
Under review as a conference paper at ICLR 2020

ONLINE META-CRITIC LEARNING FOR OFF-POLICY
ACTOR-CRITIC METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

Off-Policy Actor-Critic (Off-PAC) methods have proven successful in a variety of
continuous control tasks. Normally, the critic’s action-value function is updated
using temporal-difference, and the critic in turn provides a loss for the actor that
trains it to take actions with higher expected return. In this paper, we introduce a
novel and flexible meta-critic that observes the learning process and meta-learns
an additional loss for the actor that accelerates and improves actor-critic learning.
Compared to the vanilla critic, the meta-critic network is explicitly trained to ac-
celerate the learning process; and compared to existing meta-learning algorithms,
meta-critic is rapidly learned online for a single task, rather than slowly over a
family of tasks. Crucially, our meta-critic framework is designed for off-policy
based learners, which currently provide state-of-the-art reinforcement learning
sample efficiency. We demonstrate that online meta-critic learning leads to im-
provements in a variety of continuous control environments when combined with
contemporary Off-PAC methods DDPG, TD3 and the state-of-the-art SAC.

1 INTRODUCTION

Off-policy Actor-Critic (Off-PAC) methods are currently central in deep reinforcement learning
(RL) research due to their greater sample efficiency compared to on-policy alternatives. On-policy
requires new trajectories to be collected for each update to the policy, and is expensive as the number
of gradient steps and samples per step increases with task-complexity even for contemporary TRPO
(Schulman et al., 2015), PPO (Schulman et al., 2017) and A3C (Mnih et al., 2016) algorithms.
Off-policy methods, such as DDPG (Lillicrap et al., 2016), TD3 (Fujimoto et al., 2018) and SAC
(Haarnoja et al., 2018b) achieve greater sample efficiency due to their ability to learn from randomly
sampled historical transitions without a time sequence requirement, thus making better use of past
experience. Their critic estimates the action-value (Q-value) function using a differentiable func-
tion approximator, and the actor updates its policy parameters in the direction of the approximate
action-value gradient. Briefly, the critic provides a loss to guide the actor, and is trained in turn to
estimate the environmental action-value under the current policy via temporal-difference learning
(Sutton et al., 2009). In all these cases the learning algorithm itself is hand-crafted and fixed.

Recently meta-learning, or “learning-to-learn” has become topical as a paradigm to accelerate RL
by learning aspects of the learning strategy, for example, through learning fast adaptation strategies
(Finn et al., 2017; Rakelly et al., 2019; Riemer et al., 2019), exploration strategies (Gupta et al.,
2018), optimization strategies (Duan et al., 2016b), losses (Houthooft et al., 2018), hyperparameters
(Xu et al., 2018; Veeriah et al., 2019), and intrinsic rewards (Zheng et al., 2018). However, the
majority of these works perform meta-learning on a family of tasks or environments and amortize
this huge cost by deploying the trained strategy for fast learning on a new task.

In this paper we introduce a novel meta-critic network to enhance existing Off-PAC learning frame-
works. The meta-critic is used alongside the vanilla critic to provide a loss to guide the actor’s
learning. However compared to the vanilla critic, the meta-critic is explicitly (meta)-trained to ac-
celerate the learning process rather than merely estimate the action-value function. Overall, the
actor is trained by gradients provided by both critic and meta-critic losses, the critic is trained by
temporal-difference as usual, and the meta-critic is trained to generate maximum learning perfor-
mance improvements in the actor. In our framework, both the critic and meta-critic use randomly
sampled off-policy transitions for efficient and effective Off-PAC learning, providing superior sam-

1

Under review as a conference paper at ICLR 2020

ple efficiency compared to existing on-policy meta-learners. Furthermore, we demonstrate that our
meta-critic can be successfully learned online within a single task. This is in contrast to the currently
widely used meta-learning research paradigm – where entire task families are required to provide
enough data for meta-learning, and to provide new tasks to amortize the huge cost of meta-learning.

Essentially our framework meta-learns an auxiliary loss function, which can be seen as an intrinsic
motivation towards optimum learning progress (Oudeyer & Kaplan, 2009). As analogously observed
in several recent meta-learning studies (Franceschi et al., 2018), our loss-learning can be formalized
as a bi-level optimization problem with the upper level being meta-critic learning, and lower level
being conventional learning. We solve this joint optimization by iteratively updating the meta-
critic and base learner online while solving a single task. Our strategy is thus related to the meta-
loss learning in EPG (Houthooft et al., 2018), but learned online rather than offline, and integrated
with Off-PAC rather than their on-policy policy-gradient learning. The most related prior work is
LIRPG (Zheng et al., 2018), which meta-learns an intrinsic reward online. However, their intrinsic
reward just provides a helpful scalar offset to the environmental reward for on-policy trajectory
optimization via policy-gradient (Sutton et al., 2000). In contrast our meta-critic provides a loss for
direct actor optimization just based on sampled transitions, and thus achieves dramatically better
sample efficiency than LIRPG reward learning in practice. We evaluate our framework on several
contemporary continuous control benchmarks and demonstrate that online meta-critic learning can
be integrated with and improve a selection of contemporary Off-PAC algorithms including DDPG,
TD3 and SAC.

2 BACKGROUND AND RELATED WORK

Policy-Gradient (PG) Methods. On-policy methods usually update actor parameters in the di-
rection of greater cumulative reward. However, on-policy methods need to interact with the en-
vironment in a sequential manner to accumulate rewards and the expected reward is generally not
differentiable due to environment dynamics. Even exploiting tricks like importance sampling and
improved application of A2C (Zheng et al., 2018), the use of full trajectories is less effective than
off-policy transitions, as the trajectory needs a series of continuous transitions in time. Off-policy
actor-critic architectures aim to provide greater sample efficiency by reusing past experience (pre-
viously collected transitions). DDPG (Lillicrap et al., 2016) borrows two main ideas from Deep Q
Networks (Mnih et al., 2013; 2015): a big replay buffer and a target Q network to give consistent
targets during temporal-difference backups. TD3 (Twin Delayed Deep Deterministic policy gradient
algorithm) (Fujimoto et al., 2018) develops a variant of Double Q-learning by taking the minimum
value between a pair of critics to limit over-estimation. SAC (Soft Actor-Critic) (Haarnoja et al.,
2018a;b) proposes a maximum entropy RL framework where its stochastic actor aims to simulta-
neously maximize expected action-value and entropy. The latest version of SAC (Haarnoja et al.,
2018b) also includes the “the minimum value between both critics” idea in its implementation.

