of perception (O’Regan & Noë, 2001). It describes how space naturally induces
specific invariants in any situated agent’s sensorimotor experience, and how these invariants can be
autonomously captured to improve the compactness of internal representations and the prediction of
sensorimotor experiences.

In this paper, we propose a practical evaluation of this theoretical work. We introduce a simple
self-supervised learning scheme in which an agent learns to predict its sensory experience, given its
motor state. We analyze the encoding of the motor experience produced this way, and in particular
how it is impacted by different types of exploration of the environment. More precisely, we show
that by experiencing consistent sensorimotor transitions in a moving environment, a naive agent
can learn to encode its motor state in such a way as to capture the topological structure and metric
regularity of its external position, without the need for additional a priori knowledge.
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2 RELATED WORK

The problem of building spatial representations of some sort is addressed in a multitude of ma-
chine learning papers. Due to space constraints, we cannot give a complete overview, but will only
highlight the most relevant to this work.

The problem of spatial knowledge acquisition is often conceptualized in a supervised or reinforce-
ment learning (RL) framework. The goal is to build an internal representation of an agent’s position
and displacement in an allocentric frame. Many approaches have been proposed to represent local-
ization in the environment as place cells (Arleo et al., 2001; Weiller et al., 2010; Stachenfeld et al.,
2017). These representations are typically grounded in the sensory space, making them brittle to
environmental changes. They also rely on specifically designed priors about how to form and com-
pare prototypical sensory states. An extreme case would of course be SLAM-type approaches where
the whole spatial structure of the problem is hard-coded a priori in the robot (Cadena et al., 2016).
Taking inspiration from biology, other approaches rather focus on representing displacements via
grid cells (Banino et al., 2018; Cueva & Wei, 2018). They typically rely on the prior definition of
place cells, or on the direct access to the agent’s position in the world during training.
Many works focus on building state representation for RL. Although not necessarily spatial in na-
ture, these representations are often optimized to solve spatial tasks. They typically rely on priors
such as physical properties of the world (Jonschkowski & Brock, 2015), controllability of the rep-
resentation (Watter et al., 2015), or disentanglement of the representation (Thomas et al., 2017). A
large class of RL-based approach also aims at solving intrinsically spatial tasks in an end-to-end
fashion. This is for instance the case of the influential Atari playing agent (Mnih et al., 2013), or of
(Mirowski et al., 2016) where auxiliary tasks are used to enforce some spatial properties (loop clos-
ing). Recently, (Eslami et al., 2018) proposed a network able to generate perspective-conditioned
images of 3D scenes, given explicit spatial perspective inputs. These work are however focused on
solving a task, and do not investigate how spatial knowledge might be internally encoded and used
by the agent.
A last class of work rely more on unsupervised or self-supervised mechanisms to build spatial rep-
resentations or solve spatial tasks. This is for instance the case in (Ha & Schmidhuber, 2018; Wayne
et al., 2018), where compression and self-prediction are used to build a world model helping an
agent to navigate in its environment. Intrinsic curiosity has also been used to learn to control an
agent moving in an environment, even in the absence of reward (Pathak et al., 2017). More related
to this work, sensorimotor prediction has also been considered as a mechanism to integrate motor
sequences into displacement-like representations (Ortiz & Laflaquière, 2018).

The work presented in this paper differs from these related works in that we study the emergence of
the concept of egocentric position. A naive agent with only access to its sensorimotor flow indeed
has to discover that the motor configurations it produces correspond to external spatial configura-
tions, with their own topology and (Euclidean) metric. We cast the problem outside of the typical
reinforcement learning framework, by not considering any extraneous reward, and by not assuming
the existence of any spatial prior. We instead consider learning of a sensorimotor predictive model
as the only driving force in building spatial representations. Moreover, we explicitly study how rep-
resentations with spatial properties can be derived from the motor space. As such, this paper is more
in line with theoretical work addressing the problem of space perception from the SMCT perspective
(Laflaquiere et al., 2012; Laflaquière et al., 2015; Terekhov & ORegan, 2016).

3 PROBLEM SETUP

In this work, we study how a naive agent can build an internal representation of its external posi-
tion in an egocentric frame. Inspired by Poincaré’s insight (Poincaré, 1895), and borrowing from
differential geometry (Philipona et al., 2003), we look at the agent’s experience as a sensorimotor
mapping parametrized by the state of the environment. We assume that an agent’s instantaneous
sensory and motor states are respectively defined by vectors s ∈ RNs and m ∈ RNm . The motor
states can be seen as static joint configurations, or as proprioceptive readings in the case the agent
is not controlled in position. No additional assumption is made regarding the way sensorimotor in-
formation is encoded. The unknown sensorimotor mapping induced by the environment is assumed
continuous and denoted φε, such that s = φε(m), where ε ∈ RNε is the state of the environment.
The mapping φε can be seen as describing how “the world” transforms changes in motor states into
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changes in sensory states, and thus encapsulates the structure of the external space in which the agent
is embedded. Finally we denote p ∈ RNp the unknown spatial position of the agent’s sensor in an
egocentric frame of reference. The problem we address in this work is the one of building an inter-
nal representation h which captures the properties of p. Indeed, p has some topological and metric
properties that the naive agent cannot directly access. They need to be derived from sensorimotor
experiences. It has been shown that space induces, through φε, specific sensorimotor invariants that
an agent can capture to discover the structure of p (Laflaquière et al., 2018; Laflaquiere et al., 2013).

