
Under review as a conference paper at ICLR 2019

A RESIZABLE MINI-BATCH GRADIENT DESCENT
BASED ON A MULTI-ARMED BANDIT

Anonymous authors
Paper under double-blind review

ABSTRACT

Determining the appropriate batch size for mini-batch gradient descent is always
time consuming as it often relies on grid search. This paper considers a resizable
mini-batch gradient descent (RMGD) algorithm based on a multi-armed bandit
that achieves performance equivalent to that of best fixed batch-size. At each
epoch, the RMGD samples a batch size according to a certain probability distribu-
tion proportional to a batch being successful in reducing the loss function. Sam-
pling from this probability provides a mechanism for exploring different batch
size and exploiting batch sizes with history of success. After obtaining the valida-
tion loss at each epoch with the sampled batch size, the probability distribution is
updated to incorporate the effectiveness of the sampled batch size. Experimental
results show that the RMGD achieves performance better than the best performing
single batch size. It is surprising that the RMGD achieves better performance than
grid search. Furthermore, it attains this performance in a shorter amount of time
than grid search.

1 INTRODUCTION

Gradient descent (GD) is a common optimization algorithm for finding the minimum of the expected
loss. It takes iterative steps proportional to the negative gradient of the loss function at each iteration.
It is based on the observation that if the multi-variable loss functions f(w) is differentiable at point
w, then f(w) decreases fastest in the direction of the negative gradient of f at w, i.e., −∇f(w).
The model parameters are updated iteratively in GD as follows:

wt+1 = wt − ηtgt, gt = ∇wf(wt)

where wt, gt, and ηt are the model parameters, gradients of f with respect to w, and learning rate
at time t respectively. For small enough ηt, f(wt) ≥ f(wt+1) and ultimately the sequence of wt
will move down toward a local minimum. For a convex loss function, GD is guaranteed to converge
to a global minimum with an appropriate learning rate.

There are various issues to consider in gradient-based optimization. First, GD can be extremely slow
and impractical for large dataset: gradients of all the data have to be evaluated for each iteration.
With larger data size, the convergence rate, the computational cost and memory become critical, and
special care is required to minimize these factors. Second, for non-convex function which is often
encountered in deep learning, GD can get stuck in a local minimum without the hope of escaping.
Third, stochastic gradient descent (SGD), which is based on the gradient of a single training sample,
has large gradient variance, and it requires a large number of iterations. This ultimately translates to
slow convergence. Mini-batch gradient descent (MGD), which is based on the gradient over a small
batch of training data, trades off between the robustness of SGD and the stability of GD. There are
three advantages for using MGD over GD and SGD: 1) The batching allows both the efficiency
of memory usage and implementations; 2) The model update frequency is higher than GD which
allows for a more robust convergence avoiding local minimum; 3) MGD requires less iteration per
epoch and provides a more stable update than SGD. For these reasons, MGD has been a popular
algorithm for machine learning. However, selecting an appropriate batch size is difficult. Various
studies suggest that there is a close link between performance and batch size used in MGD Breuel
(2015); Keskar et al. (2016); Wilson & Martinez (2003).

1

Under review as a conference paper at ICLR 2019

There are various guidelines for selecting a batch size but have not been completely practical Bengio
(2012). Grid search is a popular method but it comes at the expense of search time. There are a small
number of adaptive MGD algorithms to replace grid search Byrd et al. (2012); De et al. (2016);
Friedlander & Schmidt (2012). These algorithms increase the batch size gradually according to
their own criterion. However, these algorithms are based on convex loss function and hard to be
applied to deep learning. For non-convex optimization, it is difficult to determine the optimal batch
size for best performance.

This paper considers a resizable mini-batch gradient descent (RMGD) algorithm based on a
multi-armed bandit for achieving best performance in grid search by selecting an appropriate batch
size at each epoch with a probability defined as a function of its previous success/failure. At
each epoch, RMGD samples a batch size from its probability distribution, then uses the selected
batch size for mini-batch gradient descent. After obtaining the validation loss at each epoch, the
probability distribution is updated to incorporate the effectiveness of the sampled batch size. The
benefit of RMGD is that it avoids the need for cumbersome grid search to achieve best performance
and that it is simple enough to apply to any optimization algorithm using MGD. The detailed
algorithm of RMGD are described in Section 4, and experimental results are presented in Section 5.

2 RELATED WORKS

There are only a few published results on the topic of batch size. It was empirically shown that
SGD converged faster than GD on a large speech recognition database Wilson & Martinez (2003).
It was determined that the range of learning rate resulting in low test errors was considerably getting
smaller as the batch size increased on convolutional neural networks and that small batch size yielded
the best test error, while large batch size could not yield comparable low error rate Breuel (2015).
It was observed that larger batch size are more liable to converge to a sharp local minimum thus
leading to poor generalization Keskar et al. (2016). It was found that the learning rate and the batch
size controlled the trade-off between the depth and width of the minima in MGD Jastrzkebski et al.
(2017).