Meta Learning for RL. Meta-learning (a.k.a. learning to learn) (Santoro et al., 2016; Finn et al.,
2017) has received a resurgence in interest recently due to its potential to improve learning perfor-
mance, and especially sample-efficiency in RL (Gupta et al., 2018). Several studies learn optimizers
that provide policy updates with respect to known loss or reward functions (Andrychowicz et al.,
2016; Duan et al., 2016b; Meier et al., 2018). A few studies learn hyperparameters (Xu et al., 2018;
Veeriah et al., 2019), loss functions (Houthooft et al., 2018; Sung et al., 2017) or rewards (Zheng
et al., 2018) that steer the learning of standard optimizers. Our meta-critic framework is in the cat-
egory of loss-function meta-learning, but unlike most of these we are able to meta-learn the loss
function online in parallel to learning a single extrinsic task rather. No costly offline learning on
a task family is required as in Houthooft et al. (2018); Sung et al. (2017). Most current Meta-RL
methods are based on on-policy policy-gradient, limiting their sample efficiency. For example, while
LIRPG (Zheng et al., 2018) is one of the rare prior works to attempt online meta-learning, it is in-
effective in practice due to only providing a scalar reward increment rather than a loss for direct
optimization. A few meta-RL studies have begun to address off-policy RL, for conventional offline
multi-task meta-learning (Rakelly et al., 2019) and for optimising transfer vs forgetting in continual
learning of multiple tasks (Riemer et al., 2019). The contribution of our Meta-Critic is to enhance
state-of-the-art Off-PAC RL with single-task online meta-learning.

Loss Learning. Loss learning has been exploited in ‘learning to teach’ (Wu et al., 2018) and surro-
gate loss learning (Huang et al., 2019; Grabocka et al., 2019) where a teacher network predicts the

2

Under review as a conference paper at ICLR 2020

parameters of a manually designed loss in supervised learning. In contrast our meta-critic is itself a
differentiable loss, and is designed for use in reinforcement learning. Other applications learn losses
that improve model robustness to out of distribution samples (Li et al., 2019; Balaji et al., 2018).
Our loss learning architecture is related to Li et al. (2019), but designed for accelerating single-task
Off-PAC RL rather than improving robustness in multi-domain supervised learning.

3 METHODOLOGY

We aim to learn a meta-critic that provides an auxiliary loss Laux
ω to assist the actor’s learning of a

task. The auxiliary loss parameters ω are optimized in a meta-learning process. The vanilla critic
Lmain and meta-critic Laux

ω losses train the actor πφ off-policy via stochastic gradient descent.

3.1 REVIEW OF OFF-POLICY ACTOR-CRITIC RL

Reinforcement learning involves an agent interacting with the environment E. At each time t,
the agent receives an observation st, takes a (possibly stochastic) action at based on its policy
π : S → A, and receives a scalar reward rt and new state of the environment st+1. We call
(st, at, rt, st+1) as a single point transition. The objective of RL is to find the optimal policy πφ,
which maximizes the expected cumulative return J .

In on-policy RL, J is defined as the discounted episodic return based on a sequential trajectory over
horizon H: (s0, a0, r0, · · · , sH , aH , rH). J = Ert,st∼E,at∼π

[∑H
t=0 γ

trt

]
. In the usual implemen-

tation of A2C, r is represented by a surrogate state-value V (st) from its critic. Since J is only a
scalar value, the gradient of J with respect to policy parameters φ has to be optimized under the
policy gradient theorem (Sutton et al., 2000): ∇φJ(φ) = E [J ∇φ log πφ(at|st)].
In off-policy RL (e.g., DDPG, TD3, SAC) which is our focus in this paper, parameterized policies
πφ can be directly updated by defining the actor loss in terms of the expected return J(φ) and taking
its gradient ∇φJ(φ), where J(φ) depends on the action-value Qθ(st, at). The main loss Lmain

provided by the vanilla critic is thus

Lmain = −J(φ) = −Es∼pπQθ(s, a)|a=πφ(s), (1)

where we follow the notation in TD3 and SAC that φ and θ denote actors and critics respectively.

The main loss is calculated by a mini-batch of transitions randomly sampled from the replay buffer.
The actor’s policy network is updated as ∆φ = α∇φLmain, following the critic’s gradient to in-
crease the likelihood of actions that achieve a higher Q-value. Meanwhile, the critic uses Q-learning
updates to estimate the action-value function:

θ ← arg min
θ

(Qθ(st, at)− rt − γQθ(st+1, π(st+1))2. (2)

3.2 ALGORITHM OVERVIEW

Our meta-learning goal is to train an auxiliary meta-critic network Laux
ω that in turn enhances actor

learning. Specifically, it should lead to the actor φ having improved performance on the main task
Lmain when following gradients provided by the meta-critic as well as those provided by the main
task. This can be seen as a bi-level optimization problem (Franceschi et al., 2018; Rajeswaran et al.,
2019) of the form:

ω = argmin
ω

Lmeta(dval;φ
∗)

s.t. φ∗ = argmin
φ

(Lmain(dtrn;φ) + Laux
ω (dtrn;φ)),

(3)

where we can assume Lmeta(·) = Lmain(·) for now. Here the lower-level optimization trains the actor
φ to minimize both the main task and meta-critic-provided losses on some training samples. The
upper-level optimization further requires the meta-critic ω to have produced a learned actor φ∗ that
minimizes a meta-loss that measures the actor’s main task performance on a second set of validation

3

Under review as a conference paper at ICLR 2020

Algorithm 1 Online Meta-Critic Learning for Off-PAC RL

φ, θ, ω,D ← ∅ // Initialize actor, critic, meta-critic and buffer
for each iteration do

for each environment step do
at ∼ πφ(at|st) // Select action according to the current policy
st+1 ∼ p(st+1|st, at), rt // Observe reward rt and new state st+1

D ← D ∪ {(st, at, rt, st+1)} // Store the transition in the replay buffer
end for
for each gradient step do
θ ← θ − λ∇θJQ(θ) // Update the critic parameters
meta-train:
Sample mini-batch dtrn from D
Lmain ← Eqs. (1), (8) or (9) // Main actor loss
Laux
ω ← Eqs. (6) or (7) // Auxiliary actor loss from meta-critic

φold = φ− α∇φLmain // Update actor according to vanilla critic only
φnew = φold − α∇φLaux

ω // Update actor according to meta-critic
meta-test:
Sample mini-batch dval from D
Lmeta(dval;φold, φnew)← Eq. (5) // Meta-loss: Did meta-critic improve performance?
meta-optimization
φ← φ− η(∇φLmain +∇φLaux

ω) // Update actor parameters
ω ← ω − η∇ωLmeta // Update meta-critic parameters

end for
end for=0

samples, after being trained by the meta-critic. Note that in principle the lower-level optimization
could purely rely on Laux

ω analogously to the procedure in EPG (Houthooft et al., 2018), but we
find that optimizing their linear combination greatly increases learning stability and speed. Eq. (3)
is satisfied when the meta-critic successfully improves the actor’s performance on the main task as
measured by meta-loss. Note that the vanilla critic update is also in the lower loop, but as it updates
as usual, so we focus on the actor and meta-critic optimization for simplicity of exposition.

