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ABSTRACT

All living organisms struggle against the forces of nature to carve out niches where
they can maintain relative stasis. We propose that such a search for order amidst
chaos might offer a unifying principle for the emergence of useful behaviors in
artificial agents. We formalize this idea into an unsupervised reinforcement learning
method called surprise minimizing RL (SMiRL). SMiRL trains an agent with the
objective of maximizing the probability of observed states under a model trained on
all previously seen states. The resulting agents acquire several proactive behaviors
to seek and maintain stable states such as balancing and damage avoidance, that
are closely tied to the environment’s prevailing sources of entropy, such as winds,
earthquakes, and other agents. We demonstrate that our surprise minimizing agents
can successfully play Tetris, Doom, and control a humanoid to avoid falls, without
any task-specific reward supervision. We further show that SMiRL can be used
together with a standard task reward to accelerate reward-driven learning.

1 INTRODUCTION

The general struggle for existence of animate beings is not a struggle for raw
materials, nor for energy, but a struggle for negative entropy.

(Ludwig Boltzmann, 1886)

All living organisms carve out environmental niches within which they can maintain relative pre-
dictability amidst the ever-increasing entropy around them (Boltzmann, 1886; Schrödinger, 1944;
Schneider & Kay, 1994; Friston, 2009). Humans, for example, go to great lengths to shield themselves
from surprise — we band together in millions to build cities with homes, supplying water, food,
gas, and electricity to control the deterioration of our bodies and living spaces amidst heat and cold,
wind and storm. The need to discover and maintain such surprise-free equilibria has driven great
resourcefulness and skill in organisms across very diverse natural habitats. Motivated by this, we
ask: could the motive of preserving order amidst chaos guide the automatic acquisition of useful
behaviors in artificial agents?

Our method therefore addresses the unsupervised reinforcement learning problem: how might an
agent in an environment acquire complex behaviors and skills with no external supervision? This
central problem in artificial intelligence has evoked several candidate solutions, largely focusing
on novelty-seeking behaviors (Schmidhuber, 1991; Lehman & Stanley, 2011; Still & Precup, 2012;
Bellemare et al., 2016; Houthooft et al., 2016; Pathak et al., 2017). In simulated worlds, such as
video games, novelty-seeking intrinsic motivation can lead to interesting and meaningful behavior.
However, we argue that these sterile environments are fundamentally lacking compared to the real
world. In the real world, natural forces and other agents offer bountiful novelty. The second law of
thermodynamics stipulates ever-increasing entropy, and therefore perpetual novelty, without even
requiring any agent intervention. Instead, the challenge in natural environments is homeostasis:
discovering behaviors that enable agents to maintain an equilibrium, for example to preserve their
bodies, their homes, and avoid predators and hunger. Even novelty seeking behaviors may emerge
naturally as a means to maintain homeostasis: an agent that is curious and forages for food in unlikely
places might better satisfy its hunger.
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Figure 1: In natural environments (left), an inactive agent will experience a wide variety of states. By reasoning
about future surprise, a SMiRL agent can take actions that temporarily increase surprise but reduce it in the long
term. For example, building a house initially results in novel states, but once it is built, the house allows the
agent to experience a more stable and surprise-free environment. On the right we show an interpretation of the
agent interaction loop using SMiRL. When the agent observes a state, it updates it belief p(s) over states. Then,
the action policy π(a|s, θ) is conditioned on this belief and maximizes the expected likelihood of the next state
under its belief.

We formalize allostasis as an objective for reinforcement learning based on surprise minimization
(SMiRL). In highly entropic and dynamic environments with undesirable forms of novelty, minimizing
surprise (i.e., minimizing novelty) causes agents to naturally seek a stable equilibrium. Natural
environments with winds, earthquakes, adversaries, and other disruptions already offer a steady
stream of novel stimuli, and an agent that minimizes surprise in these environments will act and
explore in order to find the means to maintain a stable equilibrium in the face of these disturbances.

