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Our network decomposes an input image into shape, lighting, and albedo with four disentangled
representations: identity, expression, pose, and lighting, which allows expression transfer between
different face images.

ABSTRACT

Recovering 3D geometry shape, albedo and lighting from a single image has wide
applications in many areas, which is also a typical ill-posed problem. In order to
eliminate the ambiguity, face prior knowledge like linear 3D morphable models
(3DMM) learned from limited scan data are often adopted to the reconstruction
process. However, methods based on linear parametric models cannot general-
ize well for facial images in the wild with various ages, ethnicity, expressions,
poses, and lightings. Recent methods aim to learn a nonlinear parametric model
using convolutional neural networks (CNN) to regress the face shape and texture
directly. However, the models were only trained on a dataset that is generated
from a linear 3DMM. Moreover, the identity and expression representations are
entangled in these models, which hurdles many facial editing applications. In this
paper, we train our model with adversarial loss in a semi-supervised manner on
hybrid batches of unlabeled and labeled face images to exploit the value of large
amounts of unlabeled face images from unconstrained photo collections. A novel
center loss is introduced to make sure that different facial images from the same
person have the same identity shape and albedo. Besides, our proposed model dis-
entangles identity, expression, pose, and lighting representations, which improves
the overall reconstruction performance and facilitates facial editing applications,
e.g., expression transfer. Comprehensive experiments demonstrate that our model
produces high-quality reconstruction compared to state-of-the-art methods and is
robust to various expression, pose, and lighting conditions.

1 INTRODUCTION

3D face reconstruction from 2D images enables many exciting applications, such as face recognition
(Blanz & Vetter, 2003; Paysan et al., 2009; Liu et al., 2018), face puppetry (Cao et al., 2014), face
reenactment (Thies et al., 2016; Garrido et al., 2015), virtual make-up (Li et al., 2015), etc. However,
3D face shape and texture inference from 2D images, especially from a single image, is an ill-posed
problem since some 3D information is lost after the imaging process. 3D morphable model (3DMM)
(Blanz & Vetter, 1999) learned from a collection of 3D face scans is often adopted as a strong
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prior assumption for this problem. 3DMM is a linear combination of bases to provide statistical
parametric representation of 3D faces. Given a 2D image, the conventional approach is to search
for the corresponding 3DMM parameters through analysis-by-synthesis optimization (Levine & Yu,
2009; Booth et al., 2018). Specifically, a 3D face is generated through inverse rendering to match
the 2D image by optimizing the shape, albedo (i.e., texture separated from illumination conditions),
pose, and lighting parameters. However, such 3DMM optimization-based methods are usually time-
consuming due to high optimization complexity and suffer from local optima solutions.

Regressing 3DMM parameters using convolution neural network (CNN) shows remarkable success
in 3D face reconstruction (Richardson et al., 2016; Zhu et al., 2019; Genova et al., 2018; Wu et al.,
2019). However, these methods cannot go beyond but only search for a solution in the restricted
linear low-dimensional subspace of 3DMM. Linear statistical models have limitations to construct
3D face shapes and textures. First, facial variations are nonlinear in the real world, e.g., various
ethnic groups, ages, facial expressions, and skin colors. Second, in order to model highly variable 3D
face, a large amount of 3D face scans are needed for training. The most popular 3DMM (Xiangyu
Zhu et al., 2015) was built by merging Basel Face Model (BFM) (Paysan et al., 2009) with only
200 subjects in neutral expressions and FaceWarehouse (Cao et al., 2014) with 150 subjects in 20
different expressions, which is not able to fully capture the variability of human faces. A large
scale facial model (LSFM) was constructed by Booth et al. (2016) from around 10,000 distinct
facial identities but only in neutral expressions. Tewari et al. (2018), Tran et al. (2018), and Guo
et al. (2019) further proposed 3D face models composed of two networks: a coarse-scale linear
3DMM network and a fine-scale corrective network. Even though the finle-scale corrective model
can generate more details, 3D face reconstruction will fail if the foundation face shape generated by
the linear 3DMM network is not good enough.