In this setup the meta-critic is a neural network hω(dtrn;φ) that takes as input some featurisation of
the actor φ and the states and actions in dtrn. This auxiliary neural network must produce a scalar
output, which we can then treat as a loss Laux

ω := hω , and must be differentiable with respect to φ.
We next discuss the overall optimization flow, and discuss the specific meta-critic architecture later.

Figure 1: Meta-critic for Off-PAC. The agent uses
data sampled from the replay buffer during meta-
train and meta-test. Actor parameters are first up-
dated using only vanilla critic, or both vanilla- and
meta-critic. Meta-critic parameters are updated by
the meta-loss.

Meta-Optimization Flow. To optimize Eq. (3),
we iteratively update the meta-critic parameters ω
(upper-level) and actor and vanilla-critic parame-
ters φ and θ (lower-level). At each iteration, we
perform: (i) Meta-train: Sample a mini-batch of
transitions and putatively update policy φ accord-
ing to the main Lmain and meta-critic Laux

ω losses.
(ii) Meta-test: Sample another mini-batch of tran-
sitions to evaluate the performance of the updated
policy according to Lmeta. (iii) Meta-optimization:
Update the meta-critic parameters ω to maximize
the performance on the validation batch, and per-
form the real actor update according to both losses.
In this way the meta-critic is trained online and in
parallel to the actor so that they co-evolve. Fig-
ure 1 and Algorithm 1 summarize the process and
the details of each step are explained next.

Updating Actor Parameters (φ). During meta-
train, we randomly sample a mini-batch of transi-
tions dtrn = {(si, ai, ri, si+1)} with batch size N
from the replay buffer D. We then update the pol-

4

Under review as a conference paper at ICLR 2020

icy using both losses as: φnew = φ − η ∂ L
main(dtrn)
∂φ − η ∂ L

aux
ω (dtrn)
∂φ . We also compute a separate

update φold = φ − η ∂L
main(dtrn)
∂φ that only makes use of the vanilla loss. If the meta-critic provided

a beneficial source of loss, φnew should be a better parameter than φ, and in particular it should be
a better parameter than φold. We will use this comparison in the next meta-test step.

Updating Meta-Critic Parameters (ω). To train the meta-critic network, we sample another
mini-batch of transitions: dval = {(sval

i , a
val
i , r

val
i , s

val
i+1)} with batch size M . The use of a val-

idation batch for bi-level meta-optimization (Franceschi et al., 2018; Rajeswaran et al., 2019)
ensures the meta-learned component does not overfit. Since our framework is off-policy, this
does not incur any sample-efficiency cost. The meta-critic is then updated by a meta loss ω ←
argmin

ω
Lmeta(dval;φnew), which could in principle be the same as the main loss Lmeta = Lmain.

However, we find it helpful for optimization efficiency to optimize the (monotonically related) dif-
ference between the updates with- and without meta-critic’s input. Specifically, we use

Lmeta = tanh(Lmain(dval;φnew)− Lmain(dval;φold)), (4)

which is simply a re-centering and re-scaling of Lmain. This leads to

ω ← argmin
ω

tanh(Lmain(dval;φnew)− Lmain(dval;φold)). (5)

Note that here the updated actor φnew has dependence on the feedback given by meta-critic ω and
φold does not. Thus only the first term is optimized for ω. In his setup the Lmain(dval;φnew)
term should obtain high reward/low loss on the validation batch and the latter provides a baseline,
analogous to the baseline commonly used to accelerate and stabilize policy-gradient RL. The use of
tanh reflects the idea of diminishing marginal utility, and ensures that the meta-loss range is always
nicely distributed in [−1, 1]. In essence, the meta-loss is for the agent to ask itself the question based
on the validation batch, “Did meta-critic improve the performance?”, and adjusts the parameters of
meta-critic accordingly.

Designing Meta-Critic (hω). The meta-critic network hω implements the auxiliary loss for the
actor. The design-space for hω has several requirements: (i) Its input must depend on the policy
parameters φ, because this auxiliary loss is also used to update policy network. (ii) It should be per-
mutation invariant to transitions in dtrn, i.e., it should not make a difference if we feed the randomly
sampled transitions indexed [1,2,3] or [3,2,1]. The most naive way to achieve (i) is given in MetaReg
(Balaji et al., 2018) which meta-learns a parameter regularizer: hω(φ) =

∑
i ωi|φi|. Although this

form of hω acts directly on φ, it does not exploit state information, and introduces a large number
of parameters as φ, and then hω may be a high-dimensional neural network. Therefore, we design
a more efficient and effective form of hω that also meets both of these requirements. Similar to
the feature extractor in supervised learning, the actor needs to analyse and extract information from
states for decision-making. We assume the policy network can be represented as πφ(s) = π̂(π̄(s))
and decomposed into the feature extraction π̄φ and decision-making π̂φ (i.e., the last layer of the full
policy network) modules. Thus the output of the penultimate layer of full policy network is just the
output of feature extraction π̄φ(s), and such output of feature jointly encodes φ and s. Given this
encoding, we implement hw(dtrn;φ) as a three-layer multi-layer perceptron (MLP) whose input is
the extracted feature from π̄φ(s). Here we consider two designs for meta-critic (hω): using our joint
feature alone (Eq. (6)) or augmenting the joint feature with states and actions (Eq. (7)):

(i) hw(dtrn;φ) =
1

N

N∑
i=1

MLPω(π̄φ(si)), (6)

(ii) hw(dtrn;φ) =
1

N

N∑
i=1

MLPω(π̄φ(si), si, ai). (7)

hω is to work out the auxiliary loss based on such batch-wise set-embdedding (Zaheer et al., 2017)
of our joint actor-state feature. That is to say, dtrn is a randomly sampled mini-batch transitions
from the replay buffer, and then the s (and a) of the transitions are inputted to the hω network in
a permutation invariant way, and finally we can obtain the auxiliary loss for this batch dtrn. Here,
our design of Eq. (7) also includes the cues features in LIRPG and EPG where si and ai are used as
the input of their learned reward and loss respectively. We set a softplus activation to the final layer
of hω , following the idea in TD3 that the vanilla critic may over-estimate and so the introduction of
a non-negative actor auxiliary loss can mitigate such over-estimation. Moreover, we point out that

5

Under review as a conference paper at ICLR 2020

only si (and ai) from dtrn are used when calculating Lmain and Laux
ω for the actor, while si, ai, ri

and si+1 are all used for optimizing the vanilla critic.

