
Under review as a conference paper at ICLR 2020

IMPROVING GRADIENT ESTIMATION IN EVOLUTION-
ARY STRATEGIES WITH PAST DESCENT DIRECTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Evolutionary Strategies (ES) are known to be an effective black-box optimization
technique for deep neural networks when the true gradients cannot be computed,
such as in Reinforcement Learning. We continue a recent line of research that uses
surrogate gradients to improve the gradient estimation of ES. We propose a novel
method to optimally incorporate surrogate gradient information. Our approach,
unlike previous work, needs no information about the quality of the surrogate
gradients and is always guaranteed to find a descent direction that is better than
the surrogate gradient. This allows to iteratively use the previous gradient estimate
as surrogate gradient for the current search point. We theoretically prove that
this yields fast convergence to the true gradient for linear functions and show
under simplifying assumptions that it significantly improves gradient estimates for
general functions. Finally, we evaluate our approach empirically on MNIST and
reinforcement learning tasks and show that it considerably improves the gradient
estimation of ES at no extra computational cost.

1 INTRODUCTION

Evolutionary Strategies (ES) (1; 2; 3) are a black-box optimization technique, that estimate the gradi-
ent of some objective function with respect to the parameters by evaluating parameter perturbations
in random directions. The benefits of using ES in Reinforcement Learning (RL) were exhibited in
(4). ES approaches are highly parallelizable and account for robust learning, while having decent
data-efficiency. Moreover, black-box optimization techniques like ES do not require propagation of
gradients, are tolerant to long time horizons, and do not suffer from sparse reward distributions (4).
This lead to a successful application of ES in variety of different RL settings (5; 6; 7; 8). Applications
of ES outside RL include for example meta learning (9).

In many scenarios, the true gradient is impossible to compute, however surrogate gradients are
available. Here, we use the term surrogate gradients for directions that are correlated but usually
not equal to the true gradient, e.g. they might be biased or unbiased approximations of the gradient.
Such scenarios include models with discrete stochastic variables (10), learned models in RL like
Q-learning (11), truncated backpropagation through time (12) and feedback alignment (13), see (14)
for a detailed exhibition. If surrogate gradients are available, it is beneficial to preferentially sample
parameter perturbations from the subspace defined by these directions (14). The proposed algo-
rithm (14) requires knowing in advance the quality of the surrogate gradient, does not always provide
a descent direction that is better than the surrogate gradient, and it remains open how to obtain such
surrogate gradients in general settings.

In deep learning in general, experimental evidence has established that higher order derivatives are
usually "well behaved", in which case gradients of consecutive parameter updates correlate and
applying momentum speeds up convergence (15; 16; 17). These observations suggest that past update
directions are promising candidates for surrogate gradients.

In this work, we extend the line of research of (14). Our contribution is threefold:

• First, we show theoretically how to optimally combine the surrogate gradient directions
with random search directions. More precisely, our approach computes the direction of
the subspace spanned by the evaluated search directions that is most aligned with the true
gradient. Our gradient estimator does not need to know the quality of the surrogate gradients

1

Under review as a conference paper at ICLR 2020

and always provides a descent direction that is more aligned with the true gradient than the
surrogate gradient.
• Second, above properties of our gradient estimator allow us to iteratively use the last update

direction as a surrogate gradient for our gradient estimator. Repeatedly using the last update
direction as a surrogate gradient will aggregate information about the gradient over time and
results in improved gradient estimates. In order to demonstrate how the gradient estimate
improves over time, we prove fast convergence to the true gradient for linear functions and
show, that under simplifying assumptions, it offers an improvement over ES that depends on
the Hessian for general functions.
• Third, we validate experimentally that these results transfer to practice, that is, the proposed

approach computes more accurate gradients than standard ES. We observe that our algorithm
considerably improves gradient estimation on the MNIST task compared to standard ES and
that it improves convergence speed and performance on the tested Roboschool reinforcement
learning environments.

