
Under review as a conference paper at ICLR 2020

BEYOND GANS: TRANSFORMING WITHOUT A TAR-
GET DISTRIBUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

While generative neural networks can learn to transform a specific input dataset
into a specific target dataset, they require having just such a paired set of in-
put/output datasets. For instance, to fool the discriminator, a generative adversar-
ial network (GAN) exclusively trained to transform images of black-haired men
to blond-haired men would need to change gender-related characteristics as well
as hair color when given images of black-haired women as input. This is problem-
atic, as often it is possible to obtain a pair of (source, target) distributions but then
have a second source distribution where the target distribution is unknown. The
computational challenge is that generative models are good at generation within
the manifold of the data that they are trained on. However, generating new sam-
ples outside of the manifold or extrapolating “out-of-sample” is a much harder
problem that has been less well studied. To address this, we introduce a technique
called neuron editing that learns how neurons encode an edit for a particular trans-
formation in a latent space. We use an autoencoder to decompose the variation
within the dataset into activations of different neurons and generate transformed
data by defining an editing transformation on those neurons. By performing the
transformation in a latent trained space, we encode fairly complex and non-linear
transformations to the data with much simpler distribution shifts to the neuron’s
activations. Our technique has the advantage of being generally applicable to a
wide variety of data domains, modalities, and applications. We first demonstrate
it on image transformations and then move to our two main applications in bi-
ology: removal of batch artifacts representing unwanted noise and modeling the
effect of drug treatments to predict synergy between drugs.

1 INTRODUCTION

A common situation arises when we have two datasets and seek to learn a transformation that is a
mapping from one (the source) to the other (the target). While much existing work has been done
on this, less studied is the case where we want to learn a transformation from this source/target pair
of datasets and apply it to a second source dataset for which there is no known target.

If the second source distribution differs from the first source distribution, any transformation naively
learned with a neural network on only the first source/target pair will suffer from problems including
domain shift (the second source distribution systematically differs from the first) and overfitting
(which aspects of the target only exist because it started as the first source distribution, and shouldn’t
be part of the learned transformation?).

This problem is important to address, as learning transformations is a common task in many different
contexts, and often it is infeasible or impossible to obtain known source/target pairing information
for every distribution needing to be transformed. For example, many experiments in biology are con-
ducted to study the effect of a treatment on a set of samples, such as tissues from different patients.
However, due to their expense and difficulty, clinical trials are often performed on only a small
subset of the samples. The challenge is isolating treatment-induced variation from the confounding
sample-specific variation.

We propose a neural network-based method for learning a transformation that is general enough to
be used across a wide range of data modalities and applications, from image-to-image translation to
treatment in the biological setting. Popular neural network architectures like GANs pose the problem

1



Under review as a conference paper at ICLR 2020

as one of learning to output data in the region of the space occupied by the target distribution, no
matter where the input data is coming from. To fool the discriminator, the generator’s output must
end up in the same part of the space as the target distribution. The discriminator does not take into
account the input points into the generator in any way.

Instead, we reframe the problem as learning a transformation towards the target distribution that is
more sensitive to where the input data starts. Thus, we could learn an edit between one source and
target pair, and apply it to a second source without needing to assume it has no systematic differences
from the first source.

We propose to learn such an edit, which we term neuron editing, in the latent space of an autoencoder
neural network with non-linear activations. First we train an autoencoder on the entire population of
data which we are interested in transforming. This includes both the paired source/target data and
the second source data. Neuron editing then involves extracting observed differences between the
source/target activation distributions for neurons in this layer and then applying them to the second
source data to generate a synthetic second target dataset. Performing the edit node-by-node in this
space actually encodes complex multivariate edits in the ambient space, performed on denoised
and meaningful features, owing to the fact that these features themselves are complex non-linear
combinations of the input features.

Neuron editing is a general technique that could be applied to the latent space of any neural network,
even GANs themselves. We focus exclusively on the autoencoder in this work, however, to leverage
its denoising ability, robustness to mode dropping, and superior training stability as compared to
GANs. We demonstrate that neuron editing can work on a variety of architectures, while offering
the advantages of introducing no new hyperparameters to tune and being stable across multiple runs.