SMiRL is simple to describe and implement: it works by maintaining a density p(s) of visited
states and training a policy to act such that future states have high likelihood under p(s). This
interaction scheme is shown in Figure 1(right) Across many different environments, with varied
disruptive forces, and in agents with diverse embodiments and action spaces, we show that this
simple approach induces useful equilibrium-seeking behaviors. We show that SMiRL agents can
solve Tetris, avoid fireballs in Doom, and enable a simulated humanoid to balance and locomote,
without any explicit task reward. More pragmatically, we show that SMiRL can be used together
with a task reward to accelerate standard reinforcement learning in dynamic environments, and
can provide a simple mechanism for imitation learning. SMiRL holds promise for a new kind of
unsupervised RL method that produces behaviors that are closely tied to the prevailing disruptive
forces, adversaries, and other sources of entropy in the environment. Videos of our results are
available at https://sites.google.com/view/surpriseminimization

2 SURPRISE MINIMIZING AGENTS

We propose surprise minimization as a means to operationalize the idea of learning useful behaviors
by seeking to preserve order amidst chaos. In complex natural environments with disruptive forces
that tend to naturally increase entropy, which we refer to as entropic environments, minimizing
surprise over an agent’s lifetime requires taking action to reach stable states, and often requires acting
continually to maintain homeostasis and avoid surprise. The long term effects of actions on the
agent’s surprise can be complex and somewhat counterintuitive, especially when we consider that
actions not only change the state that the agent is in, but also its beliefs about which states are more
likely. The combination of these two processes induce the agent to not only seek states where p(s)
is large, but to also visit states so as to alter p(s), in order to receive larger rewards in the future.
This “meta” level reasoning can result in behaviors where the agent might actually visit new states
in order to make them more familiar. An example of this is shown in Figure 1 where in order to
avoid the disruptions from the changing weather an agent needs to build a shelter or home to protect
itself and decrease its observable surprise. The SMiRL formulation relies on disruptive forces in the
environment to avoid collapse to degenerate solutions, such as staying in a single state s0. Fortunately,
natural environments typically offer no shortage of such disruption.

2.1 SURPRISE MINIMIZATION PROBLEM STATEMENT

To instantiate SMiRL, we design a reinforcement learning agent with a reward proportional to how
familiar its current state is based on the history of states it has experienced during its “life,” which
corresponds to a single episode. Formally, we assume a fully-observed controlled Markov process
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(CMP), though extensions to partially observed settings can also be developed. We use st to denote
the state at time t, and at to denote the agent’s action, ρ(s0) to denote the initial state distribution, and
T (st+1|st, at) to denote the transition dynamics. The agent has access to a datasetDt = {s1, . . . , st}
of all states experienced so far. By fitting a generative model pθt(s) with parameters θt to this dataset,
the agent obtains an estimator that can be used to evaluate the negative surprise reward, given by

rt(s) = log pθt(s) (1)

We denote the fitting process as θt = U(Dt). The goal of a SMiRL agent is to maximize the sum∑
t log pθt(st+1). Since the agent’s actions affect the future Dt and thus the future θt’s, the optimal

policy does not simply visit states that have a high pθt(s) now, but rather those states that will change
pθt(s) such that it provides high likelihood to the states that it sees in the future.

2.2 TRAINING SMIRL AGENTS

Algorithm 1 Training a SMiRL agent with RL

1: Initialize policy parameters φ
2: Initialize RL algorithm RL
3: for each episode = 1, 2, . . . do
4: s0 ∼ ρ(s0) . Initial state distribution.
5: D0 ← {s0} . Reset state history.
6: for each t = 0, 1, . . . , T do
7: θt ← U(Dt) . Fit density model.
8: at ∼ πφ(at|st, θt, t) . Run policy.
9: st+1 ∼ T (st+1|st, at) . Transition dynamics.

10: rt ← log pθt(st+1) . Familiarity reward.
11: Dt+1 ← Dt ∪ {st+1} . Update state history.
12: end for each
13: φ← RL(φ, s[0:T ], θ[0:T ], |D|[0:T ], a[0:T ], r[0:T ])
14: end for each