A first kind of invariants concerns the topology of the sensor position p. Assuming a rich enough en-
vironment and sensory apparatus, there exists a homeomorphic relation between the sensor position
and the sensory manifold generated by exploring the motor space. Intuitively, for all environment
states ε, motor changes which generate small sensor displacements are associated with small sensory
changes:

∀ε, if (mi,mi′) is such that |−−−→pipi′ | � µ then |
−−−−−−−−−−→
φε(mi)φε(mi′)| = |−−→sisi′ | � µ, (1)

where |.| denotes the Euclidean norm, and µ is a small value. This means that the topology of the
sensor’s position is accessible to the agent via the sensorimotor flow. Note that in the case of a
redundant motor system, multiple motor states m lead to the same position p, and thus to identical
sensory states (|−−→sisj | = 0), for any state of the environment ε. Based on this sensory equivalence,
the agent can discover that the manifold of positions p has a lower dimension than its motor space.
This space-induced topological invariant should be accessible to the agent under condition I: the
agent should experience consistent sensorimotor transitions such that the state of the environment ε
does not change during the transition (see Eq. (1)).

A second kind of invariant concerns the metric regularity of the sensor position p. Assuming the en-
vironment can move relative to the agent, multiple motor changes associated with the same external
displacement of the sensor can generate the same sensory changes, depending on the position of the
environment. Consider for instance that the agent looks at a bottle that can be at different locations.
Then the same sensory change, corresponding to moving the sensor (camera) from the bottle’s top
to its bottom, can be generated by different motor changes depending on where the bottle is located
relatively to the agent. All these motor changes actually correspond to the same external displace-
ment (change of position) of the sensor. This sensory equivalence of motor changes associated with
the same displacement holds for all environmental states (the bottle in the example can be replaced
with any other object):

∀ε, if (mi,mi′ ,mj ,mj′) is such that |−−−→pipi′ −−−−→pjpj′ | � µ

then ∃δ(ε) : |
−−−−−−−−−−→
φε(mi)φε(mi′)−

−−−−−−−−−−−−−−−−−−→
φε+δ(ε)(mj)φε+δ(ε)(mj′)| = |−−→sisi′ −−−→sjsj′ | � µ,

(2)

where δ(ε) represents a displacement of the environment. This means that the spatial equivalence
of motor changes, and thus the metric regularity of the sensor position p are accessible to the agent
via the sensorimotor flow. This space-induced metric invariant should be accessible to the agent
under condition II: the agent should experience displacements of the environment in-between sen-
sorimotor transitions (see Eq. (2)). This ensures the agent has the opportunity to experience the same
sensory changes with different motor changes.

It has been shown (Laflaquière et al., 2018) that it is theoretically possible to build a motor represen-
tation h which respects space-induced invariants by: i) having similar representations h for motor
states m associated with similar sensory states s, and ii) having similar representation changes

−−→
hh′

for motor changes
−−−→
mm′ associated with similar sensory changes

−→
ss′. We hypothesize that building

such a representation is beneficial to a naive agent learning to predict its own sensorimotor experi-
ence. Indeed, these invariants hold for all states of the environment. They should thus act as a prior
over sensorimotor transitions not yet experienced, improving this way the predictive capacity of the
system. As a consequence, sensorimotor prediction should naturally lead to the emergence of a
representation h capturing the topology and metric regularity of the egocentric spatial configuration
p. Given the topological and metric relations we described, any h which is an affine transformation
of the ground-truth position p would be an optimal solution, as such a transformation preserves
topology and distance ratios.
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Figure 1: (a) The neural network architecture featuring two siamese instances of the Netenc module,
and the Netpred module. (b-c) Illustrations of the discrete world and arm in a room simulations.
The part of the environment accessible to the agent for the current translation of the environment
is framed in dotted red. The agent’s current position [x, y] in this frame is displayed in blue. Red
arrows illustrate the type of translation the environment can undergo. They are equivalent to a
displacement of the agent’s base in a static environment. (Best seen in color)

4 EXPERIMENTS

4.1 SENSORIMOTOR PREDICTIVE NETWORK ARCHITECTURE

We propose a simple sensorimotor predictive architecture to test the validity of the hypotheses laid
out in Sec. 3. The architecture is made of two types of modules: i) Netenc, a Multi-Layer Perceptron
(MLP) taking a motor state mt as input, and outputting a motor representation ht of dimension
dimH , and ii) Netpred, a MLP taking as input the concatenation of a current representation ht, a
future representation ht+1, and a current sensory state st, and outputting a prediction for the future
sensory state s̃t+1. As illustrated in Fig. 1, the overall network architecture connects a predictive
module Netpred to two siamese copies of a Netenc module, ensuring that both motor states mt and
mt+1 are consistently encoded using the same mapping. The self-supervised sensorimotor predic-
tive task of the network consists in minimizing the Mean Squared Error between the prediction s̃t+1

and the ground truth st+1. No explicit component is added to the loss regarding the representation
h. Unless stated otherwise, the dimension dimH is arbitrarily set to 3 for the sake of visualization.
A thorough description of the network is proposed in Appendix A, alongside a description of the
training procedure.