While latent space manipulation has been explored in previous work, ours differs in several ways.
For example, Radford et al. (2015) represents a transformation between two distributions as a single
constant shift in latent space. In addition to assuming the latent transformation is the same for all
points in the distribution, Upchurch et al. (2017) also uses an off-the-shelf pre-trained Imagenet
classifier network. Our work, on the other hand, does not require a richly supervised pre-trained
model; also, we model the shift between two distributions as a complex, non-constant function that
learns different shifts for different parts of the space. We compare to this ”constant-shift” approach
and demonstrate empirically why it is necessary to model the transformation more complexly.

Some neurons are not heavily edited but still influence the output jointly with those neurons that
are edited due to their integration in the decoding layers, propagating their effect into the output
space. Thus, even a relatively simple transformation in the internal layer of an autoencoder allows
for modeling complex transformations in the ambient data space.

This aspect of neuron editing draws close connections with the field of domain adaptation, where
the goal is to learn features on one labeled dataset that meaningfully separate points in another,
unlabeled dataset (Tzeng et al., 2017). Similarly to that task, we want to learn a transformation from
the known source to the known target samples that will also apply to the second source dataset where
the target is unknown. Thus, neuron editing represents an extension of domain adaptation, where
instead of learning a classifier that can be used on the unlabeled data, we are learning a distribution
transformation that can be used on the unlabeled data. Further differences include that while domain
adaptation attempts to make features for the unlabeled dataset overlap with those of the labeled
dataset, neuron editing transforms the second source dataset without first trying to align it to the
first source dataset (Sankaranarayanan et al., 2018). Also, different from many domain adaptation
techniques, we do not need any sort of pre-trained classifier to yield an informative feature map for
the data, as we learn our autoencoder de novo (Long et al., 2017). Given the near exclusive focus of
the domain adaptation community on learning classifiers on labeled data and applying it to unlabeled
data, we are excited to expand the field to also learning transformations on data with known targets
and applying it to data with unknown targets.

We demonstrate that neuron editing extrapolates better than generative models on two important
criteria. First, as to the original goal, the predicted change on the second source dataset more closely
resembles the predicted change on the original source dataset. Second, the editing process produces
more complex variation, since it simply preserves the existing variation in the data rather than need-
ing a generator to learn to create it. We compare to standard GAN approaches, dedicated parametric
statistical methods used by computational biologists, and alternative autoencoder frameworks. In

2



Under review as a conference paper at ICLR 2020

Figure 1: (a) Neuron editing interrupts the standard feedforward process, editing the neurons of a
trained encoder/decoder to include the source-to-target variation, and letting the trained decoder cas-
cade the resulting transformation back into the original data space. (b) The neuron editing process.
The transformation is learned on the distribution of neuron activations for the source and applied to
the distribution of neuron activations for the extrapolation data.

each case, we see that they stumble on one or more of several hurdles: out-of-sample input, desired
output that differs from the target of the training data, and data with complex variation.

In the following section, we detail the neuron editing method. Then, we motivate the extrapolation
problem by trying to perform natural image domain transfer on the canonical CelebA dataset (Liu
et al., 2018). We then move to two biological applications where extrapolation is essential: correct-
ing the artificial variability introduced by measuring instruments (batch effects), and predicting the
combined effects of multiple drug treatments (combinatorial drug effects) (Anchang et al., 2018).

2 MODEL

Let S ∈ RnS×d, T ∈ RnT×d,X∈RnX×d

represent d-dimensional source, target, and second source
distributions with nS , nT , and nX observations, respectively. We seek a transformation such that:
1. when applied to S it produces a distribution equivalent to T 2. when applied to T it is the identity
function and 3. when applied to X it does not necessarily produce T if S is different from X . While
GANs learn a transformation with the first two properties, they fail at the third property due to the
fact that T is the only target data we have for training, and thus the generator only learns to output
data like T . Therefore, instead of learning such a transformation parameterized by a neural network,
we learn a simpler transformation on a space learned by a neural network (summarized in Figure 1).

