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Abstract

Low-precision training is a promising way of decreasing the time and energy cost
of training machine learning models. Previous work has analyzed low-precision
training algorithms, such as low-precision stochastic gradient descent, and derived
theoretical bounds on their convergence rates. These bounds tend to depend on the
dimension of the model d in that the number of bits needed to achieve a particular
error bound increases as d increases. In this paper, we derive new bounds for
low-precision training algorithms that do not contain the dimension d , which lets
us better understand what affects the convergence of these algorithms as parameters
scale. Our methods also generalize naturally to let us prove new convergence
bounds on low-precision training with other quantization schemes, such as low-
precision floating-point computation and logarithmic quantization.

1 Introduction

As machine learning models continue to scale to target larger problems on bigger data, the task
of training these models quickly and efficiently becomes an ever-more-important problem. One
promising technique for doing this is low-precision computation, which replaces the 32-bit or 64-bit
floating point numbers that are usually used in ML computations with smaller numbers, often 8-bit or
16-bit fixed point numbers. Low-precision computation is a broadly applicable technique that has
received a lot of attention, especially for deep learning, and specialized hardware accelerators have
been developed to support it [2, 3, 13].

A major application for low-precision computation is the training of ML models using empirical
risk minimization. This training is usually done using stochastic gradient descent (SGD), and most
research in low-precision training has focused on low-precision versions of SGD. While most of this
work is empirical [4–7, 11, 12, 14, 15, 17, 19, 21, 22], significant research has also been done in the
theoretical analysis of low-precision training. This theoretical work has succeeded in proving bounds
on the convergence rate of low-precision SGD and related low-precision methods in various settings,
including for convex [8, 20] and non-convex objectives [1, 9, 16]. One common characteristic of these
results is that the bounds tend to depend on the dimension d of the model being learned (equivalently,
d is the number of parameters). For example, [16] gives the convergence bound

E [f(w̄T )− f(w∗)] ≤ (1 + log(T + 1))σ2
max

2µT
+
σmaxδ

√
d

2
, (1)

where the objective f is strongly convex with parameter µ, low-precision SGD outputs w̄T after T
iterations, w∗ is the true global minimizer of the objective, σ2

max is an upper bound on the second

moment of the stochastic gradient samples E
[∥∥∥∇f̃(w)

∥∥∥2
2

]
≤ σ2

max, and δ is the quantization step,

the difference between adjacent numbers in the low-precision format. Notice that, as T →∞, this
bound shows convergence down to a level of error that increases with the dimension d. Equivalently,
in order to achieve the same level of error as d increases, we would need to use more bits of
quantization to make δ smaller. Similar dimension-dependent results, where either the error or the
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number of bits needed increases with d, can also be seen in other work on low-precision training
algorithms [1, 8, 20]. This dependence on d is unsatisfying because the motivation for low-precision
training is to tackle large-scale problems on big data, where d can range up to 108 or more for
commonly used models [18]. For example, to compensate for a factor of d = 108 in (1), we
could add bits to decrease the quantization step δ by a factor of

√
d, but this would require adding

log2(104) ≈ 13 bits, which is significant compared to the 8 or 16 bits that are commonly used in
low-precision training.

In this paper, we address this problem by proving bounds on the convergence of LP-SGD [16] that do
not contain dimension d in the expression. Our main technique for doing so is a tight dimension-free
bound on the expected quantization error of the low-precision stochastic gradients in terms of the
`1-norm. Our results are summarized in Table 3, and we make the following contributions:

• We describe conditions under which we can prove a dimension-free bound on the conver-
gence of SGD with fixed-point, quantized iterates on both convex and non-convex problems.

• We study non-linear quantization schemes, in which the representable low-precision numbers
are distributed non-uniformly. We prove dimension-free convergence bounds for SGD using
logarithmic quantization [15], and we show that using logarithmic quantization can reduce
the number of bits needed for LP-SPG to provably converge.

• We study quantization using low-precision floating-point numbers, and we present theoretical
analyis that suggests how to assign a given number of bits to exponent and mantissa to
optimize the accuracy of training algorithms. We validate our results experimentally.