4.2 TESTING HYPOTHESIS

We introduce a measure of how well h approximates the ground truth position p of the sensor.
Unfortunately, the two cannot be compared directly, as there might exists an affine transformation
between the two (see Sec.3). For a given set of representations H = {hi} and their ground-truth
counterparts P = {pi}, we thus perform a linear regression between P and H to estimate and
compensate for this potential affine transformation (and similarly between H and P ). After this
compensation, pairwise distances in P and H can be compared to evaluate how much the structure
of the two sets differ. We thereby define two measures of dissimilarity as:

Qp =
1

N2

N∑
i

N∑
j

|DHcP
ij −DP

ij |
maxkl(DP

kl)
, Qh =

1

N2

N∑
i

N∑
j

|DPcH
ij −DH

ij |
maxkl(DH

kl)
, (3)

where N is the number of samples, DX
ij denotes the distance between samples i and j in the set X ,

HcP denotes the set H after projection in the space of P by affine compensation, and P cH the set
P after a similar projection in the space of H . The errors are normalized by the maximal distance
in the projection space in order to avoid undesired scaling effects. In order to rigorously compare
dissimilarity measures between experiments, sets H and P are always generated by sampling the
motor space in a fixed and regular fashion (see Fig. 3).

In order to test the hypotheses of Sec. 3, three types of exploration of the environment are considered:
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• Inconsistent transitions in a moving environment: A baseline scenario in which the spatiotem-
porality of sensorimotor experiences is not respected. Pairs of states (mt, st) and (mt+1, st+1)
are generated by randomly sampling the motor space, while the environment’s position randomly
changes between t and t + 1, thereby breaking conditions I and II. It is akin to what a typical
passive and non-situated (not in a continuous interaction with the world) agent would experience.
We will refer to this type of exploration as MTM (Motor-Translation-Motor).

• Consistent transitions in a static environment: A situated scenario in which the agent can expe-
rience the spatiotemporal consistency of its sensorimotor transitions. Pairs of states (mt, st) and
(mt+1, st+1) are generated by randomly sampling the motor space, while the environmental stays
static, thereby fulfilling condition I, but not condition II. We will refer to this type of exploration
as MM (Motor-Motor).

• Consistent transitions in a moving environment: A situated scenario in which the agent can
experience consistent transitions and displacements of the environment. Pairs of states (mt, st)
and (mt+1, st+1) are generated by randomly sampling the motor space, while the environment’s
position can randomly change after the two pairs have been collected, thereby fulfilling conditions
I and II. We will refer to this type of exploration as MMT (Motor-Motor-Translation).

Additional details about the sampling process are available in Appendix A. According to hypotheses
of Sec. 3, the motor representation built via a MTM exploration should capture no spatial invariants,
the one built via a MM exploration should capture spatial topology, and the one built via MMT
epxloration should capture both spatial topology and metric regularity.

4.3 AGENT-ENVIRONMENT SETUPS

We propose two different simulated agent-environment setups to test our hypotheses:

Discrete world: An artificial setup designed to provide a simple and fully controlled sensorimotor
interaction. As illustrated in Fig. 1, the environment consists in a grid world of size 10 × 10, in
a sensory state s of dimension Ns = 4 is associated which each cell. Each of these 4 sensory
dimensions is set to be a random order 3 polynomial of the position in the grid. This ensures a
continuous sensory experience when moving in the environment. The agent can freely explore a
section of the environment of size 5 × 5. It can generate a 3D motor state m = [m1,m2,m3],
to which a sensor position p = [x, y] = [

√
m1,
√
m2] is associated. This arbitrary mapping is

purposefully non-linear, and presents a superfluous motor command m3. These properties will be
useful to study how the final structure of h might differ from m. Because of this non-linearity and the
discrete nature of the positions p, the agent can only sample its motor space in a non-linear fashion
(see Fig. 3). When in a position p, the agent receives the corresponding 4D sensory input s. The
environment can translate, effectively moving the workspace of the agent. Finally, the environment
acts as a torus, which means that the sensor appears on the other side of the environment when
exploring beyond its limits.

Arm in a room: A more complex scenario of an arm exploring a room, implemented using the
Flatland simulator (Caselles-Dupré et al., 2018). The environment is a 2D square room of width
12 units with walls, randomly filled with simple geometric objects (squares, circles, triangles) with
random properties (number, size, position, color) (see Fig. 1). The agent is a three-segment arm,
each of length 1 unit, with one motor at each joint to control the relative orientation of the segment
in [−π, π] radians. The arm’s tip is equipped with an array of 10 distance sensors. The orientation
of the sensor in the world is fixed, such that the sensor only translates in the environment. The
environment can translate relatively to the arm’s base, and the agent’s sensor cannot explore beyond
the walls.