We first train an encoder/decoder pair E/D to map the data into an abstract neuron space decom-
posed into high-level features such that it can also decode from that space, i.e., the standard autoen-
coder objective L:

L(S, T,X) = MSE [(S, T,X), D(E(S, T,X))]

where MSE is the mean-squared error. The autoencoder is trained on all three data distributions S,
T , and X and thus learns to model their joint manifold. Then, without further training, we separately
extract the activations of an n-dimensional internal layer of the network for inputs from S and from
T , denoted by aS : S → Rn, aT : T → Rn. We define a piecewise linear transformation, called

3



Under review as a conference paper at ICLR 2020

NeuronEdit, which we apply to these distributions of activations:

NeuronEdit(a) =

(
a− pSj

pSj+1 − pSj
· (pTj+1 − pTj )

)
+ pTj (1)

where a ∈ Rn consists of n activations for a single network input, pSj , p
T
j ∈ Rn consist of the

jth percentiles of activations (i.e., for each of the n neurons) over the distributions of aS , aT cor-
respondingly, and all operations are taken pointwise, i.e., independently on each of the n neurons
in the layer. Then, we define NeuronEdit(aS) : S → Rn given by x 7→ NeuronEdit(aS(x)),
and equivalently for aT and any other distribution (or collection) of activations over a set of network
inputs. Therefore, the NeuronEdit function operates on distributions, represented via activations
over network input samples, and transforms the input activation distribution based on the difference
between the source and target distributions (considered via their percentile disctretization).

We note that the NeuronEdit function has the three properties we stated above:
1. NeuronEdit(aS) ≈ aT (in terms of the represented n-dimensional distributions)
2. NeuronEdit(aT ) = aT 3. NeuronEdit(aX) = NeuronEdit(aS) =⇒ aX = aS . This
last property is crucial since learning to generate distributions like T , with a GAN for example,
would produce a discriminator who encourages the output to be funneled as close to T as posssible
no matter where in the support we start from.

To apply the learned transformation to X , we first extract the activations of the internal layer com-
puted by the encoder, aX . Then, we edit the activations with the neuron editing function âX . Finally,
we cascade the transformations applied to the neuron activations through the decoder without any
further training. Thus, the transformed output X̂ is obtained by:

X̂ = D(NeuronEdit(E(X)))

We emphasize that at this point, since we do no further training of the encoder and decoder, and
since the neuron editing transformation has no weights to learn, there is no further objective term to
minimize at this point and the transformation is fully defined.

Crucially, the nomenclature of an autoencoder no longer strictly applies. If we allowed the encoder
or decoder to train with the transformed neuron activations, the network could learn to undo these
transformations and still produce the identity function. However, since we freeze training and apply
these transformations exclusively on inference, we turn an autoencoder into a generative model that
need not be close to the identity.

Training a GAN in this setting could exclusively utilize the data in S and T , since we have no real
examples of the output for X to feed to the discriminator. Neuron editing, on the other hand, is
able to model the variation intrinsic to X in an unsupervised manner despite not having real post-
transformation data for X . Since we know a priori that X will differ substantially from S, this
provides significantly more information.

Furthermore, GANs are notoriously tricky to train (Salimans et al., 2016; Gulrajani et al., 2017; Wei
et al., 2018). Adversarial discriminators suffer from oscillating optimization dynamics (Li et al.,
2017), uninterpretable losses (Barratt & Sharma, 2018; Arjovsky et al., 2017), and most debilitat-
ingly, mode collapse (Srivastava et al., 2017; Kim et al., 2017; Nagarajan & Kolter, 2017). Under
mode collapse, significant diversity that should exist in the output of the generator is lost, instead
producing synthetic data that is a severely degenerated version of the true target distribution.