Recently, Tran & Liu (2018) and Tran et al. (2019) proposed encoder-decoder networks to regress
the face shape and texture directly. The nonlinear networks have higher representation power com-
pared to a linear model and are able to reconstruct high-fidelity facial texture. However, the nonlinear
models were only trained on the 300W-LP dataset (Zhu et al., 2016) that is generated from a linear
3DMM with a face profiling technique. The models were further fine-tuned in a self-supervised
manner on the same dataset. However, since most of the face images were synthesised based on the
linear 3DMM, self-supervised training to reconstruct high-fidelity texture using inverse rendering
makes limited contributions to the face shape reconstruction. Besides, in these methods, the face
albedo and face shape are decoded from a albedo parameter and shape parameter separately with-
out considering the facial identity. In fact, across one’s different face images, the face albedo and
identity shape should only depend on the facial identity, i.e., sharing the same identity represen-
tation. Learning albedo and shape parameter separately is difficult to disentangle the face albedo
from lightings and occlusions. Especially, when the albedo decoder network has high representation
power, the albedo decoder may reconstruct high-fidelity face albedo but without aligning with the
face shape and fails to contribute to the face shape reconstruction. At last, the identity and expres-
sion representations are entangled in these methods and many applications, such as face recognition,
face animation, and face reenactment, are not feasible.

In this paper, we propose a novel encoder-decoder architecture using inverse rendering that com-
bines computer vision and computer graphics techniques. The vision system (i.e., encoder network)
decomposes an input 2D face image into disentangled and sematic representations: identity code,
expression code, pose code, and lighting code. The graphics system renders back a face image to
match the input image based on the decoder networks that regress the 3D face shape and albedo from
the extracted representations. Combining computer vision and computer graphics techniques pro-
vides a unique opportunity to leverage the vast amounts of readily available unlabelled face images
from unconstrained photo collections through self-supervised learning.

Since 3D face reconstruction from a 2D image is ambiguous and ill-posed, self-supervised learning
with unlabelled data through inverse learning is not sufficient. In this paper, we train the network in a
semi-supervised manner on hybrid batches of large amounts of unlabeled face images and relatively
small amounts of labelled face images that are generated from a linear 3DMM with optimization-
based methods. Moreover, following the idea of generative adversarial networks (GAN) (Goodfel-
low et al., 2014), a discriminator network is used to ensure the reconstructed face shape is not too far
away from the distribution of human face. Semi-supervised adversarial training not only prevents
our model from generating unrealistic 3D face shape but also fully exploits the value of unlabeled
face images without being constrained by the pre-existing linear 3DMM.
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To reconstruct the 3D face shape, we use graph convolutional network (GCN) (Defferrard et al.,
2016; Kipf & Welling, 2017) instead of fully connected layers with activation or CNN used in Tran
& Liu (2018) and Tran et al. (2019). A 3D face shape is usually modeled as a mesh that is defined
by a collection of vertices, edges, and faces and is considered as an unstructured graph. Modeling
graph convolutions on 3D meshes can be memory efficient and allows for processing high resolution
3D structures. GCN-based methods to reconstruct 3D face shapes outperforms other state-of-the-art
methods (Ranjan et al., 2018; Jiang et al., 2019; Bouritsas et al., 2019). To recover the 3D face
albedo, we first use a GCN network that has the same architecture with the shape decoder to learn
an illumination-independent face albedo. Then we apply a CNN-based decoder network that has
skip connections with the encoder network (Ronneberger et al., 2015) and a patchGAN (Shrivastava
et al., 2017) to improve the details of the facial texture.