We now present a practical reinforce-
ment learning algorithm for surprise
minimization. Recall that a critical
component of SMiRL is reasoning
about the effect of actions on future
states that will be added to D, and
their effect on future density estimates
– e.g., to understand that visiting a state
that is currently unfamiliar and stay-
ing there will make that state familiar,
and therefore lead to higher rewards
in the long run. This means that the
agent must reason not only about the
unknown MDP dynamics, but also the
dynamics of the density model pθ(s)
trained on D. In our algorithm, we ac-
complish this via an episodic training
procedure, where the agent is trained over many episodes and D is reset at the beginning of each
episode to simulate a new lifetime. Through this procedure, SMiRL learns the parameters φ of the
agent’s policy πφ for a fixed horizon. To learn this the policy must be conditioned on some sufficient
statistic of Dt, since the reward rt is a function of Dt.
Having trained parameterized generative models pθt as above on all states seen so far, we condition
π on θt and |Dt|. This implies an assumption that θt and |Dt| represent the sufficient statistics
necessary to summarize the contents of the dataset for the policy, and contain all information required
to reason about how pθ will evolve in the future. Of course, we could also use any other summary
statistic, or even read in the entirety of Dt using a recurrent model. In the next section, we also
describe a modification that allows us to utilize a deep density model without conditioning π on a
high-dimensional parameter vector.

Algorithm 1 provides the pseudocode. SMiRL can be used with any reinforcement learning algorithm,
which we denote RL in the pseudocode. As is standard in reinforcement learning, we alternate
between sampling episodes from the policy (lines 6-12) and updating the policy parameters (line 13).
The details of the updates are left to the specific RL algorithm, which may be on or off-policy. During
each episode, as shown in line 11, D0 is initialized with the first state and grows as each state visited
by the agent is added to the dataset. The parameters θt of the density model are fit to Dt at each
timestep to both be passed to the policy and define the reward function. At the end of the episode,
DT is discarded and the new D0 is initialized.

2.3 STATE DENSITY ESTIMATION WITH LEARNED REPRESENTATIONS

While SMiRL may in principle be used with any choice of model class for the generative model pθ(s),
this choice must be carefully made in practice. As we show in our experiments, relatively simple
distribution classes, such as products of independent marginals, suffice to run SMiRL in simple
environments with low-dimensional state spaces. However, it may be desirable in more complex
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environments to use more sophisticated density estimators, especially when learning directly from
high-dimensional observations such as images.

In particular, we propose to use variational autoencoders (VAEs) (Kingma & Welling, 2014) to learn
a non-linear compressed state representation and facilitate estimation of pθ(s) for SMiRL. A VAE is
trained using the standard loss to reconstruct states s after encoding them into a low-dimensional
normal distribution qω(z|s) through the encoder q with parameters ω. A decoder pψ(s|z, ) with
parameters ψ computes s from the encoder output z. During this training process, a KL divergence
loss between the prior p(z) and qω(z|s) is used to keep this distribution near the standard normal
distribution. We described a VAE-based approach for estimating the SMiRL surprise reward. In
our implementation, the VAE is trained online, with VAE updates interleaved with RL updates.
Training a VAE requires more data than the simpler density models that can easily be fit to data from
individual episodes. We propose to overcome this by not resetting the VAE parameters between
training episodes. Instead, we train the VAE across episodes. Instead of passing all VAE parameters
to the SMiRL policy, we track a separate episode-specific distribution pθt(z), distinct from the VAE
prior, over the course of each episode. pθt(z) replaces pθt(s) in the SMiRL algorithm and is fit to
only that episode’s state history. We represent pθt(z) as a vector of independent normal distributions ,
and fit it to the VAE encoder outputs. This replaces the density estimate in line 10 of Algorithm 1.
Specifically, the corresponding update U(Dt) is performed as follows:

z0, . . . , zt = E[qω(z|s)] for s ∈ Dt

µ =

∑t
j=0 zj

t+ 1
, σ =

∑t
j=0(µ− zj)

2

t+ 1

θt = [µ, σ].

Training the VAE online, over all previously seen data, deviates from the recipe in the previous
section, where the density model was only updated within an episode. However, this does provide for
a much richer state density model, and the within-episode updates to estimate pθt(z) still provide our
method with meaningful surprise-seeking behavior. As we show in our experiments, this can improve
the performance of SMiRL in practice.