5 RESULTS

We evaluate the two experimental setups on the three types of exploration. Each simulation is
run 10 times, with all random parameters drawn independently on each trial. During training, the
dissimilarity measures Qp and Qh are evaluated on a fixed regular sampling of the motor space,
so that they can be compared consistently between epochs. The evolution of the loss, Qp, and Qh
during training is displayed in Fig. 2. Additionally, Fig. 3 shows the final representation of the same
regular motor sampling, for one randomly selected trial of each simulation. The corresponding
ground truth positions P , as well as the affine compensations from the representation space to the
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Figure 2: Evolution of the loss and the dissimilarity measures Qp and Qh during training for both
setups, and for the three types of exploration. The displayed means and standard deviations are
computed over 10 independent trials. (Best seen in color)

position space HcP (and conversely H and P cH in the representational space) are also displayed.
Below we present a qualitative analysis of the results and interpret them with regard to the initial
hypotheses laid out in Sec.3. A more quantitative and detailed analysis of the results is provided in
Appendix B.

5.1 MTM EXPLORATION

In the MTM exploration case, the loss, and measures Qp and Qh stay at relatively high values
throughout the training, for both the discrete world and arm in a room simulations (see Fig. 2). Such
a high loss indicates that the agent is unable to learn a good sensorimotor predictive mapping. This
is expected as the environment moves during each transition. The current pair (mt, st) is therefore
not informative to predict st+1. Moreover, the high final Qp and Qh values seem to indicate that
the structure of the representation h significantly differs from the ground truth position p of the
agent’s sensor, even after affine compensation. This is confirmed in Fig. 3 where we can see that
the structure of h does not match the one of p, metric-wise or even topology-wise. In particular,
redundant motor states m corresponding to the same sensor position p are represented by different
h. When conditions I and II are not fulfilled, the motor representation h built by the predictive
network thus converges to an arbitrary structure which does not capture the topology, and a fortiori
the metric regularity, of the spatial configuration p.

5.2 MM EXPLORATION

In the MM exploration case, both setups show a loss which quickly drops to very small values, while
Qp and Qh rapidly decrease before stabilizing around high but significantly smaller values than in
the MTM case (see Fig. 2). This sharp drop of the loss indicates that the network is able to learn an
accurate sensorimotor predictive mapping. This is expected as the agent consistently explores a static
environment; it can therefore easily map each motor state mt+1 to its corresponding sensory state
st+1. On the other hand, the still high but significantly lower values of Qp and Qh seem to indicate
that the motor representation h built by the network is more similar to the ground truth position p.
In Fig. 3, the corresponding plots show that, after affine compensation, h indeed displays the same
topology as p (best seen in the ground-truth position space). In particular, redundant motor states
m corresponding to the same sensor position p are represented by the same h. The representation
thus effectively reduces the dimension of the motor manifold (3D) to match the dimension of the
manifold of positions (2D). Yet, we can also see that the representation manifold is not necessarily
flat, and does not match perfectly the flat affine projection of the positions in the representational
space. This phenomenon is discussed in more details in Appendix B, but leads to Qh being less
useful than Qp to assess the quality of the representation. This is particularly visible in Fig. 2
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(a) discrete world

(b) arm in room

Figure 3: Visualization of the normalized regular motor sampling m (blue dots), its encoding h in
the representational space (red dots), and the corresponding ground-truth position p (blue circles) for
the three types of exploration, and for both the discrete world (a) and arm in a room (b) setups. Both
the representations and the positions are also projected into each other’s space via an optimized
affine transformation. Lines have been added in the ground-truth position space to visualize the
distances between the projections of h and their ground-truth counterparts p. (Best seen in color)

where Qh evolves towards similar final values in both the MTM and MM cases. It shows that Qh
does not capture the structural difference of h induced by the two types of exploration, whereas
Qp does. When condition I is fulfilled, the motor representation h built by the predictive network
thus captures the topology of the external sensor position p. This is because the experience of
consistent sensorimotor transitions in the environment induces (spatial) topological invariants which
are captured by the predictive network (see Sec. 3).

5.3 MMT EXPLORATION

In the MMT exploration case, the loss, Qp, and Qh all decrease and stabilize around very small
values, for both setups (see Fig. 2). This loss drop indicates that the network is able to learn an
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accurate sensorimotor predictive mapping. This is expected, as the agent experiences consistent
sensorimotor transitions and the environment moves only between transitions. Knowing mt, st, and
mt+1, it is thus possible to predict the next sensory state st+1. Moreover, the small final values of
Qp and Qh indicate that the motor representation h built by the network is structurally very similar
to the ground truth position p. In Fig. 3, the corresponding plots indeed show that, after affine
compensation, the motor representation h almost perfectly matches the position p (best seen in the
ground-truth position space). They display the same topology and metric regularity, which shows
that there exists a simple affine transformation between the two. Contrarily to the MM case, the 2D
representation manifold even tends towards a flat surface. This phenomenon is further discussed in
Appendix B. When conditions I and II are fulfilled, the motor representation h built by the predictive
model thus captures both the topology and metric regularity of the external sensor position p. This
is because the experience of consistent sensorimotor transitions in the moving environment induces
(spatial) topological and metric invariants which are captured by the predictive network (see Sec. 3).