We apply a face recognition loss and a center loss (Wen et al., 2016) to extract the identity represen-
tation (i.e., facial identity) from one’s unconstrained multiple face images. The center loss is used
to ensure the identity representation’s compactness for each person and separability for different
people, so that the identity representation is disentangled from the pose, lighting, and expression
representations. In order to further disentangle the identity and expression representations, pairwise
training approaches are adopted. Given a pair of labelled face data, we keep the identity codes and
interchange the expression codes of 3DMM to generate new 3D shapes as supervision. Comprehen-
sive evaluation experiments show that the proposed method achieves state-of-the-art performance
in 3D face reconstruction and can easily be used for the applications of face recognition and facial
expression transfer. The main contributions of this paper are summarized below:

• We propose an efficient semi-supervised and adversarial training process to fully exploit
the value of unlabelled face data and go beyond the limitation of a linear 3DMM.

• We design a novel framework to exact nonlinear disentangled representations from a face
image with the help of face recognition losses and shape pairwise loss.

• Extensive experiments show that our model achieves state-of-the-art performance in face
reconstruction.

2 BACKGROUND

This section describes some background information related to our work, including face represen-
tations in conventional linear 3DMM, face rendering process, and graph convolution used in face
shape reconstruction.

Linear 3DMM We first recap the conventional linear 3DMM. As described in Chu et al. (2014), the
linear 3DMM constructed from facial scans via PCA can be expressed as:

s = s̄+Aidαid +Aexpαexp, (1)

where s ∈ R3N×1 is a 3D face shape withN vertices, s̄ ∈ R3N×1 is the mean shape,Aid ∈ R3N×K

is the first K principle components trained on facial scans with neutral expression and αid ∈ RK×1

is the identity parameter, Aexp ∈ R3N×L is the first L principle components trained on the offset
between neutral scans and expression scans and αexp ∈ RM×1 is the expression parameter.

The texture of 3D face can also be modeled via PCA as:

t = t̄+Atexαtex, (2)

where t ∈ R3N×1 is a 3D face texture, t̄ ∈ R3N×1 is the mean texture, Atex ∈ R3N×M is the first
M principle components trained on facial textures and αtex ∈ RM×1 is the texture parameter.

Rendering process The 3D face modeled by 3DMM is projected onto a image plane with weak
perspective projection:

s2D = f ∗ Pr ∗R ∗ s+ t2D, (3)

where s2D ∈ R2×N is the face shape located on the image plane after projection, Pr =

[
1 0 0
0 1 0

]
is the orthographic projection matrix, R is the rotation matrix constructed from Euler angles (i.e.,
pitch, yaw, and roll), t2D = [tx, ty]ᵀ is the translation vector on the image plane, and f is the scale
factor.

3



Under review as a conference paper at ICLR 2020

Following Guo et al. (2019), we assume the face is Lambertian surface and the global illumina-
tion is approximated using the spherical harmonics (SH) basis function. The first three bands of
SHs are used for the illumination model. γ ∈ R27×1 is the illumination parameter for the RGB
channels’ SH illumination coefficient. Thus, the rendering process depends on the parameter set
χ = {αid,αexp,αtex, pitch, yaw, roll, f, t2D,γ}.
Spectral graph convolution As presented by Ranjan et al. (2018), we use spectral graph convolution
to reconstruct 3D face shapes. The shape of a 3D face is described as a triangular meshM = (V ,A),
where V ∈ Rn×3 denotes the n vertices in the Euclidean space, A ∈ {0, 1}n×n is the sparse
adjacency matrix representing the edge connections. The non-normalized graph Laplacian is defined
asL−D−A, where the degree matrixD is a diagonal matrix withDi,i =

∑
jAi,j . Spectral graph

convolution is defined on the graph Fourier transform domain, whose bases are the eigenvectors
of the Laplacian matrix. An efficient solution for spectral graph convolution is formulating mesh
filtering with a kernel using a recursive Chebyshev polynomial,

Xout,j =

Fin∑
i=1

K−1∑
k=0

θi,j,kTk(L̃)Xin,i, (4)

where Xout,j is the jth feature of the output Xout ∈ Rn×Fout and Xin,i is the ith feature of the
input Xin ∈ Rn×Fin , e.g., the input mesh vertices V has Fin = 3 features corresponding to the
3D vertex position. L̃ = 2L/λmax − In is the scaled Laplacian. Tk ∈ Rn×n is the Chebyshev
polynomial of order k that is computed recursively as Tk(x) = 2xTk−1(x)− Tk−1(x) with T0 = 1
and T1 = x. The parameter θ ∈ RFin×Fout×K is the trainable Chebyshev coefficients.