2 Related Work

Motivated by the practical implications of faster machine learning, much work has been done on
low-precision training. This work can be roughly divided into two groups. The first focuses on
training deep models with low-precision weights, to be later used for faster inference. For some
applications, methods of this type have achieved good results with very low-precision models: for
example, binarized [5, 12, 17] and ternary networks [22] have been observed to be effective (although
as is usual for deep learning they lack theoretical convergence results). However, these approaches
are still typically trained with full-precision iterates: the goal is faster inference, not faster training
(although faster training is often achieved as a bonus side-effect).

A second line of work on low-precision training, which is applied to both DNN training and non-deep-
learning tasks, focuses on making various aspects of SGD low-precision, while still trying to solve the
same optimization problem as the full-precision version. The most common way to do this is to make
the iterates of SGD (the wt in the SGD update step wt+1 = wt − αt∇ft(wt)) stored and computed
in low-precision arithmetic [4, 8, 9, 11, 16]. This is the setting we will focus on most in this paper,
because it has substantial theoretical prior work which exhibits the dimension-dependence we set out
to study [1, 8, 16, 20]. The only paper we found with a bound that was not dimension-dependent was
De Sa et al. [9], but in that paper the authors required that the gradient samples be 1-sparse (have
only one nonzero entry), which is not a realistic assumption for most ML training tasks. In addition
to quantizing the iterates, other work has studied quantizing the training set [20] and numbers used
to communicate among parallel workers [1]. We expect that our results on dimension-free bounds
will be complementary with these existing theoretical approaches, and we hope that they can help to
explain the success of the exciting empirical work in this area.

3 Dimension-Free Bounds for SGD

In this section, we analyze the performance of stochastic gradient descent (SGD) using low-precision
training. Though there are numerous variants of this algorithm, SGD remains the de facto algorithm
used most for machine learning. We will start by describing SGD and how it can be made low-
precision. Suppose we are trying to solve the problem

minimize: f(w) =
1

n

n∑
i=1

f̃i(w) over: w ∈ Rd. (2)
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SGD solves this problem iteratively by repeatedly running the update step

wt+1 = wt − α∇f̃it(wt) (3)

where α is the step size1 or learning rate, and it is the index of a component function chosen randomly
and uniformly at each iteration from {1, . . . , n}. To make this algorithm low-precision, we quantize
the iterates (the vectors wt) and store them in a low-precision format. The standard format to use lets
us represent numbers in a set

dom(δ, b) = {−δ · 2b−1,−δ · (2b−1 − 1), · · · ,−δ, 0, δ, 2δ, · · · , δ · (2b−1 − 1)}

with δ > 0 being the quantization gap, the distance between adjacent representable numbers, and
b ∈ N being the number of bits we use [8]. Usually, δ is a power of 2, and this scheme is called
fixed-point arithmetic. It is straightforward to encode numbers in this set as b-bit signed integers,
by just multiplying or dividing by δ to convert to or from the encoded format—and we can even
do many arithmetic computations on these numbers directly as integers. This is sometimes called
linear quantization because the representable points are distributed uniformly throughout their range.
However, as the gradient samples will produce numbers outside this set during iteration, we need
some way to map these numbers to the set of numbers that we can represent. The standard way to
do this is with a quantization function Q(x) : R→ dom(δ, b). While many quantization functions
have been proposed, the one typically used in theoretical analysis (which we will continue to use
here) is randomized rounding. Randomized rounding, also known as unbiased rounding or stochastic
rounding, rounds up or down at random such that E [Q(x)] = x whenever x is within the range of
representable numbers (i.e. when −δ · 2b−1 ≤ x ≤ δ · (2b−1 − 1)). When x is outside that range, we
quantize it to the closest representable point. When we apply Q to a vector argument, it quantizes
each of its components independently.

Using this quantization function, we can write the update step for low-precision SGD (LP-SGD),
which is a simple quantization of (3),

wt+1 = Q(wt − α∇f̃it(wt)) (4)

As mentioned before, one common feature of prior bounds on the convergence of LP-SGD is that
they depend on the number of dimensions d, whereas bounds on full precision SGD under the same
conditions don’t. This difference is due to the fact that, when we quantize a number w, it increases
its variance by E

[
(Q(w)− w)2

]
≤ δ2/4. Observe that this inequality is tight since it holds as

an equality when w is in the middle of two quantization points, e.g. w = δ/2, as illustrated in
Figure 1(a). When quantizing a vector w ∈ Rd, the squared error can be increased by

E
[
‖Q(w)− w‖22

]
=

d∑
k=1

E
[
(Q(wk)− wk)2

]
≤ δ2d

4
, (5)

and this bound is again tight. This variance inequality is the source of the d term in analyses of
LP-SGD, and the tightness of the bound leads to the natural belief that the d term is inherent, and that
low-precision results are inevitably dimension-dependent.