Implementation on DDPG, TD3 and SAC. Our meta-critic module can be incorporated in the
main Off-PAC methods DDPG, TD3 and SAC. In our framework, these algorithms differ only in
their definitions of Lmain, and the meta-critic implementation is otherwise exactly the same for each.
Further implementation details can be found in the supplementary material.

TD3 (Fujimoto et al., 2018) borrows the Double Q-learning idea and use the minimum value between
both critics to make unbiased value estimations. At the same time, computational cost is obtained by
using a single actor optimized with respect to Qθ1 . Thus the corresponding Lmain for actor becomes:

Lmain = −Es∼pπQθ1(s, a)|a=πφ(s). (8)

In SAC, two key ingredients are considered for the actor: maximizing the policy entropy and
automatic temperature hyper-parameter regulation. At the same time, the latest version of SAC
(Haarnoja et al., 2018b) also draws lessons from “taking the minimum value between both critics”.
The Lmain for SAC actor is:

Lmain = Es∼pπ [α log (πφ(a|s))−Qθ(s, a)|a=πφ(s)]. (9)

4 EXPERIMENTS AND EVALUATION

The goal of our experimental evaluation is to demonstrate the versatility of our meta-critic module
in integration with several prior Off-PAC algorithms, and its efficacy in improving their respective
performance. We use the open-source implementations of DDPG, TD3 and SAC algorithms as
our baselines, and denote their enhancements by meta-critic as DDPG-MC, TD3-MC, SAC-MC
respectively. All -MC agents have both their built-in vanilla critic, and the meta-critic that we
propose. We take Eq. (6) as the default meta-critic architecture hω , and we compare the alternative in
the later ablation study. For our implementation of meta-critic, we use a three-layer neural network
with an input dimension of π̄ (300 in DDPG and TD3, 256 in SAC), two hidden feed-forward layers
of 100 hidden nodes each, and ReLU non-linearity between layers.

We evaluate the methods on a suite of seven MuJoCo continuous control tasks (Todorov et al., 2012)
interfaced through OpenAI Gym (Brockman et al., 2016) and HalfCheetah and Ant (Duan et al.,
2016a) in rllab. We use the latest V2 tasks instead of V1 used in TD3 and the old implementation of
SAC (Haarnoja et al., 2018a) without any modification to their original environment or reward.

Implementation Details. For DDPG, we use the open-source implementation “OurDDPG” 1 which
is the re-tuned version of DDPG implemented in Fujimoto et al. (2018) with the same hyper-
parameters of the actor and critic. For TD3 and SAC, we use the open-source implementations
of TD3 2 and SAC 3. In each case we integrate our meta-critic with learning rate 0.001. The specific
pseudo-codes can be found in the supplementary material.

4.1 EVALUATION OF META-CRITIC OFF-PAC LEARNING

DDPG Figure 2 shows the learning curves of DDPG and DDPG-MC. The experimental results
corresponding to each task are averaged over 5 random seeds (trials) and network initialisations,
and the standard deviation confidence intervals are represented as shaded regions over the time
steps. Following Fujimoto et al. (2018), curves are uniformly smoothed (window size 30) for clarity.
We run the gym-MuJoCo experiments for 1-10 million depen ding on to environment, and rllab
experiments for 3 million steps. Every 1000 steps we evaluate our policy over 10 episodes with no
exploration noise.

From the learning curves in Figure 2, we can see that DDPG-MC generally outperforms the corre-
sponding DDPG baseline in terms of the learning speed and asymptotic performance. Furthermore,
it usually has smaller variance. The summary results for all nine tasks in terms of max average
return are given in Table 1. We selected the six tasks shown in Figure 2 for plotting, because the

1https://github.com/sfujim/TD3/blob/master/OurDDPG.py
2https://github.com/sfujim/TD3/blob/master/TD3.py
3https://github.com/pranz24/pytorch-soft-actor-critic

6

Under review as a conference paper at ICLR 2020

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0

2000

4000

6000

8000

10000

Av
er

ag
e

Re
wa

rd

HalfCheetah-v2

DDPG
DDPG-MC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0
250
500
750

1000
1250
1500
1750
2000

Av
er

ag
e

Re
wa

rd

Hopper-v2
DDPG
DDPG-MC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e

Re
wa

rd

Walker2d-v2
DDPG
DDPG-MC

0 2 4 6 8 10
Time Steps (1e6)

1000

0

1000

2000

3000

4000

Av
er

ag
e

Re
wa

rd

Ant-v2
DDPG
DDPG-MC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0
1000
2000
3000
4000
5000
6000

Av
er

ag
e

Re
wa

rd

HalfCheetah (rllab)

DDPG
DDPG-MC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0

500

1000

1500

2000

2500

Av
er

ag
e

Re
wa

rd

Ant (rllab)
DDPG
DDPG-MC

Figure 2: Learning curve mean and standard-deviation of vanilla DDPG and meta-critic enhanced DDPG-MC
for continuous control tasks.

Table 1: Max Average Return over 5 trials over all time steps. Max value for each task is bolded.