3 METHOD

We design an encoder-decoder architecture that allows ene-to-end semi-supervised adversarial train-
ing to extract disentangled semantic representations of a single image, as shown in Figure 1. We
adopt inverse rendering technique that utilizes parameterized illumination model and differentiable
renderer to render back the input face image under varying identity, expression, pose, and lighting
conditions. Our model is trained on hybrid batches of unlabeled face images from CelebA (Liu
et al., 2015) and labeled face images from 300W-LP (Zhu et al., 2016).

CNN 

Encoder

GCN

Albedo decoder

GCN

Shape decoder

Recog 
loss

Recon 
loss

Expression

Identity

Pose

Lighting

R
en

d
erin

g
 lay

er

Smth
loss

Lmk 
loss

+

Adv 
loss

Pair 
loss

Shp 
loss

Symm 
loss

Figure 1: Framework overview. The encoder network takes an input face image and extracts four
disentangled representations: identity code (cid), expression code (cexp), pose code (cpose), and
lighting code (clgt). The albedo decoder network reconstructs the face albedo from the identity
code. The shape decoder network reconstructs the face shape from the combination of the identity
code and expression code. The rendering layer takes the face albedo, face shape, pose, and lighting
to render back the face image. Multiple losses are applied on our network. Losses in gray rectangles
are only used on labeled face images and in green rectangles are used on all face images.
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3.1 ENCODER-DECODER NETWORK

Encoder As shown in Figure 1, the encoder network is a multi-task learning network, which takes
a face image as input and extracts its identity, expression, pose, and lighting representations. A pre-
trained ResNet-50 network is used as the backbone of the encoder network. The ResNet-50 network
is followed by four branches of fully connected layers with outputs of 128-D identity code (cid),
64-D expression code (cexp), 6-D pose code (cpose), and 27-D lighting code (clgt).

Shape decoder The shape decoder network is a graph convolutional network modified from the
COMA architecture (Ranjan et al., 2018) with an extra graph convolutional layer and up-sampling
layer at the beginning. We concatenate the identity code and expression code extracted from the
encoder network, i.e., a 192-D vector, as the input of the shape decoder network. The output of
the shape decoder is the corresponding 3D face shape in the standard position (i.e., without any
translations or rotations). We denote as FC(d) a fully connected layer, l the number of vertices
after the last down-sampling layer, GC(k,w) a graph convolutional layer with k kernel size and w
filters, and US(p) a up-sampling layer by a factor of p, respectively. The shape decoder network
is listed follows: FC(l ∗ 256) → US(2) → GC(6, 256) → US(4) → GC(6, 128) → US(4) →
GC(6, 64)→ US(4)→ GC(6, 32)→ US(4)→ GC(6, 16)→ GC(6, 3).

Albedo decoder The albedo decoder network is also a graph convolutional network and has the
same architecture as the shape decoder. The albedo decoder takes only the identity code as input
since the albedo of a face should be independent of the expression, pose, lighting, and occlusions.
Importantly, hair, glasses, microphones, and other facial occlusions should not be included in the
albedo since one’s facial albedo should be consistent across his different photos even with different
hair styles, glasses, etc. We apply face segmentation by Nirkin et al. (2018) to eliminate the effect of
facial occlusions. Note that, we did not consider aging, injury, or other factors that may affect one’s
face albedo.