However, we propose that if we can instead bound the variance in (5) with some properties of the
problem itself that is not inherently dependent on d, we can achieve a result that is dimension-free.
One way to do this is to look at the variance graphically. Figure 1(a) plots the quantization error
as a function of w along with the bound in (5). Notice that the squared error looks like a series of
parabolas, and the bound in (5) is tight at the top of those parabolas, but loose elsewhere. Instead,
suppose we want to do the opposite and produce a bound that is tight when the error is zero (at points
in dom(δ, b)). To do this, we observe that E

[
(Q(w)− w)2

]
≤ δ|w− z| for any z ∈ dom(δ, b). This

bound is also tight when z is adjacent to w, and we plot it in Figure 1(a) as well. The natural vector
analog of this is

E
[
‖Q(w)− w‖22

]
≤

d∑
k=1

δ|wk − zk|= δ ‖w − z‖1 , ∀z ∈ dom(δ, b)d (6)

1Usually in SGD the step size is decreased over time, but here for simplicity we consider a constant learning
rate schedule.
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Figure 1: A figure of actual quantization variance E
[
(Q(w)− w)2

]
and the tight upper bound that

we introduced in one dimension. We plot this bound when taking the minimum over all possible z.

where ‖·‖1 denotes the `1-norm. This is a dimension-free bound we can use to replace (5) to bound
the convergence of LP-SGD and other algorithms. However, this replacement is nontrivial as our
bound is now non-constant: it depends on w, which is a variable updated each iteration. Also, in
order to bound this new `1-norm term, we will need some new assumptions about the problem. Next,
we will state these assumptions, along with the standard assumptions used in the analysis of SGD for
both convex and non-convex objectives, and then we will use them to present our dimension-free
bound on the convergence of SGD.

Assumption 1. All the loss functions f̃i are differentiable, and their gradients are L-Lipschitz
continuous in the sense of 2-norm, that is,

∀i ∈ {1, 2, · · · , n}, ∀x, y ∈ Rd,
∥∥∥∇f̃i(x)−∇f̃i(y)

∥∥∥
2
≤ L ‖x− y‖2

Assumption 2. All the gradients of the loss functions f̃i are L1-Lipschitz continuous in the sense of
1-norm to 2-norm, that is,

∀i ∈ {1, 2, · · · , n}, ∀x, y ∈ Rd,
∥∥∥∇f̃i(x)−∇f̃i(y)

∥∥∥
1
≤ L1 ‖x− y‖2

These two assumptions are simply expressing of Lipschitz continuity in different norms. Assumption 1
is a standard assumption in the analysis of SGD on convex objectives, and has been applied in the
low-precision case as well in prior work [8]. Assumption 2 is analogous to 1, except we are bounding
the `1-norm instead of the `2-norm. This holds naturally (with a reasonable value of L1) for many
problems, in particular problems for which the gradient samples are sparse.
Assumption 3. The total loss function f is µ-strongly convex for some µ > 0:

∀w, v, f(w)− f(v)− µ

2
‖w − v‖22 ≥ (w − v)T∇f(v)

This is a standard assumption that bounds the curvature of the loss function f , and is satisfied for
many classes of convex objectives. When an objective is strongly convex and Lipschitz continuous, it
is standard to say it has condition number κ = L/µ, and here we extend this to say it has L1 condition
number κ1 = L1/µ. And for our analysis on the non-convex case, we don’t have this assumption.
Assumption 4. If the objective is convex, we assume that the gradient of each loss function is
bounded by some constant near the optimal point w∗ in the sense of l1 and l2 norm, that is,

E

[∥∥∥∇f̃i(w∗)
∥∥∥2
2

]
≤ σ2, E

[∥∥∥∇f̃i(w∗)
∥∥∥
1

]
≤ σ1

If the objective is non-convex, there is not necessarily a single optimal point, so we just assume each
loss function has a global bound on its gradient: for any w,

∀w, E

[∥∥∥∇f̃i(w)
∥∥∥2
2

]
≤ σ2, E

[∥∥∥∇f̃i(w)
∥∥∥
1

]
≤ σ1

This assumption constrains the gradient for each loss function at the optimal point. We know
∇f(w∗) = 1

n

∑
i ∇̃fi(w∗) = 0, so it is intuitive that each∇f̃i(w∗) can be bounded by some value.
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Table 1: Summary of our dimension-free results compared with prior work. The values report the
number of bits needed, according to the theoretical bound, for the LP-SGD [16] algorithm to achieve
an expected objective gap (f(w)− f(w∗)) of ε in the convex case, and an expected gradient of ε in
the non-convex case, when we let step size α→ 0, epoch length T →∞. Here we let R denote the
radius of the range of numbers representable in the low-precision format and assume ‖w∗‖2 = Θ(R).
The rest of the parameters can be found in the assumptions to be introduced later.