Environment DDPG DDPG-MC TD3 TD3-MC SAC SAC-MC PPO PPO-LIRPG
HalfCheetah 8440.2 10187.5 12735.7 15064.0 16651.8 16815.9 2061.5 1882.6
Hopper 2097.5 3253.6 3807.0 3854.3 3610.6 3738.4 3762.0 2750.0
Walker2d 2920.1 3753.7 5942.7 5955.5 6398.8 7164.9 4432.6 3652.9
Ant 2375.4 3661.1 5914.8 6280.0 6954.4 7204.3 684.2 23.6
Reacher -3.6 -3.7 -3.0 -2.9 -2.8 -2.7 -6.08 -7.53
InvPend 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 988.2 971.6
InvDouPend 9307.5 9326.5 9357.4 9358.8 9359.6 9359.6 7266.0 6974.9
HalfCheetah(rllab) 5860.8 6254.6 8029.6 8552.1 10011.0 10597.0 - -
Ant(rllab) 2300.8 2721.1 3672.6 4776.8 8014.8 8353.8 - -

other MuJoCo tasks “Reacher”, “InvertedPendulum” and “InvertedDoublePendulum” have an envi-
ronmental reward upper bound which all methods reach quickly without obvious difference between
them. Table 1 shows that DDPG-MC provides consistently higher max return for the tasks without
upper bounds.

TD3 and SAC Figure 3 reports the learning curves for TD3. For some tasks vanilla TD3 perfor-
mance declines in the long run, while our TD3-MC shows improved stability with much higher
asymptotic performance. Generally speaking, the learning curves show that TD3-MC providing
comparable or better learning performance in each case, while Table 1 shows the clear improvement
in the max average return. Figure 4 report the learning curves of SAC. Note that we use the most re-
cent update of SAC (Haarnoja et al., 2018b), which can be regarded as the combination SAC+TD3.
Although this SAC+TD3 is arguably the strongest existing method, SAC-MC still gives a clear boost
on the asymptotic performance for several of the tasks.

Comparison vs PPO-LIRPG Intrinsic Reward Learning for PPO (Zheng et al., 2018) is the most
related method to our work in performing online single-task meta-learning of an auxiliary re-
ward/loss via a neural network. The original PPO-LIRPG study evaluated on a modified environ-
ment with hidden rewards. Here we apply it to the standard unmodified learning tasks that we aim to
improve. The results in Table 1 demonstrate that: (i) In this conventional setting, PPO-LIRPG wors-
ens rather than improves basic PPO performance. (ii) Overall Off-PAC methods generally perform
better than on-policy PPO for most environments. This shows the importance of our meta-learning
contribution to the off-policy setting. In general Meta-Critic is preferred compared to PPO-LIRPG
because the latter only provides a scalar reward bonus only influences the policy indirectly via
policy-gradient updates, while Meta-Critic provides a direct loss.

Summary Table 1 and Figure 5 summarize all the results in terms of max average return. We can see
that SAC-MC always performs best; the Meta-Critic-enhanced methods are generally comparable

7

Under review as a conference paper at ICLR 2020

0 2 4 6 8 10
Time Steps (1e6)

0
2000
4000
6000
8000

10000
12000
14000
16000

Av
er

ag
e

Re
wa

rd

HalfCheetah-v2

TD3
TD3-MC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e

Re
wa

rd

Hopper-v2

TD3
TD3-MC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
wa

rd

Walker2d-v2

TD3
TD3-MC

0 2 4 6 8 10
Time Steps (1e6)

0
1000
2000
3000
4000
5000
6000

Av
er

ag
e

Re
wa

rd

Ant-v2

TD3
TD3-MC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0

2000

4000

6000

8000

Av
er

ag
e

Re
wa

rd

HalfCheetah (rllab)

TD3
TD3-MC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0

1000

2000

3000

4000

Av
er

ag
e

Re
wa

rd

Ant (rllab)
TD3
TD3-MC

Figure 3: Learning curve mean and standard-deviation of vanilla TD3 and meta-critic enhanced TD3-MC for
continuous control tasks.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0
2000
4000
6000
8000

10000
12000
14000
16000

Av
er

ag
e

Re
wa

rd

HalfCheetah-v2

SAC
SAC-MC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

500
1000
1500
2000
2500
3000

Av
er

ag
e

Re
wa

rd

Hopper-v2

SAC
SAC-MC

0 2 4 6 8 10
Time Steps (1e6)

0
1000
2000
3000
4000
5000
6000
7000

Av
er

ag
e

Re
wa

rd

Walker2d-v2

SAC
SAC-MC

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time Steps (1e6)

0
1000
2000
3000
4000
5000
6000
7000

Av
er

ag
e

Re
wa

rd

Ant-v2

SAC
SAC-MC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0
2000
4000
6000
8000

10000

Av
er

ag
e

Re
wa

rd

HalfCheetah (rllab)

SAC
SAC-MC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0
1000
2000
3000
4000
5000
6000
7000
8000

Av
er

ag
e

Re
wa

rd
Ant (rllab)

SAC
SAC-MC

Figure 4: Learning curve mean and standard-deviation of vanilla SAC and meta-critic enhanced SAC-MC for
continuous control tasks.

or better than their corresponding vanilla alternatives; and Meta-Critic usually provides improved
variance in return compared to the baselines.

4.2 FURTHER ANALYSIS

Loss Analysis. To analyse the learning dynamics of our algorithm, we take Walker2d as an example.
Figure 6 reports the main lossLmain curve of actor and the loss curves of hω (i.e., Laux

ω) andLmeta over
5 trials for SAC. We can see that: (i) SAC-MC shows faster convergence to a lower value of Lmain,
demonstrating the auxiliary loss’s ability to accelerate learning. Unlike supervised learning, where
the vanilla loss is, e.g., cross-entropy vs ground-truth labels. The Lmain for actors in RL is provided
by the critic which is also learned, so the plot also encompasses convergence of the critic. (ii) The
meta-loss (which corresponds to the success of the meta-critic in improving actor learning) fluctuates
throughout, reflecting the exploration process in RL. But it is generally negative, confirming that the
auxiliary-trained actor generally improves on the vanilla actor at each iteration. (iii) The auxiliary
loss converges smoothly under the supervision of the meta-loss.