A small number of adaptive MGD algorithms have been proposed. Byrd et al. (2012) introduced a
methodology for using varying sample size in MGD. A relatively small batch size is chosen at the
start, then the algorithm chooses a larger batch size when the optimization step does not produce
improvement in the target objective function. They assumed that using a small batch size allowed
rapid progress in the early stages, while a larger batch size yielded high accuracy. However, this
assumption did not corresponded with later researches that reported the degradation of performance
with large batch size Breuel (2015); Keskar et al. (2016); Mishkin et al. (2017). Another similar
adaptive algorithm, which increases the batch size gradually as the iteration proceeded, was done by
Friedlander & Schmidt (2012). The algorithm uses relatively few samples to approximate the gradi-
ent, and gradually increase the number of samples with a constant learning rate. It was observed that
increasing the batch size is more effective than decaying the learning rate for reducing the number
of iterations Smith et al. (2017). However, these increasing batch size algorithms lack flexibility
since it is unidirectional. Balles et al. (2017) proposed a dynamic batch size adaptation algorithm.
It estimates the variance of the stochastic gradients and adapts the batch size to decrease the vari-
ance. However, this algorithm needs to find the gradient variance and its computation depends on
the number of model parameters.

Batch size can also be considered as a hyperparameter, and there have been some proposals based
on bandit-based hyperparameter (but not batch size) optimization which maybe applicable for
determining the best fixed batch size. Jamieson & Talwalkar (2016) introduced a successive halving
algorithm. This algorithm uniformly allocates a budget to a set of hyperparameter configurations,
evaluates the performance of all configurations, and throws out the worst half until one configuration
remains. Li et al. (2017) introduced a novel bandit-based hyperparameter optimization algorithm
referred as HYPERBAND. This algorithm considers the optimization problem as a resource
allocation problem. The two algorithms mentioned above are not adaptive, and for searching a
small hyperparameter space, the two algorithms will not be very effective. The experimental results
in this paper show that adaptive MGD tends to perform better than fixed MGD.

2

Under review as a conference paper at ICLR 2019

Figure 1: An overall framework of considered resizable mini-batch gradient descent algorithm
(RMGD). The RMGD samples a batch size from a probability distribution, and parameters are
updated by mini-batch gradient using the selected batch size. Then the probability distribution is
updated by checking the validation loss.

3 SETUP

Let B = {bk}Kk=1 be the set of possible batch size and π = {πk}Kk=1 be the probability distribution
of batch size where bk, πk, and K are the kth batch size, the probability of bk to be selected, and
number of batch sizes respectively. This paper considers algorithm for multi-armed bandit over B
according to Algorithm 1. Letwτ ∈ W be the model parameters at epoch τ , and w̃t be the temporal
parameters at sub iteration t. Let J : W → R be the training loss function and let g = ∇J(w)
be the gradients of training loss function with respect to the model parameters. ητ is the learning
rate at epoch τ . Let ` : W → R be the validation loss function, and yk ∈ {0, 1} be the cost of
choosing the batch size bk. In here, yk = 0 if the validation loss decreases by the selected batch size
bk (well-updating) and yk = 1 otherwise (misupdating). The aim of the algorithm is to have low
misupdating. For the cost function yk, graduated losses such as hinge loss and percentage of non-
negative changes in validation loss can be variations of 0-1 loss. However, there are no differences
in regret bound among them in this setting and it is experimentally confirmed that there are little per-
formance gaps among them. Therefore, this paper introduces the 0-1 loss, which is simple and basic.

4 RESIZABLE MINI-BATCH GRADIENT DESCENT

The resizable mini-batch gradient descent (RMGD) sets the batch sizes as multi arms, and at each
epoch it samples one of the batch sizes from probability distribution. Then, it suffers a cost of
selecting this batch size. Using the cost, probability distribution is updated.

4.1 ALGORITHMS

The overall framework of the RMGD algorithm is shown in Figure 1. The RMGD consists of two
components: batch size selector and parameter optimizer. The selector samples a batch size from
probability distribution and updates the distribution. The optimizer is usual mini-batch gradient.

Selector samples a batch size bkτ ∈ B from the probability distribution πτ at each epoch τ where kτ
is selected index. Here bk is associated with probability πk. The selected batch size bkτ is applied to
optimizer for MGD at each epoch, and the selector gets cost ykτ from optimizer. Then, the selector

3

Under review as a conference paper at ICLR 2019

Algorithm 1 Resizable Mini-batch Gradient Descent
Input:
B = {bk}Kk=1 : Set of batch sizes
π0 = {1/K, . . . , 1/K} : Prior probability distribution

Procedure:
1: Initialize model parameters w0

2: for epoch τ = 0, 1, 2, . . .
3: Select batch size bkτ ∈ B from πτ
4: Set temporal parameters w̃0 = wτ
5: for t = 0, 1, . . . , T − 1 where T = dm/bkτ e
6: Compute gradient gt = ∇J(w̃t)
7: Update w̃t+1 = w̃t − ητgt
8: end for
9: Update wτ+1 = w̃T