OBJECTIVE CLASS CONVEX NON-CONVEX

NUMBER OF BITS NEEDED FOR E [f(w)− f(w∗)] ≤ ε E
[
‖∇f(w̄)‖22

]
≤ ε

PRIOR DIMENSION-
DEPENDENT BOUND log2O(Rσmax

√
d/ε) —

OUR DIMENSION-
FREE BOUND log2O(Rσ1/ε) log2O(LRσ1/ε)

DIMENSION-FREE WITH
LOGARITHMIC QUANTIZATION log2O(Rσ

ε
· log (1 + σ1

σ
)) log2O(LR√

ε
· log (1 + σ1√

ε
))

In the non-convex case, however, we need a global bound on the gradient instead of just at the
optimum. This is a natural assumption to make and it has been used in a lot of other work in this area.
Note that this assumption only needs to hold under the expectation over all f̃i.

For non-convex cases, we need the following additional assumption.
Assumption 5. The variance of the gradient of each loss function is bounded by some constant σ2

0:

∀w, Var(∇fi(w)) = E
[
‖∇fi(w)−∇f(w)‖22

]
6 σ2

0

With these assumptions, we proved the following theorems for low-precision SGD:
Theorem 1. Suppose that we run LP-SGD on an objective that satisfies Assumptions 1–4, and with
step size α < 1/(2κ2µ). After T LP-SGD update steps (4), select w̄T uniformly at random from
{w0, w1, . . . , wT−1}. Then, the expected objective gap of w̄T is bounded by

E [f(w̄T )− f(w∗)] ≤ 1

2αT
‖w0 − w∗‖22 +

ασ2 + δσ1
2

+
δ2κ21µ

4
Theorem 2. Suppose that we run LP-SGD on an objective that is non-convex and satisfies Assump-
tions 1, 4, 5, with constant step size α. After T LP-SGD update steps, select w̄T uniformly at random
from {w0, w1, . . . , wT−1}. Then the expected squared gradient norm of w̄T is bounded by

E
[
‖∇f(w̄T )‖22

]
6

2

2α− α2L

f(w0)− f∗

T
+
ασ2

0L+ Lδσ1
2− αL

The first theorem shows a bound of the expected distance between the result we get at T -th iteration
and the optimal value for a convex objective, and the second shows a bound of the expected gradient
at T -th iteration, where f∗ is the global minimum of objective f . By choosing an appropriate step
size we can achieve convergence at a 1/T rate, while the limit we converge to is only dependent
on dimension-free factors. Meanwhile, as mentioned in the first section, previous work gives a
dimension-dependent bound (1) for the problem, which also converges at a 1/T rate.2 Therefore our
result guarantees a dimension-free convergence limit without weakening the convergence rate.

It is important to note that, because the dimension-dependent bound in (5) was tight, we should not
expect our new result to improve upon the previous theory in all cases. In the worst case, κ1 =

√
d ·κ

and similarly σ1 =
√
d · σ; this follows from the fact that for vectors in Rd, the norms are related by

the inequality ‖x‖1 ≤
√
d · ‖x‖2. Substituting this into our result produces a dimension-dependent

bound again. This illustrates the importance of introducing the new parameters κ1 and σ1 and
requiring that they be bounded; if we could not express our bound in terms of these parameters, the
best we could do here is recover a dimension-dependent bound. This means that we achieve the
standard result of a dimension-dependent bound in the worst case, but in other cases our results are
strictly better.

2Previous work (1) used a decaying step size while ours uses a constant step size to achieve a better result.
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Figure 2: (a) Convergence of full-precision (fp) SGD and LP-SGD; (b)(c) Plots of the asymptotic
loss gap from (a) as a function of model size d and σ1.