3 ENVIRONMENTS

We evaluate SMiRL on a range of environments, from video game domains to simulated robotic
control scenarios. These are rich, dynamic environments — the world evolves automatically even
without agent intervention due to the presence of disruptive forces and adversaries. Note that SMiRL
relies on such disruptions to produce meaningful emergent behavior, since mere inaction would
otherwise suffice to achieve homeostasis. However, as we have argued above, such disruptions are also
an important property of most real world environments. Current RL benchmarks neglect this, focusing
largely on unrealistically sterile environments where the agent alone drives change (Bellemare et al.,
2015; Brockman et al., 2016). Therefore, our choices of environments, discussed below, are not
solely motivated by suitability to SMiRL; rather, we aim to evaluate unsupervised RL approaches,
ours as well as others, in these more dynamic environments.

Tetris. The classic game of Tetris offers a naturally entropic environment — the world evolves
according to its own rules and dynamics even in the absence of coordinated behavior of the agent,
piling up pieces and filling up the board. It therefore requires active intervention to maintain
homeostasis. We consider a 4 × 10 Tetris board with tromino shapes (composed of 3 squares), as
shown in Figure 2a. The observation is a binary image of the current board with one pixel per square,
as well as an indicator for the type of shape that will appear next. Each action denotes one of the 4
columns in which to drop the shape and one of 4 shape orientations. For evaluation, we measure how
many rows the agent clears, as well as how many times the agent dies in the game by allowing the
blocks to reach the top of the board, within the max episode length of 100. Since the observation is a
binary image, we model p(s) as independent Bernoulli. See Appendix A for details.

VizDoom. We consider two VizDoom environments from Kempka et al. (2016): TakeCover and
DefendTheLine. TakeCover provides a dynamically evolving world, with enemies that appear over
time and throw fireballs aimed at the player (Kempka et al., 2016). The observation space consists of
the 4 previous grayscale first-person image observations, and the action space consists of moving
left or right. We evaluate the agent based on how many times it is hit by fireballs, which we term
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(a) Tetris (b) TakeCover (c) DefendTheLine (d) miniGrid

(e) Humanoid on Cliff (f) Humanoid on Treadmill (g) Humanoid Walk (h) Pedestal

Figure 2: Illustrations of the entropic evaluation environments: (a) A rendering of the Tetris environment. (b)
The TakeCover environment, with enemies throwing fireballs in the distance. (c) VizDoom DefendTheLine
environment with multiple enemies. (d) is the miniGrid environment with one agent (in red) and a number of
enemeies (blue). (e) The simulated Humanoid next to a cliff. (f) The Humanoid on a treadmill, (g) a Humanoid
learning to walk and (h) Pedestal.

the “damage” taken by the agent. Images from the TakeCover environment are shown in Fig 2b and
Fig ??.

In DefendTheLine, additional enemies can move towards the player, and the player can shoot the
enemies. The agent starts with limited ammunition. This environment provides a “survival” reward
function (r = 1 for each timestep alive) and performance is measured by how long the agent survives
in the environment. For both environments, we model p(s) as independent Gaussian over the pixels.
See Appendix A for details.

miniGrid Is a navigation task where the agent has a partial observation of the environment shown
by the lighter gray area around the red agent in Figure 2d. The agent needs to navigate down the
hallways to escape the enemy agents (blue) to reach the safe room on the right the enemies can not
enter, through a randomly placed door.

Simulated Humanoid robots. In the last set of environments, a simulated planar Humanoid robot is
placed in situations where it is in danger of falling. The action consists of the PD targets for each of
the joints. The state space comprises the rotation of each joint and the linear velocity of each link.
We evaluate several versions of this task, which are shown in Figure 2. The Cliff tasks starts the
agent at the edge of a cliff, in a random pose and with a forward velocity of 1 m/s. Falling off the
cliff leads to highly irregular and unpredictable configurations, so a surprise minimizing agent will
want to learn to stay on the cliff. In the Treadmill environment, the robot starts on a platform that is
moving at 1 m/s backwards; an agent will be carried backwards unless it learns some locomotion.
The Pedestal environment is designed to show that SMiRL can learn a more active balancing policy.
In this environment the agent starts out on a thin pedestal and random forces are applied to the robots
links and boxes of random size are thrown at the agent. The Walk domain is used to evaluate the
use of the SMiRL reward as a form of “stability reward” that assists the agent in learning how to
walk while reducing the number of falls. This is done by initializing p(s) from example walking
data and adding this to the task reward, as discussed in Section 4.2. The task reward in Walk is
rwalk = exp((vd ∗ vd) ∗ −1.5), where vd is the difference between the x velocity and the desired
velocity of 1 m/s. In these environments, we measure performance as the proportion of episodes with
a fall. A state is classified as a fall if either the agent’s links, except for the feet, are touching the
ground, or if the agent is −5 meters or more below the level of the platform or cliff. Since the state is
continuous, we model p(s) as independent Gaussian; see Appendix A for details.