10: Observe validation loss `(wτ+1)
11: if `(wτ+1) < `(wτ)
12: Get cost ykτ = 0
13: else
14: Get cost ykτ = 1
15: end if
16: for i = 1, 2, . . . ,K
17: if i = kτ
18: Set temporal probability π̃i = πiτe

−βykτ /πiτ

19: else
20: Set temporal probability π̃i = πiτ
21: end if
22: end for
23: Update ∀i ∈ [K], πiτ+1 = π̃i/

∑
j π̃

j

24: end for

updates probabilities by randomized weighted majority,

for i = kτ , π̃i = πiτe
−βykτ /πiτ

for i 6= kτ , π̃i = πiτ

∀i, πiτ+1 = π̃i/
∑
j

π̃j

where β ∈ (0, 1) is positive hyperparameter. When τ = 0, πτ = {1/K, . . . , 1/K}.

Optimizer updates the model parameters w. For each epoch, temporal parameters w̃0 is set to
wτ , and MGD iterates T = dm/bkτ e1 times using the selected batch size bkτ where m is the total
number of training samples:

w̃t+1 = w̃t − ητgt, gt = ∇J(w̃t).

After T iterations at epoch τ , the model parameters is updated aswτ+1 = w̃T . Then, the optimizer
obtains validation loss `, and outputs cost as follows:

ykτ =

{
0 if `(wτ+1) < `(wτ)
1 otherwise

.

The RMGD samples an appropriate batch size from a probability distribution at each epoch. This
probability distribution encourages exploration of different batch size and then later exploits batch
size with history of success, which means decreasing validation loss. Figure 2 shows an example
of training progress of RMGD. The figure represents the probability distribution with respect to
epoch. The white dot represents the selected batch size at each epoch. In the early stage of training,

1dxe is the least integer that is greater than or equal to x

4

Under review as a conference paper at ICLR 2019

Figure 2: The probability distribution vs epoch using the RMGD. (top) The early stages of the
training. (bottom) The later stages of the training. The white dot represents the selected batch size
at each epoch. In the early stages of the training, RMGD updates the probabilities to search various
batch sizes (exploration), and in the later stages, RMGD increases the probability of successful batch
size (exploitation).

commonly, all batch sizes tend to decrease validation loss: π is uniform. Thus, all batch size have
equal probability of being sampled (exploration). In the later stages of training, the probability
distribution varies based on success and failure. Thus, better performing batch size gets higher
probability to be sampled (exploitation). In this case, 256 is the best performing batch size.

4.2 REGRET BOUND

The regret bound of the RMGD follows the regret bound derived in Shalev-Shwartz et al. (2012).
The goal of this algorithm is to have low regret for not selecting the best performing batch size such
that

RegretT (S) = E

[T∑
τ=1

ykττ

]
−min

i

T∑
τ=1

yiτ (1)

where the expectation is over the algorithm’s randomness of batch size selection and the second term
on the right-hand side is the cumulative sum of the cost by the best fixed batch size which minimizes
the cumulative sum of the cost. The regret of the RMGD is bounded,

E

[T∑
τ=1

ykττ

]
−min

i

T∑
τ=1

yiτ ≤
logK

β
+ βKT . (2)

In particular, setting β =
√
log(K)/(KT), the regret is bounded by 2

√
K log(K)T , which is

sublinear with T . The detailed derivation of regret bound is described in the appendix A.

5 EXPERIMENTS

This section describes various experimental results on MNIST, CIFAR10, and CIFAR100 dataset.
In the experiments, simple convolutional neural networks (CNN) is used for MNIST and ‘All-CNN-
C’ Springenberg et al. (2014) is used for CIFAR10 and CIFAR100. The details of the dataset and
experimental settings are presented in the appendix B.

5

Under review as a conference paper at ICLR 2019

Figure 3: The probability distribution and selected batch size. The white dot is selected batch size at
epoch. (top) The case that small batch size performs better. (middle) The case that large batch size
performs better. (bottom) The case that best performing batch size varies.

Figure 4: The results of test accuracy for the MNIST dataset. The error bar is standard error. (left)
The test accuracy of 100 times repeated experiments with AdamOptimizer. (right) The test accuracy
of 100 times repeated experiments with AdagradOptimizer. In both cases, most RMGD settings
outperform all fixed MGD algorithms.