Experiments Next, we validate our theoretical results experimentally on convex problems. To do
this, we analyzed how the size of the noise floor of convergence of SGD and LP-SGD varies as the
dimension is changed for a class of synthetic problems. Importantly, we needed to pick a class of
problems for which the parameters L, L1, µ, σ, and σ1, did not change as we changed the dimension
d. To do this, we chose a class of synthetic linear regression models with loss components sampled
independently and identically as

f̃i(w) =
1

2
(x̃Tw − ỹ)2

where x̃ is a sparse vector sampled to have s nonzero entries each of which is sampled uniformly
from {−1, 1}, and ỹ is sampled from N (x̃Tw∗, β2) for some variance parameter β. Importantly, the
nonzero entries of x̃ were chosen non-uniformly such that Pr[x̃i 6= 0] = pi for some probabilities
pi which decrease as i increases; this lets us ensure that µ remains constant as d is increased. For
simplicity, we sampled a fresh loss component of this form at each SGD iteration, which is sometimes
called the online setting. It is straightforward to derive that for this problem

µ = pd L = s L1 = s
√
s σ2 = β2s σ1 =

√
2s/πσ.

We set α = 0.01, β = 0.2, p1 = 0.9, pd = 0.001, and s = 16, we chose each entry of w∗ uniformly
from [−1/2, 1/2], and we set δ such that the low-precision numbers would range from −1 to 1. We
set these parameters so that our model satisfies Assumptions 1 to 4 while maintaining the smallest
values of the parameters L, L1, σ, and σ1; choosing a different set of parameters will lead to a looser
theoretical bound. Figure 2(a) shows the convergence of SGD and LP-SGD as the dimension d is
changed, for both 8-bit and 6-bit quantization. Notice that while changing d has an effect on the
initial convergence rate for both SGD and LP-SGD, it has no effect on the noise ball size, the eventual
loss gap that the algorithm converges to. Figure 2(b) measures this noise ball size more explicitly
as the dimension is changed: it reports the loss gap averaged across the second half of the iterates.
Notice that as the dimension d is changed, the average loss gap is almost unchanged, even for very
low-precision methods for which the precision does significantly affect the size of the noise ball. This
validates our dimension-free bounds, and shows that they can describe the actual dependence on d in
at least one case.

Figure 2(c) validates our results in the opposite way: it looks at how this gap changes as our new
parameters σ1 and L1 change while d, µ, and σ are kept fixed. To do this, we fixed d = 1024 and
changed s across a range, setting β = 0.8/

√
s, which keeps σ2 constant as s is changed: this has the

effect of changing σ1 (and, as a side effect, L1 and L). We can see from figure 2(c) that changing σ1
in this way has a much greater effect on LP-SGD than on SGD. This validates our theoretical results,
and suggests that σ1 and L1 can effectively determine the effect of low-precision compute on SGD.

4 Non-linear Quantization

Up till now, most theoretical work in the area of low-precision machine learning has been on linear
quantization, where the distance between adjacent quantization points is a constant value δ. Another
option is non-linear quantization (NLQ), in which we quantize to a set of points that are non-uniformly
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distributed. This approach has been shown to be effective for accelerating deep learning in some
settings [15]. In general, we can quantize to a set of points

D = {−qn, · · · ,−q1, q0, q1, · · · , qn−1},
and, just like with linear quantization, we can still use a quantization function Q(w) with randomized
rounding that rounds up or down to a number in D in such a way that E [Q(w)] = w for w ∈
[−qn, qn−1]. When we consider the quantization variance here, the natural dimension-dependent
bound would be

E
[
‖Q(w)− w‖22

]
≤ d

4
max
i

(qi − qi−1)2.

This is still a tight bound since it holds with equality for a number in the middle of two adjacent
quantization points. However, when applied in the analysis of LP-SGD, this bound induces poor
performance and often under-represents the actual result.

Here we discuss a specific NLQ method and use it to introduce a tight bound on the quantization
variance. This method has been previously studied as logarithmic quantization or µ−law quantization,
and is defined recursively by

q0 = 0, qi+1 − qi = δ + ζqi (7)

where δ > 0 and ζ > 0 are fixed parameters. Note that this includes linear quantization as a special
case by setting ζ = 0. It turns out that we can prove a tight dimension-free bound on the quantization
variance of this scheme. First, we introduce the following definition.
Definition 1. An unbiased quantization function Q satisfies the dimension-free variance bound with
parameters δ, ζ, and η if for all w ∈ [−qn, qn−1] and all z ∈ D,

E
[
‖Q(w)− w‖22

]
≤ δ ‖w − z‖1 + ζ ‖z‖2 · ‖w − z‖2 + η ‖w − z‖22 .