4 EXPERIMENTAL RESULTS

Our experiments aim to answer the following questions: (1) Can SMiRL learn meaningful and
complex emergent behaviors in the environments described in Section 3? (2) Can we incorporate
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deep generative models into SMiRL and use state densities in learned representation spaces? (3)
Can SMiRL serve as a joint training objective to accelerate acquisition of reward-guided behavior,
and does it outperform prior intrinsic motivation methods in this role? We also illustrate several
applications of SMiRL, showing that it can accelerate task learning, provide for exploration with
fewer damaging falls, and provide for elementary imitation. Videos of learned behaviors are available
on the website https://sites.google.com/view/surpriseminimization/home

4.1 EMERGENT BEHAVIOR IN UNSUPERVISED LEARNING

First, we evaluate SMiRL on the Tetris, VizDoom, Cliff , and Treadmill tasks, studying its ability to
generate purposeful coordinated behaviors after training using only the surprise minimizing objective,
in order to answer question (1). The SMiRL agent demonstrates meaningful emergent behaviors in
each of these domains. In the Tetris environment, the agent is able to learn proactive behaviors to
eliminate rows and properly play the game. The agent also learns emergent game playing behaviour
in the VizDoom environment, acquiring an effective policy for dodging the fireballs thrown by the
enemies. In both of these environments, stochastic and chaotic events force the SMiRL agent to take
a coordinated course of action to avoid unusual states, such as full Tetris boards or fireball explosions.
In the Cliff environment, the agent learns a policy that greatly reduces the probability of falling off
of the cliff by bracing against the ground and stabilize itself at the edge, as shown in Figure 2e. In
the Treadmill environment, SMiRL learns a more complex locomotion behavior, jumping forward to
increase the time it stays on the treadmill, as shown in Figure 2f. A quantitative measurement of the
reduction in falls is shown in Figure 4.

We also study question (2) in the TakeCover, Cliff , Treadmill and Pedestal environments, training a
VAE model and estimating surprise in the latent space of the VAE. In most of these environments,
the representation learned by the VAE leads to faster acquisition of the emergent behaviors in Take-
Cover Figure 3 (right), Cliff Figure 4 (left), and Treadmill Figure 4 (middle), leads to a substantially
more successful locomotion behavior.

Comparison to intrinsic motivation. Figure 3 shows plots of the environment-specific rewards
over time on Tetris, TakeCover, and the Humanoid domains Figure 4. In order to compare SMiRL to
more standard intrinsic motivation methods, which seek out states that maximize surprise or novelty,
we also evaluated ICM (Pathak et al., 2017) and RND (Burda et al., 2018b). We also plot an oracle
agent that directly optimizes the task reward. On Tetris, after training for 2000 epochs, SMiRL
achieves near perfect play, on par with the oracle reward optimizing agent, with no deaths, as shown
in Figure 3 (left, middle). ICM seeks novelty by creating more and more distinct patterns of blocks
rather than clearing them, leading to deteriorating game scores over time. On TakeCover, SMiRL
effectively learns to dodge fireballs thrown by the adversaries, as shown in 3 (right). Novelty-seeking
ICM once again yields deteriorating rewards over time due to the method seeking novel events that
correspond to damage. The baseline comparisons for the Cliff and Treadmill environments have
a similar outcome. The novelty seeking behaviour of ICM causes it to learn a type of irregular
behaviour that causes the agent to jump off the Cliff and roll around on the Treadmill, maximizing
the variety (and quantity) of falls Figure 4.

SMiRL and curiosity are not mutually exclusive. We show that these intrinsic reward functions can
be combined to achieve better results on the Treadmill environment Figure 4(right). The combination
of methods leads to increased initial learning speed and producing a walking-type gait on that task.