We performed an additional experiment in order to evaluate the robustness of these result with
respect to the complexity of the sensorimotor mapping and the dimension of the representational
space. The arm is now equipped with a RGB camera of resolution 16 pixels, and dimH is set to 25
instead of 3. The results, displayed in black in Fig. 2, are qualitatively identical to the initial setup.
This indicates that the emergence of the spatial-like structure in the representation h is insensitive to
the complexity of the sensory input, and to the dimensionality of the representational space. These
results are discussed at length in Appendix B.3.

6 CONCLUSION

We have proposed a practical evaluation of the unsupervised grounding of spatial structure via senso-
rimotor prediction. Using a simple neural network architecture with a motor state encoding module,
we showed how sensorimotor prediction shapes motor representations such as to capture the topol-
ogy and metric regularity of the external position of a sensor in an egocentric frame. In particular,
we designed different types of exploration to induce spacial invariants, and showed that they were
captured in the representation. Our results show that a naive agent needs to experience consistent
sensorimotor transitions in order to discover the topology of space, and displacements of the envi-
ronment in order to discover the metric regularity of space. Finally, they indicate that the pressure
for accurate sensorimotor prediction is sufficient for these spatial properties to be captured. Intu-
itively, it appears that space-induced sensorimotor invariants drive motor states and motor transitions
leading to similar sensory experiences to be represented similarly. Note however that the predictive
module Netpred should, in theory, be able to learn an appropriate mapping regardless of the structure
of the motor representation (assuming no loss of information). Understanding the precise mecha-
nisms which drive the representation to capture sensorimotor invariants during training is thus an
interesting question to investigate.

The results presented in this work suggest that no particular prior about space, nor about the proper-
ties of an agent’s sensorimotor apparatus is required for the acquisition of spatial knowledge. By its
very structure, space indeed induces invariants in an agent’s sensorimotor experience, and those can
be discovered by exploring the environment. This approach also suggests that action is essential in
such an endeavor. It is of course necessary to explore the environment, but more fundamentally to
discover spatial invariants. The results presented in this work would indeed be impossible to achieve
with an agent processing only its sensory flow. Following Poincaré’s intuition, the spatial-like rep-
resentations h even originate from the motor space itself, whose internal structure is reshaped by
sensorimotor experiences. Indirectly, this approach thus casts some doubts on purely passive and
observational approaches of the problem of spatial knowledge acquisition.

Many problems need to be addressed before such an approach can be applied to more complex sys-
tems. So far, only translations of the sensor and the environment have been considered. The impact
of adding rotations during exploration still needs to be studied theoretically, as the looped metric
relations they induce cannot straightforwardly be represented in an Euclidean space. Additional the-
oretical work is also required to understanding how multiple spatial representations associated with
multiple independent sensors can be merged to represent a global spatial configuration of the agent.
Finally, the approach needs to be extended to characterize the environment’s spatial configuration in
the same egocentric frame, especially if it contains independent objects.
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A NEURAL NETWORK ARCHITECTURE AND TRAINING

Neural network: The sensorimotor predictive architecture is composed of two types of module:
Netenc and Netpref. The Netenc module projects a motor state mt onto a representation ht of dimen-
sion dimH . It is a fully connected Multi-Layer Perceptron (MLP) with three hidden layers of size
(150, 100, 50), with SeLu activation functions (Klambauer et al., 2017), and a final output layer of
size dimH with linear activation functions. This last layer corresponds to the representational space
that is analyzed in this work. The Netpred module takes as input the concatenation (ht,ht+1, st) of
a current motor representation, a future motor state representation, and a current sensory state, and
outputs a prediction s̃t+1 of the future sensory state. It is a fully connected MLP with three hidden
layers of size (200, 150, 100), with SeLu activation functions, and a final output layer of size Ns
with linear activation functions. As illustrated in Fig. 1, the overall network architecture connects
the predictive module Netpred to two siamese copies of the Netenc module, ensuring that both motor
states mt and mt+1 are consistently encoded using the same mapping.

Loss minimization: We define a simple self-supervised sensorimotor predictive objective for the
network. The loss function to minimize is defined as the Mean Squared Error between the prediction
s̃t+1 and the ground truth st+1:

Loss =
1

K

K∑
k=1

|̃s(k)t+1 − s
(k)
t+1|2,

where k denotes a sample index, K is the number of samples, and |.| denotes the Euclidean norm.
No particular component is added to the loss function regarding the representation h built by the
network. The loss is minimized using the ADAM optimizer (Kingma & Ba, 2014), with a learning
rate linearly decreasing from 10−3 to 10−5 in 106 epochs, and a mini-batch size of 100 sensorimotor
transitions. The optimization is stopped after 2× 106 epochs, or when the training loss falls under a
threshold set to 10−8 on a mini-batch.