After the lighting representation is learned, we change the GCN-based albedo decoder network to a
CNN network that has skip connections with the encoder network to improve the details of the facial
texture. The architecture of the encoder and CNN-based albedo decoder with skip connections is
similar to U-Net (Ronneberger et al., 2015). Moreover, we apply a patchGAN (Shrivastava et al.,
2017) to further make the facial texture more realistic.

3.2 LOSS FUNCTIONS

Our network is trained with a multi-task loss that enable us to regress the 3D face shape and albedo
end-to-end. The loss function combines face recognition loss, face reconstruction loss, pairwise
shape loss, adversary loss, and other regularization.

Face recognition loss In order to extract the identity code that only represents the photo’s facial
identity, we apply face recognition loss as follows:

Lrecog = Lsoft + λcenterLcenter, (5)
where Lsoft is the softmax loss that classify each photo to a specific identity class, Lcenter is the
center loss to improve the discriminative power of the deeply learned identity code (Wen et al.,
2016), and λcenter is used for balancing the two loss functions. Face recognition loss is essential to
learn the facial identity without being influenced by other factors such as facial expressions, poses,
lightings, occlusions, etc.

Face reconstruction loss The rendering layer renders back an image to compared with the input
image. The face reconstruction loss is formulated as

Lrecon = M � (‖Î − I‖22 + Lgdl,color), (6)

where � is the element-wise Hadamard product, I is the input image, Î is the rendered image, and
M is the mask obtained by Nirkin et al. (2018) to eliminate the effect of facial occlusions such
as hair, glasses, and microphone. Moreover, image gradient difference loss (GDL) (Mathieu et al.,
2015), denoted as Lgdl,color, is applied to recover more details in the reconstruction.

Sparse landmark loss We add sparse landmark loss to help learn the face pose and achieve better
face reconstruction. The sparse landmark loss is defined as

Llmk = ‖ŝ2D[:,L]−U‖22 + Lgdl,lmk, (7)
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where ŝ2D is the projected face shape from our network, L is the vertex indexes of the 68 landmarks
in the 3D face shape,U is considered as the ground truth of the corresponding sparse 2D landmarks
on the input image and is obtained by Bulat & Tzimiropoulos (2017). The idea of GDL is also
applied on the sparse landmarks, denoted as Lgdl,lmk, which describes the distance of two different
landmarks should also be close to the corresponding distance in ground truth. Especially, it is
important for the distances of the upper eyelids to the lower eyelids and the upper lip to the lower
lip that represent the conditions of eye’s opening and mouth’s opening, respectively.

Shape loss In order to prevent the network from either generating unrealistic 3D face shapes or being
under the constrain of a linear 3DMM, we train our network in a semi-supervised manner on hybrid
batches of unlabeled and labeled face images. For the labeled face images, we choose 300W-LP
dataset that contains 122,450 images with fitted 3DMM shapes across large poses and was created
by Zhu et al. (2016) with face profiling technique. The BFM template that has 53,215 vertices is
used for the fitted 3DMM shapes. The 3DMM parameters αexp and αexp are provided to calculate
each of the fitted 3DMM shapes, as presented in Eq. (1). In this paper, we remove the neck and ears
of the BFM model to create our own face shape template with 37,202 vertices. The shape loss for
the 300W-LP dataset is formulated as

Lshp = ‖ŝ− s[:, T ]‖1, (8)

where s = s̄ + Aidαid + Aexpαexp is considered as the ground truth of the face shape, ŝ is the
3D face shape reconstructed by our network, and T is the vertex indexes of our face template in the
BFM model.

Pairwise shape loss To further disentangle the identity code and expression code, we train the
300W-LP dataset in pairwise manner. Given an input image, the corresponding 3DMM parameters
αexp and αexp are provided. For a pair of input images, IA and IB , we interchange the expression
parameters αexp,A and αexp,B to get the 3D face shape of A’s identity with B’s expression. The
pairwise shape loss for the 300W-LP dataset is expressed as

Lpair = ‖fshape([cid,A, cexp,B ])− sA,B [:, T ]‖1, (9)

where fshape(·) is the shape decoder, [cid,A, cexp,B ] means concatenation of A’s identity code and
B’s expression code from the encoder network, and sA,B = s̄ + Aidαid,A + Aexpαexp,B is the
3DMM shape of A’s identity parameter with B’s expression parameter.