Neuron editing avoids all of these traps by learning an unsupervised model of the data space with
the easier-to-train autoencoder. The essential step that facilitates generation is the isolation of the
variation in the neuron activations that characterizes the difference between source and target distri-
butions.

There is a relationship between neuron editing and the well-known word2vec embeddings in natural
language processing (Goldberg & Levy, 2014). There, words are embedded in a latent space where
a meaningful transformation such as changing the gender of a word is a constant vector in this space.
This vector can be learned on one example, like transforming man to woman, and then extrapolated
to another example, like king, to predict the location in the space of queen. Neuron editing is an
extension in complexity of word2vec’s vector arithmetic, because instead of transforming a single
point into another single point, it transforms an entire distribution into another distribution.

4



Under review as a conference paper at ICLR 2020

Figure 2: Data from CelebA where the source data consists of males with black hair and the target
data consists of males with blond hair. The extrapolation is then applied to females with black hair.
(a) A comparison of neuron editing against other models. Only neuron editing successfully applies
the blond hair transformation. (b) An illustration that neuron editing must be applied to the neurons
of a deep network, as opposed to principle components.

CelebA Neuron Editing GAN CycleGAN ResnetGAN RegAE Constant Shift
FID 121.63 +/- 2.12 282.26 +/- 13.32 153.03 +/- 6.55 184.31 +/- 9.71 272.12 +/- 1.10 320.97 +/- 1.04

Table 1: FID scores on the CelebA extrapolation task.

3 EXPERIMENTS

We compare the predictions from neuron editing to those of several generation-based approaches: a
traditional GAN, a GAN implemented with residual blocks (ResnetGAN) to show generating resid-
uals is not the same as editing (Szegedy et al., 2017), and a CycleGAN (Zhu et al., 2017). While
in other applications, like natural images, GANs have shown an impressive ability to generate plau-
sible individual points, we illustrate that they struggle with these two criteria. We also motivate
why neuron editing is performed on inference by comparing against a regularized autoencoder that
performs the internal layer transformations during training, but the decoder learns to undo the trans-
formation and reconstruct the input unchanged (Amodio et al., 2018). Lastly, we motivate why the
more complex neuron editing transformation is necessary by comparing against a naive “latent vec-
tor arithmetic” approach. We find the constant vector between the mean of the source and the mean
of the target in the internal layer of our pre-trained autoencoder, and apply this single shift to all
neurons in the target (Constant Shift).

For the regularized autoencoder, the regularization penalized differences in the distributions of the
source and target in a latent layer using maximal mean discrepancy (Amodio et al., 2018; Dziugaite
et al., 2015). The image experiment used convolutional layers with stride-two filters of size four,
with 64-128-256-128-64 filters in the layers. All other models used fully connected layers of size
500-250-50-250-500. Leaky ReLU activation was used with 0.2 leak. Training was done with
minibatches of size 100, with the Adam optimizer (Kingma & Ba, 2014), and learning rate 0.001.

5



Under review as a conference paper at ICLR 2020

3.1 CELEBA HAIR COLOR TRANSFORMATION

We first consider a motivational experiment on the canonical image dataset of CelebA (Liu et al.,
2018). If we want to learn a transformation that turns a given image of a person with black hair to
that same person except with blond hair, a natural approach would be to collect two sets of images,
one with all black haired people and another with all blond haired people, and teach a generative
model to map between them. The problem with this approach is that the learned model may perform
worse on input images that differ from those it trained on. This has troubling consequences for the
growing concern of socially unbiased neural networks, as we would want model performance to go
unchanged for these different populations (Tatman, 2017).

This is illustrated in Figure 2a, where we collect images that have the attribute male and the attribute
black hair and try to map to the set of images with the attribute male and the attribute blond hair.
Then, after training on this data, we extrapolate and apply the transformation to females with black
hair, which had not been seen during training. The GAN models are less successful at modeling
this transformation on out-of-sample data. In the parts of the image that should stay the same
(everything but the hair color), they do not always generate a recreation of the input. In the hair
color, only sometimes is the color changed. The regular GAN model especially has copious artifacts
that are a result of the difficulty in training these models. This provides further evidence of the
benefits of avoiding these complications when possible, for example by using the stable training of
an autoencoder and editing it as we do in neuron editing.