Training data: Training data are generated by having the simulated agent explore its environment
and collect sensorimotor transitions (mt, st)→ (mt+1, st+1). A total of 3×106 transitions are col-
lected for each simulation by randomly sampling the motor space (uniform distribution) and getting
the corresponding sensory inputs generated by the environment. If a drawn motor state corresponds
to an impossible spatial configuration of the sensor (sensor lying outside of the environment, or in-
side an object) no sensory input is received and the sensorimotor transition is discarded. Depending
on the type of exploration, the environment also moves during the data collection, instantaneously
changing its position relative to the agent. The environment can randomly translate (uniform distri-
bution) with a maximal amplitude equal to its size (computed relatively to the environment’s initial
position at the start of the simulation):
• In the MTM case, the environment translates between the collection of (mt, st) and (mt+1, st+1).

This ensures that the sensorimotor transitions do not fulfill condition I, and a fortiori condition II.
• In the MM case, the environment never translates and keeps its initial position during the collec-

tion of all sensorimotor transitions. This ensures that the sensorimotor transitions fulfill condition
I, but not condition II.

• In the MMT case, the environment translates each time 100 transitions (mt, st)→ (mt+1, st+1)
have been explored. Note that some motor states might correspond to impossible spatial config-
urations. The number of effectively collected sensorimotor transitions might thus vary from 0 to
100 for each translation of the environment1. This data collection ensures that the sensorimotor
transitions fulfill conditions I and II.

For each training epoch, 100 quadruplets (mt, st,mt+1, st+1) generated this way are randomly
drawn to form the mini-batch. Before being fed to the network, the data is normalized such that
each component spans [−0.8, 0.8] over the whole dataset.

Remarks: The overall neural network architecture and training procedure have been kept simple.
No particular heuristics have been added to improve convergence, generalization, or any other prop-
erty of the network such as sparsity. Similarly, the architecture’s meta-parameters have not been
optimized beyond simply checking that the network was expressive enough to learn the expected

1In practice, this indirectly simulates an environment that has some non-zero probability to move after each
sensorimotor transition.
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mappings. Moreover, the network’s generalization capacity has not been evaluated. This is because
the prime goal of this work is not to optimize a neural network to efficiently solve a task, but rather
to study how spatial invariants get naturally captured as a byproduct of sensorimotor prediction,
without the need for additional priors. We even observed, in additional experiments not reported in
this paper, that spatial topology and metric regularity get captured even when the sensory prediction
is of very low accuracy, due for instance to very ambiguous sensorimotor experiences.

The code to run the simulations, train the neural network, and analyze the motor representation will
be accessible at [anonymous url].

B DETAILED ANALYSIS OF THE RESULTS

In addition to the qualitative result description proposed in Sec. 5, we develop below a more thorough
analysis of each learning curve. As a reminder, each simulation is run 10 times, with all random
parameters drawn independently on each trial. The evolution of the mean and standard deviation of
the loss, Qp, and Qh is displayed in Fig. 2. The measures Qp and Qh are computed using a fixed
regular sampling of the motor space in order to ensure consistent comparisons. Additionally, Fig. 3
shows the final representation of the same fixed motor sampling, for one randomly selected trial
of each simulation. The corresponding ground truth positions, as well as the affine compensations
between the representation space and the position space are also displayed.

B.1 DISCRETE WORLD

We first analyze the impact of the exploration on the representation in the discrete world setup.

MTM exploration: We can see in Fig. 2 that the loss rapidly drops, due to the network finding an
adequate average value and scale for s̃t+1. It then stagnates around a high value (≈ 0.7). This
shows that the network struggles to learn an accurate prediction. This is expected as the random
transitions of the environment between sensorimotor pairs (mt, st) in the database make the sensory
experiences inconsistent. The dissimilarity measure Qp stays high (≈ 0.13) during the learning and
slightly oscillates. This oscillation is reduced after 10−6 epochs due to the learning rate reaching
its minimal value. The dissimilarity measure Qh also stays high (> 0.12) during the learning. It
however goes through an initial phase of significantly greater values (≈ 0.2) before progressively
decreasing to its base value (≈ 0.12). This is better illustrated in Fig. 4 where the training has been
pursued for 4 × 106 epochs. The same figure also shows a comparison with a network using ReLu
units (Glorot et al., 2011) in place of the SeLu units. It suggests that the initial overshooting ofQh is
to be attributed to the SeLu units initialization and self-normalizing dynamic, and not to a particular
property of the sensorimotor experience. (Note also that no qualitative difference was observed in
the structure of the representation built by the network when using ReLu units).
In agreement with these observations, Fig. 3 shows that the motor representation h does display an
arbitrary structure compared to the regular one of the ground-truth position p. This is expected as
the sensorimotor pair (mt, st) is not informative to predict st+1, due to the environment moving
between t and t + 1. As a consequence, the network learns to output an average sensory state s̃t+1

which statistically minimizes prediction error while not relying on mt, st, or mt+1. The network
thus builds an arbitrary representation h which is disregarded by the predictive module.