We can prove that our logarithmic quantization scheme satisfies this bound.
Lemma 1. The logarithmic quantization scheme (7) satisfies the dimension-free variance bound with
parameters δ, ζ, and η = ζ2

4(ζ+1) <
ζ
4 .

Notice that this bound becomes identical to the linear quantization bound (6) when ζ = 0, so this
result is a strict generalization of our results from the linear quantization case. With this setup, we
can apply NLQ to the low-precision training algorithms we have studied earlier in this paper.
Theorem 3. Suppose that we run LP-SGD on a convex objective that satisfies Assumptions 1–4, and
using a quantization scheme that satisfies the dimension-free variance bound 1. If ζ < 1

κ , then

E [(f(w̄T )− f(w∗))] ≤
‖w0 − w∗‖22

2αT
+

(1 + η)ασ2 + δσ1 + ζσ ‖w∗‖2
2

+
(δL1 + ζL ‖w∗‖2 + ζσ)2

4µ

For non-convex objectives, we need to assume a bound for the iterates we deal with, that is,
Assumption 6. The scale of the iterates is bounded by some constant R0, i.e. ∀t, ‖wt‖2 6 R0.
Theorem 4. Suppose that we run LP-SGD on a non-convex objective thatsatisfies previous assump-
tions 1,4– 6, with constant step size α < 1

2(η+1)L and using a quantization scheme that satisfies the
dimension-free variance bound 1, then

E
[
‖∇f(w̄T )‖22

]
6

2(f(w0)− f∗)

αT
+ ασ2

0L+ Lδσ1 +
1

2
(LζR0)2

If we fix the representable range R (the largest-magnitude values representable in the low-precision
format) and choose our quantization parameters optimally, we get the result that the number of bits
we need to achieve objective gap or expected gradient ε is log2O((Rσ/ε) · log (1 + σ1/σ)) and
log2O(LR/

√
ε · log (1 + σ1/

√
ε)) (as is shown in table 3). These bounds are notable because even

in the worst case where we do not have a bound on σ1 and must use σ1 ≤
√
d · σ, which recovers the

dimension term, the bounds still manage to “hide” it within a log term. This greatly decreases the
effect of the dimension, and suggests that NLQ may be a promising technique to use for low-precision
training at scale. Also note that, although the first bound holds only when ζ < 1

κ = µ
L , which to some

extent limits the acceleration of the strides in logarithmic quantization, the bound µ
L is independent

of σ and σ1, thus this effect of “pushing " σ1 into a log term is independent of the setting of ζ.
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Floating point. Next, we look at another type of non-linear quantization that is of great practical
use: floating-point quantization (FPQ). Here, the quantization points are simply floating-point
numbers with some fixed number of exponential bits be and mantissa bits bm. Floating-point numbers
are represented in the form

(−1)sign bit · 2exponent−bias · (1.m1m2m3 . . .mbm) (8)

where “exponent” is a be-bit unsigned number, the mi are the bm bits of the mantissa, and “bias” is a
term that sets the range of the representable numbers by determining the range of the exponent. In
standard floating point numbers, the exponent ranges from [−2be−1+2, 2be−1−1], which corresponds
to a bias of 2be−1 − 1. To make our results more general, we also consider non-standard bias by
defining a scaling factor s = 2−(bias−standard bias); the standard bias setting corresponds to s = 1.
We also consider the case of denormal floating point numbers, which tries to address underflow by
replacing the 1 in (8) with a 0 for the smallest exponent value. Under these conditions, we can prove
that floating-point quantization satisfies the bound in Definition 1.
Lemma 2. The FPQ scheme using randomized rounding satisfies the dimension-free variance bound
with parameters δnormal, ζ, and η for normal FPQ and δdenormal, ζ, and η for denormal FPQ where

δnormal =
4s

22be−1 , δdenormal =
8s

22be−1+bm
, ζ = 2−bm , η =

ζ2

4(ζ + 1)
.