Shape smooth loss Laplacian regularization is used on the shape vertex to help remove undesired
noise of 3D face shapes. Conventional Laplacian smoothing assumes all the vertices satisfy the
equation Xi = 1

|Mi|
∑

j∈Mi
Xj , where Xi is the ith vertex and Mi is the vertex indexes of

the first order neighbors of Xi. However, some vertices, like on the edges, in the nostrils, at the
eye corners, etc, do not satisfy the Laplacian equation. We calculate the difference of each vertex
with the mean of its first order neighbors bo be close to the corresponding difference of the shape
template,

Lsmth =
∑
i∈N
|(ŝi −

1

|Mi|
∑

j∈Mi

ŝj)− (s̃i −
1

|Mi|
∑

j∈Mi

s̃j)|, (10)

where s̃ is our face shape template cropped from the BFM model.

Albedo symmetry loss Facial symmetry is a strong prior for face albedo learning, which helps to
disentangle facial expression, lighting, and occlusions from the face albedo. The albedo symmetry
loss is defined as

Lsymm = ‖A− flip(A)‖1, (11)

where A is the output face albedo of the GCN-based albedo decoder and flip(·) is an operation of
flipping face albedos left and right.

Adversarial loss Semi-supervised learning is not sufficient to generate realistic 3D face shape for the
unlabeled face images. Following the idea of generative adversarial network (GAN), an adversarial
loss is used to train the encoder-decoder network and a discriminator network alternatively based
on WGAN-div (Wu et al., 2018). The discriminator network D is a GCN-based encoder network
and is used to discriminate the fake shapes (i.e., shapes reconstructed from our network) and real
shapes (i.e., shapes sampled from the linear 3DMM), so that the reconstructed face shapes will not
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be too far away from the distribution of the linear 3DMM. The min-max optimization problem can
be written as

min
G

max
D

E
ŝ∼Pg

[D(ŝ)]− E
s[:,T ]∼Pr

[D(s[:, T ])]− k E
ṡ∼Pu

[∇ṡ‖D(ṡ)‖p] (12)

where Ladv = −D(ŝ) is the adversarial loss, ŝ, s[:, T ] are the fake and real face shapes satisfying
the probability measures Pg , Pr, and Pu is the distribution obtained by sampling uniformly along
straight lines between points from the real and fake face shape distributions.

4 EXPERIMENTS

In this section, we first conduct ablation tests to demonstrate the effectiveness of the framework
design (Section 4.1). We then evaluate our method by comparing reconstruction error against 3D
face scans with state-of-the-art approaches (Section 4.2). At last, we present the application of
expression transfer based on the disentangled representations of our model (Section 4.3).

We train our model on hybrid batches of unlabeled face images from CelebA dataset (Liu et al.,
2015) and labeled face images from 300W-LP dataset (Zhu et al., 2016). MICC Florence dataset
(Bagdanov et al., 2011) and AFLW2000-3D dataset (Zhu et al., 2016) are selected for the quantita-
tive and qualitative evaluations. The face region of the BFM model is cropped as the 3D face mesh
template (i.e., 37202 out of the 53215 vertices). The model and the discriminators are optimized
using Adam optimizer with a learning rate of 0.0001 and RMSprop optimizer with a learning rate of
0.00005, respectively.