5.1 MNIST DATASET

The validity of the RMGD was assessed by performing image classification on the MNIST dataset
using AdamOptimizer and AdagradOptimizer as optimizer. The experiments were repeated 100
times for each algorithm and each optimizer, then the results were analyzed for significance. Figure
3 shows the probability distribution and the selected batch size with respect to epoch during training
for the RMGD. The white dot represents the batch size selected at each epoch. The top figure is the
case that small batch size (32) performs better. After epoch 50, batch size 32 gets high probability
and is selected more than others. It means that batch size 32 has less misupdating in this case. The
gradually increasing batch size algorithm may not perform well in this case. The middle figure is the
case that large batch size (512) performs better. After epoch 60, batch size 512 gets high probability
and selected more than others. The bottom figure shows that the best performing batch size varies
with epoch. During epoch from 40 to 55, batch size of 256 performs best, and best performing batch
size switches to 128 during epoch from 60 to 70, then better performing batch size backs to 256
after epoch 80. In the results, any batch size can be a successful batch size in the later stages without
any particular order. The RMGD is more flexible for such situation than the MGD or directional
adaptive MGD such as gradually increasing batch size algorithm.

Figure 4 shows the test accuracy of each algorithm. The error bar is standard error. The number in
parenthesis next to MGD represents the batch size used in the MGD. ’Basic’, ’sub’, ’super’, ’hinge’,
and ’ratio’ in parenthesis next to RMGD represent RMGD settings ’batch size set equal to grid
search, 0-1 loss’, ’subset of basic, 0-1 loss’, ’superset of basic, 0-1 loss’, ’basic set, hinge loss’, and
’basic set, percentage of non-negative changes in validation loss’, respectively. The left figure is the
test accuracy with AdamOptimizer. The right figure is the test accuracy with AdagradOptimizer.
Among the MGD algorithms, relatively small batch sizes (16 - 64) lead to higher performance than
large batch sizes (128 - 512) and batch size 64 achieves the best performance in grid search. These

6

Under review as a conference paper at ICLR 2019

Table 1: Iterations and real time for training, and test accuracy of MNIST classification with
AdamOptimizer. The ’total’ is the sum of the average values from MGD 16 to 512, which means
the whole grid search is performed.

Algorithms Iterations Real time (sec) Test accuracy (%)
Mean ± SD Max Min

MGD (16) 343,800 1,221.54 ± 36.00 99.327 ± 0.064 99.480 99.140
MGD (32) 171,900 697.82 ± 19.70 99.322 ± 0.060 99.500 99.150
MGD (64) 86,000 379.14 ± 11.32 99.328 ± 0.058 99.460 99.170
MGD (128) 43,000 262.33 ± 2.34 99.314 ± 0.056 99.440 99.170
MGD (256) 21,500 208.13 ± 2.20 99.295 ± 0.059 99.470 99.170
MGD (512) 10,800 180.06 ± 0.37 99.254 ± 0.054 99.430 99.110
MGD (total) 677,000 2,949.02

RMGD (basic) 68,309 ± 8,900 333.73 ± 25.38 99.342 ± 0.064 99.480 99.110
RMGD (sub) 85,777 ± 12,112 400.73 ± 51.91 99.357 ± 0.057 99.510 99.060

RMGD (super) 67,948 ± 6,022 332.61 ± 22.26 99.345 ± 0.058 99.460 99.110
RMGD (hinge) 69,607 ± 8,887 337.38 ± 25.29 99.341 ± 0.062 99.480 99.130
RMGD (ratio) 95,530 ± 8,281 449.37 ± 26.71 99.339 ± 0.062 99.470 99.150

Table 2: Iterations and real time for training, and test accuracy of MNIST classification with Ada-
gradOptimizer.

Algorithms Iterations Real time (sec) Test accuracy (%)
Mean ± SD Max Min

MGD (16) 343,800 1,160.87 ± 22.34 99.268 ± 0.090 99.430 98.920
MGD (32) 171,900 640.68 ± 15.53 99.270 ± 0.070 99.410 99.050
MGD (64) 86,000 367.40 ± 12.63 99.277 ± 0.077 99.440 99.110

MGD (128) 43,000 262.48 ± 1.37 99.269 ± 0.069 99.410 99.080
MGD (256) 21,500 195.60 ± 2.00 99.240 ± 0.072 99.390 99.030
MGD (512) 10,800 170.31 ± 1.41 99.198 ± 0.085 99.390 98.810
MGD (total) 677,000 2,797.34

RMGD (basic) 68,159 ± 8,447 323.33 ± 23.57 99.286 ± 0.088 99.490 98.900
RMGD (sub) 81,479 ± 9,141 356.16 ± 28.06 99.272 ± 0.092 99.460 98.960

RMGD (super) 67,638 ± 7,733 320.38 ± 23.55 99.280 ± 0.074 99.410 99.090
RMGD (hinge) 68,199 ± 8,642 322.33 ± 24.03 99.282 ± 0.089 99.420 98.900
RMGD (ratio) 93,523 ± 9,871 452.69 ± 34.71 99.283 ± 0.078 99.480 99.020

results correspond with other studies Breuel (2015); Keskar et al. (2016); Mishkin et al. (2017).
Most RMGD settings outperform all fixed MGD algorithms in both case. Although the performance
of RMGD is not significantly increased compared to the best MGD, the purpose of this algorithm is
not to improve performance, but to ensure that the best performance is achieved without performing
a grid search on the batch size. Rather, the improved performance of the RMGD is a surprising
result. Therefore, the RMGD is said to be valid. There are little performance gap among RMGD
settings. The ’sub’ setting outperforms the ’basic’ setting in left figure, but the opposite result is
shown in right figure. Therefore, there is no clear tendency of performance change depending on
the size of the batch size set.