Exploration for SMiRL To illustrate SMiRL’s desire to explore we evaluate over an environment
where the agent needs to produce long term planning behaviour. This environment is shown in Fig-
ure 2d, where the agent needs to navigate its way through the hallways, avoiding enemies, to reach a
safe room through a randomly placed door. We found that SMiRL is able to solve this task. Results
from these examples are shown on the accompanying website.

4.2 APPLICATIONS OF SMIRL

While the central focus of this paper is the emergent behaviors that can be obtained via SMiRL,
in this section we study more pragmatic applications. We show that SMiRL can be used for joint
training to accelerate reward-driven learning of tasks, and also illustrate how SMiRL can be used to
produce a rudimentary form of imitation learning.
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Figure 3: Results for video game environments: Comparison between SMiRL, ICM, RND, and an oracle
RL algorithm with access to the true reward in Tetris on (left) number of deaths per episode (lower is better),
(center) number of rows cleared per episode (higher is better), and (right) in TakeCover on amount of damage
taken (lower is better). The SMiRL agent is able to learn how to play Tetris and avoid fireballs in TakeCover
almost as well as an agent trained on the task reward. Using VAE features for the density model (SMiRL VAE)
improves performance in VizDoom. Five random seeds are sampled for each method on each plot, the mean
and standard deviation are shown. Videos of the policies can be found at: https://sites.google.com/
view/surpriseminimization

Figure 4: Results for the Cliff , Treadmill and Pedestal environments. In all cases, the SMiRL reward function
reduces the fraction of episodes that results in falls (lower is better). The use of a VAE to estimate p(s) often
increases learning speed and final performance. Three random seeds are sampled for each method on each plot,
the mean and standard deviation are shown.

Imitation. We can easily adapt SMiRL to perform imitation by initializing the buffer D0 with states
from expert demonstrations, or even individual desired outcome states. To study this application of
SMiRL, we initialize the buffer D0 in Tetris with user-specified desired board states. An illustration
of the Tetris imitation task is presented in Figure 6, showing imitation of a box pattern (top) and a
checkerboard pattern (bottom), with the leftmost frame showing the user-specified example, and the
other frames showing actual states reached by the SMiRL agent. While a number of prior works
have studied imitation without example actions (Liu et al., 2018; Torabi et al., 2018a; Aytar et al.,
2018; Torabi et al., 2018b; Edwards et al., 2018; Lee et al.), this capability emerges automatically in
SMiRL, without any further modification to the algorithm.

SMiRL as a stability reward. In this next experiment, we study how SMiRL can accelerate
acquisition of reward-driven behavior in environments that present a large number of possible actions
leading to diverse but undesirable states. Such settings are common in real life: a car can crash in
many different ways, a robot can drop a glass on the ground causing it to break in many ways, etc.
While this is of course not the case for all tasks, many real-world tasks do require the agent to stabilize
itself in a specific and relatively narrow set of conditions. Incorporating SMiRL into the learning
objective in such settings can accelerate learning, and potentially improve safety during training,
as the agent automatically learns to avoid anything that is unfamiliar. We study this application of
SMiRL in the DefendTheLine task and the Walk task. In both cases, we use SMiRL to augment the
task reward, such that the full reward is given by rcombined(s) = rtask(s) + αrSMiRL(s), where α is
chosen to put the two reward terms at a similar magnitude. In the Walk task, illustrated in Figure 2g,
pθ(s) is additionally initialized with 8 example walking trajectories (256 timesteps each), similarly to
the imitation setting, to study how well SMiRL can incorporate prior knowledge into the stability
reward (Reward + SMiRL (ours) . We include another version that is not initialized with expert data
(Reward + SMiRL (no-expert) . We measure the number of falls during training, with and without
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(a) DefendTheLine joint training (b) Walk joint training (falls) (c) Walk Joint training (rtask)

Figure 5: In (a) different intrinsic reward methods are combined with the survival time task reward in the
VizDoom DefendTheLine task, showing that SMiRL accelerates learning compared to intrinsic motivation
methods and the pure task reward. In (b) and (c) we combine the SMiRL reward with the Walk reward and
initialize SMiRL with walking demonstrations and without (no-expert) . This results in significantly fewer falls
(b) and faster learning w.r.t. the task reward (c). Five random seeds are sampled for (a) and three for (b and c),
the mean and standard deviation are shown.

the SMiRL reward term. The results in Figure 5b show that adding the SMiRL reward results in
significantly fewer falls during training, and less when using expert data while learning to walk well,
indicating that SMiRL stabilizes the agent more quickly than the task reward alone.