4.1 ABLATION STUDY

Shape reconstruction We study the effects of shape smooth loss and adversarial loss on the quality
of shape reconstruction, as shown in Figure 2. Since our face model is not constrained by a pre-
existing linear 3DMM, the face meshes can potentially be deformed to any shapes. The conventional
smoothing loss causes abnormal effects on the edges and nostrils of face shapes. The vertices on
the mouth’s inner edge distance away from their neighbors. The nostrils are prone to be flat or even
sticking out of the nose. This is because the vertices on the edges and nostrils are not satisfied with
the Laplacian regularization which forces each vertex locates at the mean of its first order neighbors.
When the model is trained without the adversarial loss, the forehead and two sides of face meshes
are shrunk and eyebrows extrude out. The adversarial loss can make sure the face shapes generated
by our model will not be too far away from the shape distribution of human face, while which is
unknown and a pre-created linear 3DMM is used in this paper.

Input Full model
Conventional 
smooth loss

Without
Adv Loss

Figure 2: Shape ablation test showing failures caused by changing to conventional Laplacian
smoothing loss and removing the adversarial loss.

Texture reconstruction Figure 3 shows the effects the albedo symmetric loss with facial mask. We
consider the albedo symmetric loss and facial mask together because the facial occlusions should
be masked out first in order to apply the albedo symmetric loss. The facial mask with albedo sym-
metric loss is crucial for lighting representation learning. Otherwise, the shade and lighting may be
confounded with facial occlusions. Especially, when the representation power of the albedo decoder
is high, e.g., CNN-based albedo decoder with skip connections to the encoder, the model will fail to
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learn the lighting even though the generated texture looks very close to the input image, as shown
in the last column of Figure 3. However, without learning the lighting, reconstructing high fidelity
texture makes limited contributions to the face shape reconstruction because the high fidelity texture
may not align with the face shape and looks odd when changing to a different pose. Facial mask
with the albedo symmetric loss helps disentangle the lighting from the albedo. When the lighting is
learned, a CNN-based albedo decoder with skip connections to the encoder is used to improve the
detail of facial albedo.

Input

GCN albedo
Without 

mask+symm loss

GCN albedo
With 

mask+symm loss

CNN+bridge
With 

mask+symm loss

CNN+bridge
Without 

mask+symm loss

Figure 3: Texture ablation test showing failures of lighting caused by removing facial mask (i.e.,
mask out the facial occlusions) and albedo symmetric loss. We denote facial mask with albedo
symmetric loss as mask+symm loss, GCN-based albedo decoder as GCN albedo, and CNN-based
albedo decoder with skip connections as CNN+bridge.

4.2 COMPARISONS TO THE STATE-OF-THE-ART

We evaluate our model quantitatively on the MICC Florence dataset (Bagdanov et al., 2011), which
contains the ground truth scans of 53 subjects in neutral expressions. Each subject is recorded in
three videos: Cooperative, Indoor, and Outdoor with increasingly challenging conditions. Follow-
ing the setting in Wu et al. (2019), the left, frontal, and right view of each subject are selected from
the Cooperative and Indoor videos. The predicted 3D face shape is obtained by averaging over the
3D face shapes reconstructed from the left, frontal, and right view. The evaluation matric follows
Genova et al. (2018) where we cropped the face region of 95mm around the nose tip of the ground
truth scan to calculate the point-to-plane L2 errors with the predicted face shape.

Method Cooperative Indoor
Mean Std. Mean Std.

Tuan Tran et al.
(2017)

1.397 0.290 1.381 0.322

Tewari et al. (2017) 1.370 0.321 1.286 0.266
Genova et al. (2018) 1.372 0.353 1.260 0.310
Wu et al. (2019) 1.220 0.247 1.228 0.236
Ours 1.163 0.295 1.238 0.302

Table 1: Mean error comparison on the MICC dataset

0.783±0.701 1.12±0.953 1.95±1.623

1.399±1.096 1.333±1.038 1.65±1.199

OursSubject Wu19 Tran17

No. 53

No. 22

Figure 4: Examples of error map comparison

A

B

C

D

0.776±0.706

0.923±0.775 0.930±0.838

0.688±0.632

Input Reconstruction Lighting Shape Error map input Reconstruction Lighting Shape Error map