Table 1 and 2 present iterations and real time for training, mean, maximum, and minimum of test
accuracies for each algorithm with AdamOptimizer and AdagradOptimizer respectively. The MGD
(total) is the summation of the iterations and real time of whole MGDs for grid search. The RMGD
(basic) outperforms best performing MGD and is, also, faster than best performing MGD. Further-
more, it is 8 times faster than grid search in both cases. In the results, the RMGD is effective
regardless of the optimizer.

5.2 CIFAR10 AND CIFAR100 DATASET

The CIFAR10 and CIFAR100 dataset were, also, used to assess effectiveness of the RMGD. The
experiments were repeated 25 times and 10 times, respectively. In these experiments, all images

7

Under review as a conference paper at ICLR 2019

Figure 5: The results of test accuracy for the CIFAR10 and CIFAR100 dataset. The error bar is
standard error. (left) The test accuracy of 25 times repeated experiments on CIFAR10. (right) The
test accuracy of 10 times repeated experiments on CIFAR100. In both cases, all RMGD settings
outperform all fixed MGD algorithms.

Table 3: Iterations and real time for training, and test accuracy on CIFAR10.
Algorithms Iterations Real time (sec) Test accuracy (%)

Mean ± SD Max Min
MGD (16) 1,072,050 10,085.26 ± 216.48 87.778 ± 0.207 88.290 87.480
MGD (32) 536,200 7,643.93 ± 459.95 87.851 ± 0.160 88.250 87.630
MGD (64) 268,100 6,160.16 ± 68.54 87.853 ± 0.202 88.330 87.450
MGD (128) 134,050 5,675.15 ± 181.80 87.873 ± 0.234 88.210 87.090
MGD (256) 67,200 5,466.79 ± 402.20 87.897 ± 0.293 88.260 87.170
MGD (total) 2,077,600 35,031.29

RMGD (basic) 463,629 ± 48,692 7,592.43 ± 403.65 88.004 ± 0.167 88.380 87.780
RMGD (sub) 507,186 ± 93,961 7,614.16 ± 514.20 87.992 ± 0.147 88.270 87.730

RMGD (super) 397,685 ± 33,535 7,426.11 ± 228.28 88.027 ± 0.179 88.340 87.760
RMGD (hinge) 459,664 ± 56,086 7,584.01 ± 439.62 88.003 ± 0.167 88.380 87.810
RMGD (ratio) 426,123 ± 15,213 7,561.72 ± 220.56 88.002 ± 0.129 88.330 87.770

Table 4: Iterations and real time for training, and test accuracy on CIFAR100.
Algorithms Iterations Real time (sec) Test accuracy (%)

Mean ± SD Max Min
MGD (16) 1,072,050 12,097.47 ± 57.47 60.247 ± 0.690 61.940 59.620
MGD (32) 536,200 8,058.14 ± 39.87 60.475 ± 0.721 61.750 59.290
MGD (64) 268,100 6,400.21 ± 12.78 60.628 ± 0.795 61.950 59.170
MGD (128) 134,050 5,598.85 ± 38.18 60.954 ± 0.834 62.120 59.530
MGD (256) 67,200 5,245.88 ± 40.67 60.504 ± 0.553 61.560 59.830
MGD (total) 2,077,600 37,400.55

RMGD (basic) 425,416 ± 44,392 7,503.09 ± 281.79 61.203 ± 0.502 62.050 60.310
RMGD (sub) 532,624 ± 69,195 7,841.88 ± 530.29 61.080 ± 0.720 61.910 59.900

RMGD (super) 397,717 ± 20,091 7,408.00 ± 163.74 61.166 ± 0.560 61.970 60.320
RMGD (hinge) 419,100 ± 53,491 7,476.71 ± 324.29 61.219 ± 0.714 62.060 59.580
RMGD (ratio) 412,532 ± 15,660 7,456.50 ± 100.79 61.340 ± 0.411 61.880 60.550

are whitened and contrast normalized before being input to the network. Figure 5 shows the test
accuracy for each algorithm. The left figure represents the test accuracy on CIFAR10. In contrast
to the MNIST results, relatively large batch sizes (128 - 256) lead to higher performance than small
batch sizes (16 - 64) and batch size 256 achieves the best performance in grid search. The right figure
represents the test accuracy on CIFAR100 and batch size 128 achieves the best performance in grid
search. The results on MNIST, CIFAR10 and CIFAR100 indicate that it is difficult to know which
batch size is optimal before performing a grid search. Meanwhile, all RMGD settings have again
exceeded the best performance of fixed MGD. There are no significant performance gaps among
RMGD settings, so there is no need to worry about choosing appropriate batch size set or selecting
cost function.