In the DefendTheLine task, shown in Figure 2c, we compare the performance of SMiRL as a joint
training objective to the more traditional novelty-driven bonus provided by ICM (Pathak et al., 2017)
and RND (Burda et al., 2018b). Novelty-driven bonuses are often used to accelerate learning in
domains that present an exploration challenge. However, as shown in the results in Figure 5a, the
SMiRL reward, even without demonstration data, provides for substantially faster learning on this
task than novelty-seeking intrinsic motivation. These results suggest that SMiRL can be a viable
method for accelerating learning and reducing the amount of unsafe behavior (e.g., falling) in dynamic
environments.

5 RELATED WORK

Prior works have sought to learn intelligent behaviors through reinforcement learning (Sutton &
Barto, 2018) with respect to a provided reward function, such as the score of a video game (Mnih
et al., 2013) or a hand-defined cost function (Levine et al., 2016). Such rewards are often scarce or
difficult to provide in practical real world settings, motivating approaches for reward-free learning
such as empowerment (Klyubin et al., 2005; Mohamed & Jimenez Rezende, 2015) or intrinsic
motivation (Chentanez et al., 2005; Oudeyer & Kaplan, 2009; Oudeyer et al., 2007). Intrinsic
motivation has typically focused on encouraging novelty-seeking behaviors by maximizing model
uncertainty (Houthooft et al., 2016; Still & Precup, 2012; Shyam et al., 2018; Pathak et al., 2019), by
maximizing model prediction error or improvement (Lopes et al., 2012; Pathak et al., 2017), through
state visitation counts (Bellemare et al., 2016), via surprise maximization (Achiam & Sastry, 2017;
Schmidhuber, 1991; Sun et al., 2011), and through other novelty-based reward bonuses (Lehman
& Stanley, 2011; Burda et al., 2018a; Kim et al., 2019). We do the opposite. Inspired by the free
energy principle (Friston, 2009; Friston et al., 2009), we instead incentivize an agent to minimize
surprise and study the resulting behaviors in dynamic, entropy-increasing environments. In such
environments, which we believe are more reflective of the real-world, we find that prior novelty-
seeking environments perform poorly.

Prior works have also studied how competitive self-play and competitive, multi-agent environments
can lead to complex behaviors with minimal reward information (Silver et al., 2017; Bansal et al.,
2017; Sukhbaatar et al., 2017; Baker et al., 2019). Like these works, we also consider how complex
behaviors can emerge in resource constrained environments. However, our approach can also be
applied in non-competitive environments.
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6 DISCUSSION

We presented an unsupervised reinforcement learning method based on minimization of surprise. We
show that surprise minimization can be used to learn a variety of behaviors that maintain “homeostasis,”
putting the agent into stable and sustainable limit cycles in its environment. Across a range of tasks,
these stable limit cycles correspond to useful, semantically meaningful, and complex behaviors:
clearing rows in Tetris, avoiding fireballs in VizDoom, and learning to balance and hop forward
with a bipedal robot. The key insight utilized by our method is that, in contrast to simple simulated
domains, realistic environments exhibit dynamic phenomena that gradually increase entropy over
time. An agent that resists this growth in entropy must take active and coordinated actions, thus
learning increasingly complex behaviors. This stands in stark contrast to commonly proposed intrinsic
exploration methods based on novelty, which instead seek to visit novel states and increase entropy.

Besides fully unsupervised reinforcement learning, where we show that our method can give rise
to intelligent and complex policies, we also illustrate several more pragmatic applications of our
approach. We show that surprise minimization can provide a general-purpose risk aversion reward
that, when combined with task rewards, can improve learning in environments where avoiding
catastrophic (and surprising) outcomes is desirable. We also show that SMiRL can be adapted to
perform a rudimentary form of imitation.