MM exploration: The experience of consistent sensorimotor transitions greatly impacts the loss and
dissimilarity measures Qp and Qh. The environment being static and unambiguous by construction,
the predictive task is now trivial. The loss rapidly drops to very small values of the order of 10−8.
Because of the stopping criterion set to a loss inferior to 10−8, the training can end before the maxi-
mal number of epochs set to 2× 106 epochs. In such a case the network is frozen for the remaining
number of epochs, such that mean and standard values can be computed over the whole training
time. In practice, the last of the 10 independent trials reached the 10−8 threshold after 7.6 × 105

epochs. Measures Qp and Qh undergo a rapid decrease and stabilization. The dissimilarity Qp
stabilizes around values which are significantly lower than in the MTM case (≈ 0.07), while Qh
stabilizes around values which are similar to the MTM case (≈ 0.1). These results correlate with
the representation displayed in Fig. 3. We can see that the affine projection of h in the position
space gives rise to a point cloud with the same topology as the ground truth position p. In particular,
all redundant motor states {m = [m1,m2,m3],∀m3} are projected onto the same point h. In the
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Figure 4: Evolution of the loss and the dissimilarity measures Qp and Qh during a longer training
session for the discrete world and the MTM type of exploration. Two networks using SeLu units
and ReLu units are compared. The displayed means and standard deviations are computed over 10
independent trials. (Best seen in color)

3D representational space we can however see that the representations h of the motor sampling do
not lie on a flat 2D manifold. They are instead spread in the whole space. Indeed, the constraints
induced by the topological invariants drive the motor representation to copy the topology of the sen-
sory manifold. Nevertheless these topological constraints can be respected by a curved 2D manifold
in the representational space. During training, the representation can thus converge to an infinity of
such solutions, of which a flat manifold is only a special case.
This analysis also leads us to conclude that Qp and Qh are not ideal criteria to compare the topolo-
gies of h and p. Indeed they implicitly assume a linear mapping between the two manifolds, while it
is not the case in practice. The dissimilarity measuresQp andQh thus act as an upper bound of a true
topology dissimilarity, which would produce lower values by taking into account the non-linearity
between the two manifolds. Performing such a non-linear comparison would however require a
significantly more complex comparison of the two point clouds. Although not ideal, Qp and Qh
are still sufficient to compare the impact of the different types of exploration on the topology of h.
Finally, we can also notice that Qp appears to be a more adequate criterion than Qh in our study.
Contrary to Qp, Qh fails to capture the structural difference between the MTM and MM cases, due
to the fact that h can be spread in the 3D representational space (see Fig. 2).

MMT exploration: Adding translations of the environment between sensorimotor transitions greatly
impacts the loss and dissimilarity measures. The loss rapidly drops to very small values (≈ 3×10−6)
although more slowly than in the MM case. Despite the predictive task being made more complex
by the environment moving, the network is thus able to produce accurate sensory predictions. The
dissimilarity measures Qp and Qh also drop to very small values (≈ 2× 10−3, and ≈ 3× 10−3 re-
spectively). This indicates that there exists a simple affine transformation between the representation
h and the ground-truth position p; they should have a similar topological and metric structure. This
is confirmed in Fig. 3, where we can see that both h and p align perfectly after affine compensation
in the position space. Therefore the agent has been able to capture both the topology and the metric
regularity invariants in its representation. As a result, h is a reliable proxy for the sensor position p
in the external Euclidean space.
We can see in Fig. 3 that the representation h even approximates a flat 2D manifold in the 3D repre-
sentational space. This is not however the case in all trials, as shown in Fig. 5. Indeed, in the overall
network, the representation h is fed to a fully connected layer. Each neuron in this layer performs
a linear projection of h before passing it through its activation function. As a consequence, the
network has two equivalent options to respect the sensory invariants induced by the MMT explo-
ration: i) flatten the 2D motor representation manifold in the 3D representational space such that all
the metric equalities are respected, or ii) adapt the weights of the connection to the fully connected
layer such that all neurons perform projections which take into account only two dimensions in the
representational space. In both cases, the input received by the predictive module Netenc would be
equivalent. Depending on the trial, it seems that the network converges arbitrarily to one of those
two solutions, or rather a mix of the two, often displaying a slight curvature of the 2D manifold in the
representational space. This explains the slightly greater standard deviation of Qh compared to Qp
observed in Fig. 2. Note that even when the network converges to a curved manifold, the projective
nature of the second option ensures that the affine projection of h in the space of p preserves the
metric constraints induced by the sensory invariants. This explains why the seemingly spread cloud

13



Under review as a conference paper at ICLR 2019

M
M

T
di

sc
re

te
 w

o
rld

M
M

T
ar

m
in

 r
oo

m

representational space ground-truth positionmotor space

Figure 5: Visualization of the normalized regular motor sampling m (blue dots), its encoding h in
the representational space (red dots), and the corresponding ground-truth position h (blue circles)
for the MMT type of exploration, for different trials of the discrete world (a) and arm in a room (b)
setups then in Fig. 3. Both the representations and the positions are also projected into each other’s
space via an optimized affine transformation. Lines have been added in the ground-truth position
space to visualize the distances between the projections of h and their ground-truth counterparts p.
(Best seen in color)

of points h observed in Fig. 5 corresponds to a perfectly regular grid when projected in the space of
p via affine transformation.

B.2 ARM IN A ROOM

We now analyze the impact of the exploration on the representation in the more complex arm in a
room setup.