This bound can be immediately combined with Theorem 3 to produce dimension-free bounds on the
convergence rate of low-precision floating-point SGD. If we are given a fixed number of total bits
b = be + bm, we can minimize this upper bound on the objective gap or the expected gradient to try
to predict the best way to allocate our bits between the exponent and the mantissa.
Theorem 5. When using normal FPQ for a convex objective, given b total bits, the optimal number
of exponential bits be such that the asymptotic upper bound on the objective gap given by Theorem 3
is minimized is in the interval between:

log2

[
2 log2

(
2(ln 2)sσ1
σ ‖w∗‖2

)
+ 2b

]
and log2

[
2 log2

(
2(ln 2)sL1

L ‖w∗‖2 + σ

)
+ 2b

]
.

Theorem 6. When using denormal FPQ for a convex objective, given b total bits, the optimal number
of exponential bits be such that the asymptotic upper bound on the objective gap, as T → ∞ and
α→ 0, given by Theorem 3 is minimized is in the interval between:

log2

[
1− 2

ln 2
W

(
eσ ‖w∗‖2

8sσ1

)]
and log2

[
1− 2

ln 2
W

(
e(L ‖w∗‖2 + σ)

8sL1

)]
where e denotes the base of the natural logarithm and W stands for the Lambert W function. In
cases where neither of these two values exists, the noise ball size increases as be, thus be = 2 would
be the optimal setting, which is equivalent to linear quantization.
Theorem 7. When using normal FPQ for a non-convex objective, given b total bits, the optimal
number of exponential bits be such that the asymptotic upper bound on the gradient, as T →∞ and
α→ 0, given by Theorem 4 is minimized, at:

log2

[
2

ln 2
W

(
(ln 2)2sσ122b

LR2
0

)]
These theorems give us an idea of where the optimal setting of be lies such that the theoretical
asymptotic error or the expected gradient is minimized. When using normal FPQ, this optimal
assignment of be is O(log(b)), and for denormal FPQ the result is independent of b. Also, we found
that for de-normal FPQ used in non-convex objectives, the optimal setting of be is the solution to a
transcendental equation, which may not exist. This suggests that once the total number of bits grows
past a threshold, we should assign most of or all the extra bits to the mantissa.

Experiments For FPQ, we ran experiments on two different data sets. First, we ran LP-SGD on
the same synthetic data set that we used for linear regression. Here we used normal FPQ with 20
bits in total, and we get the result in Figure 3(a). In this diagram, we plotted the empirical noise ball
size, its theoretical upper bound, and the optimal interval for be as Theorem 5 predicts. As the figure
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Figure 3: Plots of noise ball size vs. be when running SGD with 16 bits FPQ on synthetic data set
and MNIST. Note the use of two y-axes in Figure 3(b) to make the series fit in one figure.

shows, our theorem accurately predicts the optimal setting of exponential bits, which is 5 in this case,
to minimize both the theoretical upper bound and the actual empirical result of the noise ball size,
despite the theoretical upper bound being loose.

Second, we ran LP-SGD on the MNIST dataset [10]. To set up the experiment, we normalized the
MNIST data to be in [0, 1] by dividing by 255, then subtracted out the mean for each features. We
ran multiclass logistic regression using an L2 regularization constant of 10−4 and a step size of
α = 10−4, running for 500 total epochs (passes through the dataset) to be sure we converged. For
this task, our (measured) problem parameters were L = 37.41, L1 = 685.27, σ = 2.38, σ1 = 29.11,
and d = 784. In Figure 3(b), we plotted the observed loss gap, averaged across the last ten epochs,
for LP-SGD using various 16-bit floating point formats. We also plot our theoretical bound on the
loss gap, and the predicted optimal number of exponential bits to use based on that bound. Our results
show that even though our bound is very loose for this task, it still predicts the right number of bits to
use with reasonable accuracy. This experiment also validates the use of IEEE standard half-precision
floating-point numbers, which have 5 exponential bits, for this sort of task.

5 Conclusion

In this paper, we present dimension-free bounds on the convergence of SGD when applied to low-
precision training. We point out the conditions under which such bounds hold, for both convex
and non-convex objectives. We further extend our results to non-linear methods of quantization:
logarithmic quantization and floating point quantization. We analyze the performance of SGD under
logarithmic quantization and demonstrate that NLQ is a promising method for reducing the number
of bits required in low-precision training. We also presented ways in which our theory could be used
to suggest how to allocate bits between exponent and mantissa when FPQ is used. We hope that our
work will encourage further investigation of non-linear quantization techniques.
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