8

Under review as a conference paper at ICLR 2019

Table 3 and 4 present the detailed results on CIFAR10 and CIFAR100 dataset. The RMGD (basic)
is a little slower than single best performing MGD (256 for CIFAR10 and 128 for CIFAR100), how-
ever, it was much faster than grid search -about 4.6 times on CIFAR10 and 5.0 times on CIFAR100
faster. Therefore, this results, also, show the effectiveness of the RMGD.

It is difficult to compare the RMGD with other adaptive batch size algorithm, e.g. coupling adaptive
batch sizes (CABS) Balles et al. (2017), directly since the underlying goals are different. While the
goal of the RMGD is to reduce the validation loss in terms of generalization performance, the CABS
determines the batch size to balance between the gradient variance and computation. However, it is
obvious that the RMGD is simpler and easier to implement than any other adaptive algorithm cited
in this paper, and comparing the test accuracy between the RMGD and the CABS on the CIFAR10
and CIFAR100 using the same experimental settings with ’All-CNN-C’ shows that the performance
of the RMGD is higher than that of the CABS (CIFAR10: 87.862 ± 0.142, CIFAR100: 60.782
± 0.421). And again, the purpose of this algorithm is not to outperform other algorithms, but to
guarantee that the best performance is reached without grid search.

CONCLUSION

Selecting batch size affects the model quality and training efficiency, and determining the appro-
priate batch size is time consuming and requires considerable resources as it often relies on grid
search. The focus of this paper is to design a simple robust algorithm that is theoretically sound and
applicable in many situations.

This paper considers a resizable mini-batch gradient descent (RMGD) algorithm based on a multi-
armed bandit that achieves equivalent performance to that of best fixed batch-size. At each epoch, the
RMGD samples a batch size according to certain probability distribution of a batch being successful
in reducing the loss function. Sampling from this probability provides a mechanism for exploring
different batch size and exploiting batch sizes with history of success. After obtaining the validation
loss at each epoch with the sampled batch size, the probability distribution is updated to incorporate
the effectiveness of the sampled batch size.

The goal of this algorithm is not to achieve state-of-the-art accuracy but rather to select appropri-
ate batch size which leads low misupdating and performs better. The RMGD essentially assists
the learning process to explore the possible domain of the batch size and exploit successful batch
size. The benefit of RMGD is that it avoids the need for cumbersome grid search to achieve best
performance and that it is simple enough to apply to various field of machine learning including
deep learning using MGD. Experimental results show that the RMGD achieves the best grid search
performance on various dataset, networks, and optimizers. Furthermore, it, obviously, attains this
performance in a shorter amount of time than the grid search. Also, there is no need to worry about
which batch size set or cost function to choose when setting RMGD. In conclusion, the RMGD is
effective and flexible mini-batch gradient descent algorithm.

REFERENCES

Lukas Balles, Javier Romero, and Philipp Hennig. Coupling adaptive batch sizes with learning
rates. In Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence, UAI
2017, Sydney, Australia, August 11-15, 2017, 2017. URL http://auai.org/uai2017/
proceedings/papers/141.pdf.

Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures. In
Neural networks: Tricks of the trade, pp. 437–478. Springer, 2012.

Thomas M Breuel. The effects of hyperparameters on sgd training of neural networks. arXiv preprint
arXiv:1508.02788, 2015.

Richard H Byrd, Gillian M Chin, Jorge Nocedal, and Yuchen Wu. Sample size selection in opti-
mization methods for machine learning. Mathematical programming, 134(1):127–155, 2012.

Soham De, Abhay Yadav, David Jacobs, and Tom Goldstein. Big batch sgd: Automated inference
using adaptive batch sizes. arXiv preprint arXiv:1610.05792, 2016.

9

http://auai.org/uai2017/proceedings/papers/141.pdf
http://auai.org/uai2017/proceedings/papers/141.pdf

Under review as a conference paper at ICLR 2019

Michael P Friedlander and Mark Schmidt. Hybrid deterministic-stochastic methods for data fitting.
SIAM Journal on Scientific Computing, 34(3):A1380–A1405, 2012.

Elad Hazan and Satyen Kale. Extracting certainty from uncertainty: Regret bounded by variation in
costs. Machine learning, 80(2-3):165–188, 2010.

Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperparameter
optimization. In Artificial Intelligence and Statistics, pp. 240–248, 2016.

Stanislaw Jastrzkebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
Bengio, and Amos Storkey. Three factors influencing minima in sgd. arXiv preprint
arXiv:1711.04623, 2017.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. The Journal of Machine Learning
Research, 18(1):6765–6816, 2017.

Dmytro Mishkin, Nikolay Sergievskiy, and Jiri Matas. Systematic evaluation of convolution neural
network advances on the imagenet. Computer Vision and Image Understanding, 161:11–19, 2017.