Ablation on hω design. We also run Walker2d experiments with alternative hω designs as in Eq. (7)
or MetaReg (Balaji et al., 2018) format (input actor parameters directly). As shown in Table 2, we
record the max average return and sum average return (regarded as the area under the average reward
curve) of all evaluations during all time steps. Eq. (7) achieves the highest max average return and

8

Under review as a conference paper at ICLR 2020

DDPG
DDPG-MC TD3

TD3-MC SAC
SAC-MC PPO

PPO-LIRPG

2000
4000
6000
8000

10000
12000
14000
16000

HalfCheetah-v2

DDPG
DDPG-MC TD3

TD3-MC SAC
SAC-MC PPO

PPO-LIRPG
0

1000

2000

3000

4000
Hopper-v2

DDPG
DDPG-MC TD3

TD3-MC SAC
SAC-MC PPO

PPO-LIRPG
0

1000
2000
3000
4000
5000
6000
7000

Walker2d-v2

DDPG
DDPG-MC TD3

TD3-MC SAC
SAC-MC PPO

PPO-LIRPG
0

1000
2000
3000
4000
5000
6000
7000

Ant-v2

DDPG
DDPG-MC TD3

TD3-MC SAC
SAC-MC PPO

PPO-LIRPG
5000

6000

7000

8000

9000

10000

11000
HalfCheetah(rllab)

DDPG
DDPG-MC TD3

TD3-MC SAC
SAC-MC PPO

PPO-LIRPG

2000
3000
4000
5000
6000
7000
8000
9000 Ant(rllab)

Figure 5: Box plots of the Max Average Return over 5 trials of all time steps.

0 2 4 6 8 10
Time steps (1e6)

700

600

500

400

300

200

100

M
ai

n
Lo

ss
 o

f A
ct

or

SAC
SAC-MC

(a) Main loss of actor

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time steps (1e6)

0.70

0.75

0.80

0.85

0.90

0.95

Au
x

Lo
ss

(b) Auxiliary loss of actor

0 2 4 6 8 10
Time steps (1e6)

0.03

0.02

0.01

0.00

0.01

0.02

M
et

a
Lo

ss

(c) Meta-loss

Figure 6: Loss analysis of our algorithm.

our default hω (Eq. (6)) attains the highest mean average return. We can also see some improvement
for hω(φ) using MetaReg format, but the huge number (73484) of parameters is expensive. Overall,
all meta-critic module designs provides at least a small improvement on vanilla SAC.

Ablation on baseline in meta-loss. In Eq. (5), we use Lmain(dval;φold) as a baseline to improve
numerical stability of the gradient update. To evaluate this design, we remove the φold baseline and
optimize ω ← argmin

ω
tanh(Lmain(dval;φnew)). The last column in Table 2 shows that this barely

improves on vanilla SAC, validating our design choice to use a baseline.

Table 2: Max and Sum Average Return over 5 trials of all time steps under different designs of meta-critic
(aux-loss) and meta-loss. Max value in each row is bolded.

SAC
Lmeta : φnew − φold Lmeta : φnew

hω(π̄φ) hω(π̄φ, s, a) hω(φ) hω(π̄φ)

Max Average Return 6398.8 ± 289.2 7164.9 ± 151.3 7423.8 ± 780.2 6644.3 ± 1815.6 6456.1 ± 424.8
Sum Average Return 53,695,678 61,672,039 57,364,405 58,875,184 52,446,717

5 CONCLUSION

We present Meta-Critic, an auxiliary critic module for Off-PAC methods that can be meta-learned
online during single task learning. The meta-critic is trained to generate gradients that improve
the actor’s learning performance over time, and leads to long run performance gains in continuous
control. The meta-critic module can be flexibly incorporated into various contemporary Off-PAC
methods to boost performance. In future work, we plan to apply the meta-critic to conventional
offline meta-learning with multi-task and multi-domain RL.

9

Under review as a conference paper at ICLR 2020

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. In NIPS, 2016.

Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. Metareg: Towards domain gener-
alization using meta-regularization. In NeurIPS, 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. In arXiv preprint arXiv:1606.01540, 2016.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In ICML, 2016a.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl 2: Fast
reinforcement learning via slow reinforcement learning. In arXiv preprint arXiv:1611.02779,
2016b.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In ICML, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimilano Pontil.
Bilevel programming for hyperparameter optimization and meta-learning. In arXiv preprint
arXiv:1806.04910, 2018.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In ICML, 2018.

Josif Grabocka, Randolf Scholz, and Lars Schmidt-Thieme. Learning surrogate losses. In arXiv
preprint arXiv:1905.10108, 2019.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. In NeurIPS, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In arXiv preprint
arXiv:1801.01290, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algo-
rithms and applications. In arXiv preprint arXiv:1812.05905, 2018b.

Rein Houthooft, Richard Y Chen, Phillip Isola, Bradly C Stadie, Filip Wolski, Jonathan Ho, and
Pieter Abbeel. Evolved policy gradients. In NeurIPS, 2018.

Chen Huang, Shuangfei Zhai, Walter Talbott, Miguel Ángel Bautista, Shih-Yu Sun, Carlos Guestrin,
and Josh Susskind. Addressing the loss-metric mismatch with adaptive loss alignment. In ICML,
2019.

Yiying Li, Yongxin Yang, Wei Zhou, and Timothy M Hospedales. Feature-critic networks for het-
erogeneous domain generalization. In ICML, 2019.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR,
2016.

Franziska Meier, Daniel Kappler, and Stefan Schaal. Online learning of a memory for learning rates.
In ICRA, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. In arXiv preprint
arXiv:1312.5602, 2013.

10

Under review as a conference paper at ICLR 2020

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518:529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In ICML, 2016.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computa-
tional approaches. Frontiers in neurorobotics, 1:6, 2009.

Aravind Rajeswaran, Chelsea Finn, Sham Kakade, and Sergey Levine. Meta-learning with implicit
gradients. In NeurIPS, 2019.

Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In ICML, 2019.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald
Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interfer-
ence. In ICLR, 2019.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In ICML, 2016.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In ICML, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. In arXiv preprint arXiv:1707.06347, 2017.

Flood Sung, Li Zhang, Tao Xiang, Timothy Hospedales, and Yongxin Yang. Learning to learn:
meta-critic networks for sample efficient learning. In arXiv preprint arXiv:1706.09529, 2017.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In NIPS, 2000.

Richard S Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba
Szepesvri, and Eric Wiewiora. Fast gradient-descent methods for temporal-difference learning
with linear function approximation. In ICML, 2009.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IROS, 2012.

Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Richard Lewis, Janarthanan Rajendran, Junhyuk Oh,
Hado van Hasselt, David Silver, and Satinder Singh. Discovery of useful questions as auxiliary
tasks. In NeurIPS, 2019.

Lijun Wu, Fei Tian, Yingce Xia, Yang Fan, Tao Qin, Lai Jian-Huang, and Tie-Yan Liu. Learning to
teach with dynamic loss functions. In NeurIPS, 2018.

Zhongwen Xu, Hado van Hasselt, and David Silver. Meta-gradient reinforcement learning. In
NeurIPS, 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov,
and Alexander J Smola. Deep sets. In Advances in Neural Information Processing Systems 30.
2017.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. In NeurIPS, 2018.