We quantify the success of neuron editing by using the common metric of Frechet Inception Dis-
tance (FID) that measures how well the generated distribution matches the distribution targeted for
extrapolation. These scores are reported in Table 1, where we see neuron editing achieve the best re-
sult on an average of three runs. Notably, due to the autoencoder’s more stable training, the standard
deviation across multiple runs is also lower than the GAN-based methods.

Figure 3: Additional CelebA transformations.

In Figure 2b, we motivate why we need to per-
form the NeuronEdit transformation on the
internal layer of a neural network, as opposed
to applying it on some other latent space like
PCA. Only in the neuron space has this com-
plex and abstract transformation of changing
the hair color (and only the hair color) been
decomposed into a relatively simple and piece-
wise linear shift.

Beyond hair color transformation, neuron edit-
ing is able to learn general transformations on
CelebA males and apply them to females. In Figure 3, we learn to transform between having/not
having the mustache attribute and having/not having the glasses attribute. The latter transformation
on glasses demonstrates the importance of learning a non-constant transformation. The glasses at-
tribute is bimodal, with both examples of sunglasses and reading glasses in the dataset. With neuron
editing, we are able to learn to map to each of these different parts of the latent space, as opposed to
the constant shift which adds dark sunglasses to the entire distribution.

3.2 BATCH CORRECTION BY OUT-OF-SAMPLE EXTENSION FROM SPIKE-IN SAMPLES

We next demonstrate another application of neuron editing’s ability to learn to transform a distri-
bution based on a separate source/target pair: biological batch correction. Many biological experi-
ments involve using an instrument to measure different populations of cells and then characterizing
the features that distinguish between them. However, these complex instruments can be difficult to
calibrate and use consistently, and thus can introduce technical artifacts into the data they are used
to measure. In fact, we can even measure the same population of cells twice and get two very differ-
ent datasets back. When we measure different populations, these technical artifacts (batch effects)
get confounded with the true differences between the populations. Batch effects are a ubiquitous
problem in biological experimental data can lead to incorrect conclusions in downstream analysis.
Addressing batch effects is a goal of many new models (Finck et al., 2013; Tung et al., 2017; Butler
& Satija, 2017; Haghverdi et al., 2018), including some deep learning methods (Shaham et al., 2017;
Amodio et al., 2018).

6



Under review as a conference paper at ICLR 2020

Figure 4: Neuron editing corrects the variation in IFNg while preserving the variation in CCR6 and
correctly predicting the effect of combining two drugs.

Neuron Editing GAN CycleGAN ResnetGAN RegAE Constant Shift CCA MNN ComBat Limma
0.96275 0.5108 0.4310 0.6268 -0.0508 0.88205 0.6034 0.5339 0.5569 0.5431

Table 2: Correlation between observed change in spike-ins and applied change to samples. Neu-
ron editing most accurately applies just the transformation observed as batch effect and not true
biological variation.

One method for grappling with this issue is to repeatedly measure an unvarying control (called a
spike-in) set of cells with each population of interest (called a sample) (Bacher & Kendziorski,
2016). Because we know any observed differences in the spike-in are technical artifacts, we can
model and then remove this artifact in the population of interest. In our previous terminology, the
two spike-in distributions are our known source/target pair while the actual population of interest is
our second source that lacks a known target.

Existing methods of batch correction based on spike-ins work directly in the data space, operate
independently on each dimension, and only do crude matching of distribution statistics. The most
common approach is to simply subtract the difference in means between the spike-ins from the
sample. We believe this is natural opportunity for deep learning, where the same concept can be
extended to an abstract feature space, composed of combinations of features, and a more powerful
transformation. Moreover, we expect neuron editing to shine as the spike-ins likely differ drastically
from the sample.