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and
Trends R© in Machine Learning, 4(2):107–194, 2012.

Samuel L Smith, Pieter-Jan Kindermans, and Quoc V Le. Don’t decay the learning rate, increase
the batch size. arXiv preprint arXiv:1711.00489, 2017.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for
simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

D Randall Wilson and Tony R Martinez. The general inefficiency of batch training for gradient
descent learning. Neural Networks, 16(10):1429–1451, 2003.

10

Under review as a conference paper at ICLR 2019

APPENDIX

A REGRET BOUND

In the RMGD algorithm, there are K batch sizes as multi arms with the probability distribution
π ∈ S, and at each epoch the algorithm should select one of the batch sizes bkτ . Then it receives a
cost of selecting this arm, ykττ ∈ {0, 1} by testing the validation loss `. The vector yτ ∈ {0, 1}K
represents the selecting cost for each batch size. The goal of this algorithm is to have low regret for
not selecting the best performing batch size.

RegretT (S) = E

[T∑
τ=1

ykττ

]
−min

i

T∑
τ=1

yiτ (3)

where the expectation is over the algorithm’s randomness of batch size selection.

Let S be the probability simplex, the selecting loss functions be fτ (π) = 〈π,yτ 〉2 and R : S → R
be a regularization function that is often chosen to be strongly convex with respect to some norm
|| · ||. The algorithm select a batch size with probability P[bkτ] = πkττ and therefore fτ (πτ) is the
expected cost of the selected batch size at epoch τ . The gradient of the selecting loss function is yτ .
However, only one element ykττ is known at each epoch. To estimate gradient, random vector zτ is
defined as follows:

ziτ =

{
yiτ/π

i
τ if i = kτ

0 otherwise

and expectation of zτ satisfies,

E[zτ |zτ−1, . . . ,z0] =
K∑
i=1

P[bkτ]ziτ = πkττ
ykττ
πkττ

= ykττ .

The most natural learning rule is to set the probability distribution which has minimal cost on all
past epochs. It is referred to as Follow-the-Regularized-Leader (FTRL) in online learning:

∀τ, πτ+1 = argmin
π∈S

{
β

τ∑
t=1

ft(π) +R(π)

}
,

where β is positive hyperparameter. The FTRL has a problem that it requires solving an optimization
problem at each epoch. To solve this problem, Online Mirror Descent (OMD) is applied. The OMD
computes the current probability distribution iteratively based on a gradient update rule and the
previous probability distribution and lies in the update being carried out in a ’dual’ space, defined by
regularizer. This follows from considering ∇R as a mapping from RK onto itself. The OMD relies
on Bregman divergence. The Bregman divergence between π and π̃ with respect to the regularizer
R is given as:

BR(π||π̃) = R(π)−R(π̃)−∇R(π̃) · (π − π̃), (4)
and a Bregman projection of π̃ onto simplex S:

argmin
π∈S

BR(π||π̃).

Then the probability distribution is updated by the OMD as follows:

∇R(π̃τ+1) = ∇R(π̃τ)− βzτ
πτ+1 = argmin

π∈S
BR(π||π̃τ+1).

In general, if R is strongly convex, then ∇R becomes a bijective mapping, thus π̃τ+1 can be re-
covered by the inverse gradient mapping (∇R)−1. Given that R is strongly convex, the OMD and
FTRL produce equivalent predictions:

argmin
π∈S

BR(π||π̃τ+1) = argmin
π∈S

{
β

τ∑
t=1

ft(π) +R(π)

}
2〈π,y〉 is the inner product between vectors π and y

11

Under review as a conference paper at ICLR 2019

by the Lemma 1 in Hazan & Kale (2010). It makes sense to use the negative entropic regularization
for R in RMGD setting:

R(π) =

K∑
i=1

πi log(πi).

Then,∇R(π)i = log(πi) + 1. From the OMD, π̃τ+1 is updated as follows:

∇R(π̃τ+1) = ∇R(π̃τ)− βzτ
log(π̃iτ+1) + 1 = log(π̃iτ) + 1− βziτ

π̃iτ+1 = π̃iτe
−βziτ .

The Bregman projection with respect to the negative entropy function becomes scaling by the `1-
norm. Therefore,

πiτ+1 =
π̃iτ+1∑
j π̃

j
τ+1

. (5)

The probability distribution πτ is updated by the rule of the normalized exponentiated gradient
(normalized-EG) algorithm described in Algorithm 1. Also, the selecting loss function is linear and
it is satisfied that ∀τ, i we have βziτ ≥ 0. Then,

T∑
τ=1

〈πτ − π∗, zτ 〉 ≤
log(K)

β
+ β

T∑
τ=1

K∑
i=1

πiτ (z
i
τ)

2 (6)

by the Theorem 2.22 in Shalev-Shwartz et al. (2012), where π∗ ∈ S is a fixed vector which mini-
mizes the cumulative selecting loss,

π∗ = argmin
π∈S

T∑
τ=1

fτ (π).