Our investigation of surprise minimization suggests a number of directions for future work. The
particular behavior of a surprise minimizing agent is strongly influenced by the particular choice
of state representation: by including or excluding particular observation modalities, the agent will
be more or less surprised. Thus, tasks may potentially be designed by choosing appropriate state or
observation representations. Exploring this direction may lead to new ways of specifying behaviors
for RL agents without explicit reward design. Other pragmatic applications of surprise minimization
may also be explored in future work, including its effects for mitigating reward misspecification, by
disincentivizing any unusual behavior that likely deviates from what the reward designer intended.
Finally, we believe that a promising direction for future research is to study how lifelong surprise
minimization can result in intelligent and sophisticated behavior that maintains homeostasis by
acquiring increasingly complex behaviors. This may be particularly relevant in complex real-world
environments populated by other intelligent agents, where maintaining homeostasis may require
constant adaptation and exploration.
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A IMPLEMENTATION DETAILS

SMiRL on Tetris. In Tetris, since the state is a binary image, we model p(s) as a product of
independent Bernoulli distributions for each board location. The SMiRL reward log pθ(s) from (1)
becomes:

rSMiRL(s) =
∑
i

si log θi + (1− si) log(1− θi),

where s is a single state, θi is the sample mean calculated from Dt indicating the proportion of
datapoints where location i has been occupied by a block, and si is a binary variable indicating the
presence of a block at location i. If the blocks stack to the top, the game board resets, but the episode
continues and the dataset Dt continues to accumulate states.

SMiRL on VizDoom and Humanoid. In these environments the observations placed in the buffer
are downsampled 10× 13 single-frame observations for VizDoom environments and the full state
for the Humanoid environments. We model p(s) as an independent Gaussian distribution for each
dimension in the observation. Then, the SMiRL reward can be computed as:

rSMiRL(s) = −
∑
i

(
log σi +

(si − µi)2

2σ2
i

)
,

where s is a single state, µi and σi are calculated as the sample mean and standard deviation from Dt
and si is the ith observation feature of s.

SMiRL rewards We emphasize that the RL algorithm in SMiRL is provided with a standard
stationary MDP (except in the VAE setting, more on that below), where the state is simply augmented
with the parameters of the belief over states θ and the timestep t. We emphasize that this MDP is
indeed Markovian, and therefore it is reasonable to expect any convergent RL algorithm to converge
to a near-optimal solution. Consider the augmented state transition p(st+1, θt+1, t+ 1|st, at, θt, t).
This transition model does not change over time because the updates to θ are deterministic when
given st and t. The reward function R(st, θt, t) is also stationary: it is in fact deterministic given st
and θt. Because SMiRL uses RL in an MDP, we benefit from the same convergence properties as
other RL methods.

However, the version of SMiRL that uses a representation learned from a VAE is not Markovian
because the VAE parameters are not added to the state, and thus the reward function changes over
time.. We find that this does not hurt results, and note that many intrinsic reward methods such as
ICM and RND also lack stationary reward functions. This process is described in Algorithm 1.

Entropic Environments We do not use entropic to mean that state transition probabilities change
over time. Rather, it means that for any state in the environment, random disruptive perturbations
may be applied to the state. In such settings, SMiRL seeks to visit state distributions p(s) that are
easy to preserve.

VAE on-line training When using a VAE to model the surprise of new states, we evaluate the
probability of the latent representations z, as described in Section 2.3. The VAE is trained at the end
of each episode on all data seen so far across all episodes. This means that the encoder qω(z|bs) is
changing over the course of the SMiRL algorithm, which could lead to difficulty learning a good
policy. In practice, the rich representations learned by the VAE help policy learning overall.

Training parameters. For the discrete action environment (Tetris and VizDoom), the RL algorithm
used is deep Q-learning (Mnih et al., 2013) with a target Q network. For the Humanoid domains,
we use TRPO (Schulman et al., 2015). For Tetris and the Humanoid domains, the policies are
parameterized by fully connected neural networks, while VizDoom uses a convolutional network. The
encoders and decoders of the VAEs used for VizDoom and Humanoid experiments are implemented
as fully connected networks over the same buffer observations as above. The coefficient for the
KL-divergence term in the VAE loss was 0.1 and 1.0 for the VizDoom and Humanoid experiments,
respectively.
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Figure 6: Results for imitation in Tetris.

Imitation Results
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