The dataset we investigate in this section comes from a mass cytometry (Bandura et al., 2009)
experiment which measures the amount of particular proteins in each cell in two different individuals
infected with dengue virus (Amodio et al., 2018). We note that these data are in a drastically different
format from the images of the previous experiment, as they are in tabular form with cell i being row
i and the amount of protein j in column j. We believe a key strength to neuron editing is its general
applicability to a wide range of data types and modalities. In this particular experiment, there are four
datasets, each consisting of measurements of 35 proteins: the two spike-ins we refer to as Control1
and Control2 are shape 18919 × 35 and 22802 × 35, respectively, while the two populations we
actually want to study, called Sample1 and Sample2, are shape 94556 × 35 and 55594 × 35. To
better grasp the problem of batch effects, we visualize a biaxial plot with two of the proteins where
there is a batch effect in one dimension and a true underlying biological difference in the other
dimension (Figure 4). By using the controls, we seek to correct the artificially low readings of the
protein IFNg in Sample1 (along the x-axis) without removing the biologically accurate readings of
higher amounts of protein CCR6 (along the y-axis).

We would like our model to identify this source of variation and compensate for the lower values
of IFNg without losing other true biological variation in Sample1. For example, Sample1 also has
higher values of the protein CCR6, and as the controls show, this is a true biological difference, not
a batch effect (the y-axis in Figure 4a).

We quantify the performance of the models at this goal by measuring the correlation between the
change in median marker values observed in the spike-in with the change applied to the sample.
If this correlation is high, we know the transformation applied to the samples only removes the
variation where we have evidence, coming from the spike-ins, that it is a technical artifact. This data
is presented in Table 2, where we compare to not only the deep generative models we have already
introduced, but also dedicated batch correction methods commonly used by practitioners (Johnson
et al., 2007; Haghverdi et al., 2018; Butler & Satija, 2017). We see that neuron editing outperforms

7



Under review as a conference paper at ICLR 2020

Figure 5: (a) The global shift in the two controls (light blue to
red) is isolated and this variation is edited into the sample (dark
blue to red), with all other variation preserved. (b) The median
change in the sample in each dimension corresponds accurately
with the evidence in each dimension in the controls.

Neuron Editing GAN CycleGAN ResnetGAN RegAE Constant Shift
r 0.99661/0.97232 0.87014/0.58130 0.92687/0.85380 0.94529/0.93032 0.91965/0.96053 0.96680/0.96925

Table 3: Correlation between real and predicted means/variances on the combinatorial drug predic-
tion data. The GANs generate data that is less accurate (means are off) and less diverse (variances
are smaller) than the real data, while neuron editing best models the true distribution.

all of the alternatives at extrapolating from the spike-ins to the samples. This is unsurprising, as
the GAN methods are only trained to produce data like Control2, and thus will not preserve much
of the variation in the sample. The traditional batch correction methods make specific parametric
distributional assumptions on the data that are not held in practice, and thus also perform poorly.
The regularized autoencoder, since the transformation is performed during training rather than after
training like neuron editing, just reproduces its input unchanged.

In Figure 5a, a PCA embedding of the data space is visualized for Control1 (light blue), Control2
(light red), Sample1 (dark blue), and post-transformation Sample1 (dark red). The transformation
from Control1 to Control2 mirrors the transformation applied to Sample1. Notably, the other varia-
tion (intra-sample variation) is preserved. In Figure 5b, we see that for every dimension, the variation
between the controls corresponds accurately to the variation introduced by neuron editing into the
sample. These global assessments across the full data space offer additional corroboration that the
transformations produced by neuron editing reasonably reflect the transformation as evidenced by
the controls.