Since fτ is convex and zτ is estimated gradients for all τ ,

E

[T∑
τ=1

(fτ (πτ)− fτ (π∗))

]
≤ log(K)

β
+ β

T∑
τ=1

E

[
K∑
i=1

πiτ (z
i
τ)

2

]
(7)

by the Theorem 4.1 in Shalev-Shwartz et al. (2012). The last term is bounded as follows:

E

[
K∑
i=1

πiτ (z
i
τ)

2

]
=

K∑
j=1

P[kτ = j]

K∑
i=1

πiτ (z
i
τ)

2

=

K∑
j=1

(πjτ)
2(yjτ/π

j
τ)

2

=

K∑
j=1

(yjτ)
2 ≤ K. (8)

Therefore, the regret of the RMGD is bounded,

E

[T∑
τ=1

ykττ

]
−min

i

T∑
τ=1

yiτ ≤
logK

β
+ βKT . (9)

In particular, setting β =
√
log(K)/(KT), the regret is bounded by 2

√
K log(K)T , which is

sublinear with T .

12

Under review as a conference paper at ICLR 2019

B EXPERIMENTAL SETTINGS

DATASET

MNIST is a dataset of handwritten digits that is commonly used for image classification. Each
sample is a black and white image and 28× 28 in size. The MNIST is split into three parts: 55,000
samples for training, 5,000 samples for validation, and 10,000 samples for test.

CIFAR10 consists of 60,000 32 × 32 color images in 10 classes (airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, and truck), with 6,000 images per class. The CIFAR10 is split into three
parts: 45,000 samples for training, 5,000 samples for validation, and 10,000 samples for test.

CIFAR100 consists of 60,000 32 × 32 color images in 100 classes. The CIFAR100 is split into
three parts: 45,000 samples for training, 5,000 samples for validation, and 10,000 samples for test.

SETTINGS

The simple CNN consists of two convolution layers with 5 × 5 filter and 1 × 1 stride, two max
pooling layers with 2 × 2 kernel and 2 × 2 stride, single fully-connected layer, and softmax
classifier. Description of the ’All-CNN-C’ is provided in Table 5. For MNIST, AdamOptimizer
with η = 10−4 and AdagradOptimizer with η = 0.1 are used as optimizer. The basic batch size
set B = {16, 32, 64, 128, 256, 512}, subset of basic B− = {16, 64, 256}, and superset of basic
B+ = {16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512}. The model is trained for a total of 100
epochs. For CIFAR10 and CIFAR100, MomentumOptimizer with fixed momentum of 0.9 is used as
optimizer. The learning rate ηk is scaled up proportionately to the batch size (ηk = 0.05 ∗ bk/256)
and decayed by a schedule S = [200, 250, 300] in which ηk is multiplied by a fixed multiplier of
0.1 after 200, 250, and 300 epochs respectively. The model is trained for a total of 350 epochs.
Dropout is applied to the input image as well as after each convolution layer with stride 2. The
dropout probabilities are 20% for dropping out inputs and 50% otherwise. The model is regularized
with weight decay λ = 0.001. The basic batch size set B = {16, 32, 62, 128, 256}, subset of
basic B− = {16, 64, 256}, and superset of basic B+ = {16, 24, 32, 48, 64, 96, 128, 192, 256}. For
all experiments, rectified linear unit (ReLU) is used as activation function. For RMGD, β is set
to
√
log(6)/(6 ∗ 100) ≈ 0.055 for MNIST and

√
log(5)/(5 ∗ 350) ≈ 0.030 for CIFAR10 and

CIFAR100. The basic batch size selecting cost is 0-1 loss, hinge loss is max{0, `τ − `τ−1}, and
ratio loss is max{0, (`τ − `τ−1)/`τ−1}.

Table 5: Architecture of the All-CNN-C for CIFAR10 and CIFAR100
Layer Layer description
input Input 32 × 32 RGB image
conv1 3 × 3 conv. 96 ReLU, stride 1, dropout 0.2
conv2 3 × 3 conv. 96 ReLU, stride 1
conv3 3 × 3 conv. 96 ReLU, stride 2
conv4 3 × 3 conv. 192 ReLU, stride 1, dropout 0.5
conv5 3 × 3 conv. 192 ReLU, stride 1
conv6 3 × 3 conv. 192 ReLU, stride 2
conv7 3 × 3 conv. 192 ReLU, stride 1, dropout 0.5
conv8 1 × 1 conv. 192 ReLU, stride 1
conv9 1 × 1 conv. 10 or 100 ReLU, stride 1
pool averaging over 6 × 6 spatial dimensions

softmax 10-way or 100-way softmax

13

	Introduction
	Related Works
	Setup
	Resizable Mini-batch Gradient Descent
	Algorithms
	Regret Bound

	Experiments
	MNIST dataset
	CIFAR10 and CIFAR100 dataset