11

Under review as a conference paper at ICLR 2020

Supplementary Information

6 ALGORITHMS OF META-CRITIC FOR DDPG, TD3 AND SAC

We incorporate our Meta-Critic to the implementation of vanilla DDPG, TD3 and SAC, following
their original implementations.

Algorithm 2 DDPG-MC algorithm

Initialize critic Q(s, a|θ), actor π(s|φ) and auxiliary loss network hω
Initialize target network Q′ and π′ with weights θ

′ ← θ, φ
′ ← φ

Initialize replay bufferR
for episode = 1, ..., M do

Initialize a random process N for action exploration
Receive initial observation state s1
for t = 1, ..., T do

Select action at = π(st|φ) +Nt according to the current policy and exploration noise
Execute action at, observe reward rt and new state st+1

Store transition (st, at, rt, st+1) inR
Sample a random mini-batch of N transitions (si, ai, ri, si+1) fromR
Set yi = ri + γQ′(si+1, π

′(si+1|φ
′
)|θ′

)
Update critic by minimizing the loss: L = N−1

∑
i(yi −Q(si, ai|θ))2

meta-train:
Calculate the old actor weights using the main actor loss:

∇φLmain = −N−1
∑
i

∇aQ(s, a|θ)|s=si,a=π(s)∇φπ(s|φ)|s=si

φold = φ− α∇φLmain

Calculate the new actor weights using the auxiliary actor loss:

∇φLaux
ω = ∇φhω = N−1

∑
i

∇φMLPω(π̄(s|φ)|s=si)

φnew = φold − α∇φLaux
ω

meta-test:
Sample a random mini-batch of N sval

i fromR
Calculate the meta-loss using the meta-test sampled transitions:

Lmeta = tanh(Lmain(s, a|θ)|s=sval
i ,a=π(s|φnew) − Lmain(s, a|θ)|s=sval

i ,a=π(s|φold))

meta-optimization: Update the weight of actor and meta-critic network:

φ← φ− η(∇φLmain +∇φLaux
ω)

ω ← ω − η∇ωLmeta

Update the target networks:
θ
′
← τθ + (1− τ)θ

′

φ
′
← τφ+ (1− τ)φ

′

end for
end for=0

12

Under review as a conference paper at ICLR 2020

Algorithm 3 TD3-MC algorithm

Initialize critics Qθ1 , Qθ2 , actor πφ and auxiliary loss network hω
Initialize target networks θ′1 ← θ1, θ′2 ← θ2, φ′ ← φ
Initialize replay buffer B
for t = 1 to T do

Select action with exploration noise a ∼ πφ(s) + ε, ε ∼ N (0, σ) and observe reward r and
new state s′
Store transition tuple (s, a, r, s′) in B

Sample mini-batch of N transitions (s, a, r, s′) from B
ã← πφ′(s′) + ε, ε ∼ clip(N (0, σ̃),−c, c)
y ← r + γmini=1,2Qθ′i(s

′, ã)

Update critics θi ← arg minθi N
−1 ∑(y −Qθi(s, a))2

if t mod d then
∇φLmain = −N−1

∑
∇aQθ1(s, a)|a=πφ(s)∇φπφ(s)

∇φLaux
ω = ∇φhω = N−1

∑
∇φMLPω(π̄φ(s))

meta-train :
Calculate the old actor weights using the main actor loss: φold = φ− α∇φLmain

Calculate the new actor weights using the auxiliary actor loss: φnew = φold − α∇φLaux
ω

meta-test:
Sample mini-batch of N sval from B
Calculate the meta-loss using the meta-test sampled transitions:
Lmeta = tanh(Lmain(sval, a|θ1)|a=π(sval)|φnew) − Lmain(sval, a|θ1)|a=π(sval)|φold))
meta-optimization:
Update the actor and meta-critic:
φ← φ− η(∇φLmain +∇φLaux

ω)
ω ← ω − η∇ωLmeta

Update target networks:
θ′i ← τθi + (1− τ)θ′i
φ′ ← τφ+ (1− τ)φ′

end if
end for=0

13

Under review as a conference paper at ICLR 2020

Algorithm 4 SAC-MC algorithm

θ1, θ2, φ, ω // Initialize parameters
θ̄ ← θ1, θ̄2 ← θ2 // Initialize target network weights
D ← ∅ // Initialize an empty replay pool
for each iteration do

for each environment step do
at ∼ πφ(at|st) // Sample action from the policy
st+1 ∼ p(st+1|st, at) // Sample transition from the environment
D ← D ∪ {(st, at, r(st, at), st+1)} // Store the transition in the replay pool

end for
for each gradient step do
θi ← θi − λQ∇θiJQ(θi) for i ∈ {1, 2} // Update the Q-function parameters
meta-train :
∇φLmain = N−1

∑
t∇a[α log (πφ(a|s))−Qθ(s, a)|s=st,a=π(s)]∇φπφ(s)|s=st

φold = φ− α∇φLmain // Calculate old weights of the actor
∇φLaux

ω = ∇φhω = N−1
∑
t∇φMLPω(π̄φ(s))|s=st

φnew = φold − α∇φLaux
ω // Calculate new weights of the actor

meta-test:
Lmeta = tanh(Lmain(s, a|θ)|s=sval

t ,a=π(s|φnew) − Lmain(s, a|θ)|s=sval
t ,a=π(s|φold))

// Calculate meta-loss
meta-optimization:
φ← φ− η(∇φLmain +∇φLaux

ω) // Update the actor parameters
ω ← ω − η∇ωLmeta // Update the meta-critic parameters

α← α− λ∇αJ(α) // Adjust temperature
θ̄i ← τθi + (1− τ)θ̄i for i ∈ {1, 2} // Update target network weights

end for
end for =0

14

Under review as a conference paper at ICLR 2020

7 AVERAGE REWARDS ON OTHER TASKS AND PPO-LIRPG EXPERIMENTS

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

8

7

6

5

4

Av
er

ag
e

Re
wa

rd
Reacher-v2

DDPG
DDPG-MC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

300
400
500
600
700
800
900

1000

Av
er

ag
e

Re
wa

rd

InvertedPendulum-v2

DDPG
DDPG-MC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

4000

5000

6000

7000

8000

9000

Av
er

ag
e

Re
wa

rd

InvertedDoublePendulum-v2

DDPG
DDPG-MC

Figure 7: Learning curve mean and standard-deviation of vanilla DDPG and meta-critic enhanced DDPG-MC
for MuJoCo tasks with upper reward bound.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0