Figure 5: Examples with different lightings and poses of subject No. 05 from the MICC dataset.
A and B are from the video of Cooperative. C and D are from the videos of Outdoor and Indoor,
respectively.
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Table 1 shows that the proposed method outperforms other single-view reconstruction methods.
Compared to the multi-view reconstruction method (Wu et al., 2019), we achieve better results in
the Cooperative condition and have slightly worse results in the Indoor condition. Figure 4 presents
two examples (i.e., subject No. 53, and subject No. 22) of detailed error maps. Figure 5 shows the
reconstruction results of face images from the same subject (No. 05) in the Cooperative, Indoor,
and Outdoor videos with different lightings and poses. The reconstruction errors are small across
different conditions.

We further evaluate our model qualitatively on the AFLW2000-3D datasets (Zhu et al., 2016).
Tewari et al. (2018) and Tran et al. (2018) both proposed two-stage models: a coarse-scale lin-
ear model and a fine-scale corrective model. Even though the fine-scale corrective model is able to
add more details on top of the linear model, the reconstructed face shape will fail when the foun-
dation face shape generated in the first stage is not good enough. The foundation face shape is
restricted by the linear 3DMM and cannot generalize well in the wild conditions with true diversity
of poses, expressions, lightings, and occlusions. As shown in Fig. 6, the face shape reconstructed by
our model has better alignment with the input face image and looks more realistic from the frontal
view. Moreover, compared with Tewari et al. (2018), the proposed method can reconstruct the facial
texture in more detail.

Ours Tewari18 Tran18

Frontal shape

Ours

Tewari18

Overlay Shape Albedo Lighting

Figure 6: 3D reconstruction comparisons with Tewari et al. (2018) and Tran et al. (2018)

Tran et al. (2019) proposed a nonlinear 3DMM and is the most related work to our work. The face
shape and albedo are reconstructed from CNN-based decoders and have higher representation power
compared to a linear 3DMM. However, the model was trained on 300W-LP dataset. Even with
higher representation power, the nonlinear model is limited to fit the 300W-LP dataset generated
from a linear 3DMM. Moreover, the identity and expression of face shape are entangled, resulting
in poor performance on face images with diverse expressions. As shown in Figure 7, the face
shapes reconstructed by Tran et al. (2019) tend to have smaller mouth opening and some artifacts are
introduced to the face shapes and textures in challenging conditions. The proposed model achieves
better performance across various conditions: exaggerated expressions, large poses, diverse lighting,
and different occlusions as presented in the figures.

Ours

Tran19

Overlay Shape

Figure 7: 3D reconstruction comparisons with Tran et al. (2019).

4.3 APPLICATIONS

Disentangled representations of our model not only can improve the performance of face reconstruc-
tion, but also can facilitate many facial editing applications, such as face recognition, face puppetry,
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face replacement, face reenactment, expression transfer, and so forth. Figure 8 demonstrates the
function of expression transfer between different face images. We keep the face image’s identity
representation and replace the pose, lighting, and expression representations from another face im-
age to generate a realistic new face image with the same identity but another face’s pose, lighting,
and expression. When we apply the expression transfer on different images of the same person, the
results are consistent after the expression transfer, demonstrating high robustness of our model.

Expression transfer between different people Expression transfer between the same person

Figure 8: Expression transfer between different face images. The left side is the expression transfer
between different people and right side is the expression transfer between the same persian.

5 CONCLUSION

This paper proposes an encoder-decoder architecture to reconstruct 3D face from a single image
with disentangled representations: identity, expression, pose, and lighting. We develop an effective
semi-supervised training scheme to fully exploit the value of large amount of unlabeled face images
from unconstrained photo collections. An adversarial loss is applied to prevent our model from
generating unrealistic 3D faces. We evaluate our model quantitatively and qualitatively. Our model
outperforms the state-of-the-art single-view reconstruction methods and can effectively disentangle
identity, expression, pose, and lighting features.
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