3.3 COMBINATORIAL DRUG TREATMENT PREDICTION ON SINGLE-CELL DATA

Finally, we consider biological data from a combinatorial drug experiment on cells from patients
with acute lymphoblastic leukemia (Anchang et al., 2018). The dataset we analyze consists of cells
under four treatments: no treatment (basal), BEZ-235 (Bez), Dasatinib (Das), and both Bez and Das
(Bez+Das). These measurements also come from mass cytometry, this time on 41 dimensions, with
the four datasets consisting of 19925, 20078, 19843, and 19764 observations, respectively. In this
setting, we define the source to be the basal cells, the target to be the Das cells, and then extrapolate
to the Bez cells. We hold out the true Bez+Das data and attempt to predict the effects of applying
Das to cells that have already been treated with Bez.

Predicting the effects of drug combinations is an application which is typically approached through
regression, fitting coefficients to an interaction term in a multiple linear regression model. This
limitation of only fitting linear relationships and treating each protein independently, greatly restricts
the model in a biological contexts where we know nonlinearity and protein regulatory networks exist
and play a large role in cellular function. Using neuron editing in this context facilitates learning a
much richer transformation than previous, non-deep learning methods.

We quantitatively evaluate whether neuron editing produces a meaningful transformation in Table 3,
where we calculate the correlation between the real and generated means and variances of each
dimension. Neuron editing more accurately predicts the principle direction and magnitude of trans-
formation across all dimensions than any other model. Furthermore, neuron editing better preserves
the variation in the real data. The GANs have trouble modeling the diversity in the data, as mani-
fested by their generated data having significantly less variance than really exists.

We see an example of the learned transformation by looking at a characteristic effect of applying
Das: a decrease in p4EBP1 (seen on the x-axis of Figure 4c). No change in another dimension,
pSTATS, is associated with the treatment (the y-axis of Figure 4c). Neuron editing accurately models
this change in p4EBP1, without introducing any change in pSTATS or losing variation within the
extrapolation dataset (Figure 4d).

8



Under review as a conference paper at ICLR 2020

We note that since much of the variation in the target distribution already exists in the source distri-
bution and the shift is a relatively small one, we might expect the ResnetGAN to be able to easily
mimic the target. However, despite the residual connections, it still suffers from the same problems
as the other models using the generating approach: namely, the GAN objective encourages all output
to be like the target it trained on. This leaves it unable to produce the correct distribution if it differs
from the target of the learned transformation, as we see in this case.

4 DISCUSSION

In this work, we have only consider learning from a single pair of distributions and applying it to
another single distribution. We consider it an interesting direction for future work to extend this
to multiple distributions, either for learning from and application to. Additional future work along
these lines could include training parallel encoders with the same decoder, or training to generate
conditionally.

REFERENCES

Matthew Amodio, David van Dijk, Krishnan Srinivasan, William S Chen, Hussein Mohsen, Kevin R
Moon, Allison Campbell, Yujiao Zhao, Xiaomei Wang, Manjunatha Venkataswamy, et al. Explor-
ing single-cell data with deep multitasking neural networks. bioRxiv, pp. 237065, 2018.

Benedict Anchang, Kara L Davis, Harris G Fienberg, Brian D Williamson, Sean C Bendall,
Loukia G Karacosta, Robert Tibshirani, Garry P Nolan, and Sylvia K Plevritis. Drug-nem: Op-
timizing drug combinations using single-cell perturbation response to account for intratumoral
heterogeneity. Proceedings of the National Academy of Sciences, 115(18):E4294–E4303, 2018.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

Rhonda Bacher and Christina Kendziorski. Design and computational analysis of single-cell rna-
sequencing experiments. Genome biology, 17(1):63, 2016.

Dmitry R Bandura, Vladimir I Baranov, Olga I Ornatsky, Alexei Antonov, Robert Kinach, Xudong
Lou, Serguei Pavlov, Sergey Vorobiev, John E Dick, and Scott D Tanner. Mass cytometry: tech-
nique for real time single cell multitarget immunoassay based on inductively coupled plasma
time-of-flight mass spectrometry. Analytical chemistry, 81(16):6813–6822, 2009.

Shane Barratt and Rishi Sharma. A note on the inception score. arXiv preprint arXiv:1801.01973,
2018.

Andrew Butler and Rahul Satija. Integrated analysis of single cell transcriptomic data across condi-
tions, technologies, and species. bioRxiv, pp. 164889, 2017.

Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin Ghahramani. Training generative neural
networks via maximum mean discrepancy optimization. arXiv preprint arXiv:1505.03906, 2015.

Rachel Finck, Erin F Simonds, Astraea Jager, Smita Krishnaswamy, Karen Sachs, Wendy Fantl,
Dana Pe’er, Garry P Nolan, and Sean C Bendall. Normalization of mass cytometry data with
bead standards. Cytometry Part A, 83(5):483–494, 2013.

Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov et al.’s negative-sampling
word-embedding method. arXiv preprint arXiv:1402.3722, 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of wasserstein gans. In Advances in Neural Information Processing Systems, pp.
5767–5777, 2017.

Laleh Haghverdi, Aaron TL Lun, Michael D Morgan, and John C Marioni. Batch effects in single-
cell rna-sequencing data are corrected by matching mutual nearest neighbors. Nature biotechnol-
ogy, 36(5):421, 2018.

9



Under review as a conference paper at ICLR 2020

W Evan Johnson, Cheng Li, and Ariel Rabinovic. Adjusting batch effects in microarray expression
data using empirical bayes methods. Biostatistics, 8(1):118–127, 2007.

Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon Kim. Learning to discover
cross-domain relations with generative adversarial networks. arXiv preprint arXiv:1703.05192,
2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jerry Li, Aleksander Madry, John Peebles, and Ludwig Schmidt. Towards understanding the dy-
namics of generative adversarial networks. arXiv preprint arXiv:1706.09884, 2017.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces attributes (celeba)
dataset. Retrieved August, 15:2018, 2018.

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer learning with joint
adaptation networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 2208–2217. JMLR. org, 2017.

Vaishnavh Nagarajan and J Zico Kolter. Gradient descent gan optimization is locally stable. In
Advances in Neural Information Processing Systems, pp. 5585–5595, 2017.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in Neural Information Processing Systems,
pp. 2234–2242, 2016.

Swami Sankaranarayanan, Yogesh Balaji, Carlos D Castillo, and Rama Chellappa. Generate to
adapt: Aligning domains using generative adversarial networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 8503–8512, 2018.

Uri Shaham, Kelly P Stanton, Jun Zhao, Huamin Li, Khadir Raddassi, Ruth Montgomery, and Yuval
Kluger. Removal of batch effects using distribution-matching residual networks. Bioinformatics,
33(16):2539–2546, 2017.

Akash Srivastava, Lazar Valkoz, Chris Russell, Michael U Gutmann, and Charles Sutton. Veegan:
Reducing mode collapse in gans using implicit variational learning. In Advances in Neural Infor-
mation Processing Systems, pp. 3308–3318, 2017.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In AAAI, volume 4, pp.
12, 2017.

Rachael Tatman. Gender and dialect bias in youtubes automatic captions. In Proceedings of the
First ACL Workshop on Ethics in Natural Language Processing, pp. 53–59, 2017.

Po-Yuan Tung, John D Blischak, Chiaowen Joyce Hsiao, David A Knowles, Jonathan E Burnett,
Jonathan K Pritchard, and Yoav Gilad. Batch effects and the effective design of single-cell gene
expression studies. Scientific reports, 7:39921, 2017.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 7167–7176, 2017.

Paul Upchurch, Jacob Gardner, Geoff Pleiss, Robert Pless, Noah Snavely, Kavita Bala, and Kilian
Weinberger. Deep feature interpolation for image content changes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7064–7073, 2017.

Xiang Wei, Boqing Gong, Zixia Liu, Wei Lu, and Liqiang Wang. Improving the improved training
of wasserstein gans: A consistency term and its dual effect. arXiv preprint arXiv:1803.01541,
2018.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. arXiv preprint, 2017.

10


	Introduction
	Model
	Experiments
	CelebA Hair Color Transformation
	Batch correction by out-of-sample extension from spike-in samples
	Combinatorial drug treatment prediction on single-cell data

	Discussion