Av
er

ag
e

Re
wa

rd

Reacher-v2

TD3
TD3-MC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

300
400
500
600
700
800
900

1000

Av
er

ag
e

Re
wa

rd

InvertedPendulum-v2

TD3
TD3-MC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

4000
5000
6000
7000
8000
9000

Av
er

ag
e

Re
wa

rd

InvertedDoublePendulum-v2

TD3
TD3-MC

Figure 8: Learning curve mean and standard-deviation of vanilla TD3 and meta-critic enhanced TD3-MC for
MuJoCo tasks with upper reward bound.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5

Av
er

ag
e

Re
wa

rd

Reacher-v2

SAC
SAC-MC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

200

400

600

800

1000

Av
er

ag
e

Re
wa

rd

InvertedPendulum-v2

SAC
SAC-MC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

5000

6000

7000

8000

9000

Av
er

ag
e

Re
wa

rd

InvertedDoublePendulum-v2

SAC
SAC-MC

Figure 9: Learning curve mean and standard-deviation of vanilla SAC and meta-critic enhanced SAC-MC for
MuJoCo tasks with upper reward bound.

0 2 4 6 8 10
Time Steps (1e6)

500

0

500

1000

1500

2000

Av
er

ag
e

Re
wa

rd

HalfCheetah-v2

PPO
PPO-LIRPG

0 2 4 6 8 10
Time Steps (1e6)

0
500

1000
1500
2000
2500
3000
3500
4000

Av
er

ag
e

Re
wa

rd

Hopper-v2

PPO
PPO-LIRPG

0 2 4 6 8 10
Time Steps (1e6)

0

1000

2000

3000

4000

Av
er

ag
e

Re
wa

rd

Walker2d-v2
PPO
PPO-LIRPG

0 2 4 6 8 10
Time Steps (1e6)

400

200

0

200

400

600

Av
er

ag
e

Re
wa

rd

Ant-v2
PPO
PPO-LIRPG

0 2 4 6 8 10
Time Steps (1e6)

100
80
60
40
20

0

Av
er

ag
e

Re
wa

rd

Reacher-v2

PPO
PPO-LIRPG

0 2 4 6 8 10
Time Steps (1e6)

0
200
400
600
800

1000

Av
er

ag
e

Re
wa

rd

InvertedPendulum-v2

PPO
PPO-LIRPG

0 2 4 6 8 10
Time Steps (1e6)

0
1000
2000
3000
4000
5000
6000
7000

Av
er

ag
e

Re
wa

rd

InvertedDoublePendulum-v2

PPO
PPO-LIRPG

Figure 10: Learning curve mean and standard-deviation of PPO and PPO-LIRPG for continuous control tasks.

15

Under review as a conference paper at ICLR 2020

DDPG
DDPG-MC TD3

TD3-MC SAC
SAC-MC PPO

PPO-LIRPG

9
8
7
6
5
4
3
2

Reacher-v2

DDPG
DDPG-MC TD3

TD3-MC SAC
SAC-MC PPO

PPO-LIRPG

950

960

970

980

990

1000
InvertedPendulum-v2

DDPG
DDPG-MC TD3

TD3-MC SAC
SAC-MC PPO

PPO-LIRPG

7000

7500

8000

8500

9000

InvertedDoublePendulum-v2

Figure 11: Box plots of the Max Average Return over 5 trials of all time steps for MuJoCo tasks with upper
reward bound.

8 FURTHER ANALYSIS

8.1 META-CRITIC COMPUTATION

In terms of computation requirement, meta-critic takes around 15-30% more time per iteration,
depending on the base algorithm. This is primarily attributable to the cost of evaluating the meta-
loss Lmeta, and hence Lmain.

To investigate whether the benefit of meta-critic comes solely the additional compute expenditure,
we perform an additional experiment where we increase the compute applied by the baselines to a
corresponding degree. Specifically, if meta-critic takesK% more time than the baseline, then we re-
run the baseline with K% more update steps iteration. This provides the baseline more mini-batch
samples while controlling the number of environment interactions. Examples in Figure 12 shows
that increasing the number of update steps does not have a straightforward link to performance.
For DDPG, Walker2d-v2 performance increases with more steps, but stills performs worse than
Meta-Critic. Meanwhile, for HalfCheetah, the extra iterations dramatically exacerbates the drop in
performance that the baseline already experiences after around 1.5 million steps. Overall, there is
no consistent impact of providing the baseline more iterations, and Meta-Critic’s consistently good
performance can not be simply replicated by a corresponding increase in gradient steps taken by the
baseline.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0

2000

4000

6000

8000

Av
er

ag
e

Re
wa

rd

HalfCheetah (rllab)

TD3
TD3-MC
TD3_moreupdates

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e

Re
wa

rd

Walker2d-v2

DDPG
DDPG-MC
DDPG_moreupdates

Figure 12: Experiment controlling for compute time per method. Assigning more update itera-
tions to the baselines so their running speed matches Meta-Critic. Left: Learning curves of TD3
HalfCheetah (rllab). Right: Learning curves of DDPG Walker2d-v2.

8.2 ADDITIONAL ENVIRONMENTS

In order to investigate the impact of meta-critic on harder environments, we evaluated SAC and
SAC-MC on TORCS and Humanoid(rllab). The results in Figure 13 show that meta-critic provides
a clear margin of performance improvement in these more challenging environments.

16

Under review as a conference paper at ICLR 2020

0 20 40 60 80 100
Time Steps(1e3)

0
5000

10000
15000
20000
25000
30000

Av
er

ag
e

Re
wa

rd

SAC
SAC-MC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0

2000

4000

6000

8000

10000

Av
er

ag
e

Re
wa

rd

SAC
SAC-MC

Figure 13: Learning curves of SAC and SAC-MC on the TORCS driving (Left) and Humanoid
(Right) environments

.

17

	Introduction
	Background and Related Work
	Methodology
	Review of Off-Policy Actor-Critic RL
	Algorithm Overview

	Experiments and Evaluation
	Evaluation of Meta-Critic Off-PAC learning
	Further Analysis

	Conclusion
	Algorithms of Meta-Critic for DDPG, TD3 and SAC
	Average Rewards on Other Tasks and PPO-LIRPG Experiments
	Further Analysis
	Meta-critic computation
	Additional Environments