MTM exploration: Like in the discrete world setup, the sensorimotor predictive task is made dif-
ficult by the translation of the environment occurring between sensorimotor pairs (mt, st) and
(mt+1, st+1). As a consequence, the loss stagnates around a high value (≈ 1.0), after a quick
drop due to the network finding an adequate average value and scale for s̃t+1. Additionally, both
Qp and Qh progressively decrease during the learning, before reaching a plateau at relatively high
values (≈ 0.12 each). This progressive decrease was not observed in the discrete world setup. We
hypothesize it is due to a border effect related to the environment having walls. Indeed the world is
not a torus in this setup. As a consequence, the motor states corresponding, for instance, to the sen-
sor being to the left of the agent’s base rarely observe the sensory states associated with positions of
the sensor on the far right of the environment. Similarly, different positions of the sensor statistically
observe slightly different sensory distributions. This drives the network to capture an approximation
of the topology of p where, in particular, redundant motor states m tend to be associated with the
same sensory distribution and thus tend to be represented by the same h. This explains why the dis-
similarity between h and p measured by Qp and Qh decreases during training. Note however that
this mechanism is not sufficient to capture the true topology of the sensor position as it is based on
the statistics of the sensory states, and not on their absolute values (different sensorimotor mappings
could lead to similar sensory statistics without necessarily inducing the topological invariants de-
scribed in Sec. 3). The representation displayed in Fig. 3 indeed shows that the representation built
by the network seems less arbitrary than in the discrete world setup. Motor states corresponding to
close sensor positions tend to appear closer in the representation than in the discrete world setup.
Yet the h still does not capture the true topology of the position p.
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Figure 6: Visualization of the (normalized) regular motor space sampling, the corresponding ground-
truth positions (blue circles), and the affine transformation of the representation into the ground-truth
space of positions (red dots) for one trial of the arm in a room simulation with a RGB camera of 16
pixels, a representational space of dimension dimH = 25 and a MMT type of exploration. (Best
seen in color)

MM exploration: In the static environment, the loss quickly drops to small values (≈ 0.07). This
indicates that the sensorimotor predictive task is relatively easy, due to the environment being static,
and despite the sensorimotor interaction being more complex that in the discrete world setup. The
measures Qp and Qh also rapidly decrease, before reaching a plateau (≈ 0.09, and ≈ 0.12 respec-
tively). This seems to indicate that h is more structurally similar to p than in the MTM case. This
is confirmed in Fig. 3, and in particular in the position space where the representation are projected
via an affine transformation. Despite some outliers, we can see that h topologically organizes as the
star-shaped grid of ground-truth positions p generated by the regular motor sampling. In particular,
the multiple redundant motor states m leading to the same external sensor position p are clustered
together (see for instance the inner corners of the star). In the representation space, the states h
appear spread in the 3D space, for the same reason as described for the discrete world setup. Finally,
these results confirm that Qh is not the best measure to analyze the structure of the representation.
In Fig. 2, it fails to capture the structural difference between the MTM and MM scenarios, whereas
Qp does.

MMT exploration: With consistent sensorimotor transitions in a moving environment, the loss
rapidly decreases and reaches a plateau around a small value (≈ 0.25). The network is thus able
to learn a relatively good sensorimotor predictive model. The residual error is however greater
than in the discrete world setup, in part because the sensory experience in this environment can
be ambiguous. For instance, when sensing only the right wall, the environment could be in many
different positions, and the agent thus cannot predict the future sensory state with certainty. More
importantly, Qp and Qh also drop to very small values (≈ 0.014). This indicates a high structural
similarity between h and p. This is confirmed in the ground-truth position space of Fig. 3. After
affine projection, we can see that the representation h almost perfectly match the star-shaped grid
of positions p induced by the regular motor sampling. Therefore the agent has been able to capture
both the topology and the metric regularity invariants in its representation. As a result, h is once
again a reliable proxy for the sensor position p in the external Euclidean space. Note that in this trial
the representation h once again approximates a flat 2D manifold in the 3D representational space.
As shown in Fig. 5, this is not necessarily the case in all trials, for the same reason as discussed in
the discrete world setup.

B.3 ADDITIONAL EXPERIMENT

We proposed a last additional experiment in order to assess the robustness of the approach to more
complex sensory inputs and a representational space of higher dimension. The arm is now equipped
with a 1D RGB camera (in the 2D room) with a resolution of 16 pixels. Additionally dimH is set
to 25 instead of 3. The resulting learning curves are displayed in black in Fig. 2, for the MMT
exploration case. Like with the initial arm in a room setup, the loss progressively decreases and
reaches a plateau (≈ 2.1). The predictive loss thus exhibits a similar behavior, despite its overall
greater magnitude, due to the MSE being computed in a sensory space of dimension 48 instead of
10. Likewise the evolution of the dissimilarities Qp and Qh is qualitatively identical to the case of
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the simpler arm, despite the largely greater dimension of the representational space. The measures
even converge to identical values. This seems to indicate that the network built a representation h
which is structurally similar to the ground truth position p. This in confirmed in Fig. 6 where the
affine projection of h in the the ground-truth position space matches p (the representational space
is now of too high dimension to be straight-forwardly visualized). The RGB camera experiment
was also run with dimH = 3, and generated qualitatively similar results. The approach thus seems
insensitive to the complexity of the sensory input, and to the dimension of the representational space.
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