2 RELATED WORK

Evolutionary strategies (1; 2; 3) are black box optimization techniques that approximate the gradient
by sampling finite differences in random directions in parameter space. Promising potential of ES for
the optimization of neural networks used for RL was demonstrated in (4). They showed that ES gives
rise to efficient training despite the noisy gradient estimates that are generated from a much smaller
number of samples than the dimensionality of parameter space. This placed ES on a prominent spot
in the RL tool kit (5; 6; 7; 8).

The history of descent directions was previously used to adapt the search distribution in covariance
matrix adaptation ES (CMA-ES) (18). CMA-ES constructs a second-order model of the underlying
objective function and samples search directions and adapts step size according to it. However,
maintaining the full covariance matrix makes the algorithm quadratic in the number of parameters,
and thus impractical for high-dimensional spaces. Linear time approximations of CMA-ES like
diagonal approximations of the covariance matrix (19) often do not work well, in the sense that their
gradient estimates do not converge to the true gradient even if the true gradient does not change over
time. Our approach differs as we simply improve the gradient estimation and then feed the gradient
estimate to a first-order optimization algorithm.

Our work is inspired by the line of research of (14), where surrogate gradient directions are used to
improve gradient estimations by ’elongating’ the search space along these directions. That approach
has two shortcomings. First, the bias of the surrogate gradients needs to be known to adapt the
covariance matrix. Second, once the bias of the surrogate gradient is too small, the algorithm will not
find a better descent direction than the surrogate gradient.

Another related area of research investigates how to use momentum for the optimization of deep
neural networks. Applying different kinds of momentum has become one of the standard tools in
current deep learning and it has been shown to speed-up learning in a very wide range of tasks
(20; 16; 17). This hints, that for many problems the higher-order terms in deep learning models
are "well-behaved" and thus, the gradients do not change too drastically after parameter updates.
While these approaches use momentum for parameter updates, our approach can be seen as a form of
momentum when sampling directions from the search space of ES.

3 GRADIENT ESTIMATION

We aim at minimizing a function f : Rn → R by steepest descent. In scenarios where the gradient
5f does not exist or is inefficient to compute, we are interested in obtaining some estimate of the
(smoothed) gradient of f that provides a good parameter update direction.

3.1 THE ES GRADIENT ESTIMATOR

ES considers the function fσ that is obtained by Gaussian smoothing

fσ(θ) = Eε∼N (0,I)[f(θ + σε)] ,

2

Under review as a conference paper at ICLR 2020

where σ is a parameter modulating the size of the smoothing area and N (0, I) is the n-dimensional
Gaussian distribution with 0 being the all 0 vector and I being the n-dimensional identity matrix. The
gradient of fσ with respect to parameters θ is given by

5fσ =
1

σ
Eε∼N (0,I)[f(θ + σε)ε],

which can be sampled by a Monte Carlo estimator, see (5). Often antithetic sampling is used, as it
reduces variance (5). The antithetic ES gradient estimator using P samples is given by

gES =
1

2σP

P∑
i=1

(
f(θ + σεi)− f(θ − σεi)

)
εi , (1)

where εi are independently sampled from N (0, I) for i ∈ {1, . . . , P}. This gradient estimator has
been shown to be effective in RL settings (4).

3.2 OUR ONE STEP GRADIENT ESTIMATOR

We first give some intuition before presenting our gradient estimator formally. Given one surrogate
gradient direction ζ, our one step gradient estimator applies the following sampling strategy. First,
it estimates how much the gradient points into the direction of ζ by antithetically evaluating f in
the direction of ζ. Second, it estimates the part of5f that is orthogonal to ζ by evaluating random,
pairwise orthogonal search directions that are orthogonal to ζ. In this way, our estimator detects
the optimal lengths of the parameter update step into both the surrogate direction and the evaluated
orthogonal directions (e.g. if ζ and 5f are parallel, the update step is parallel to ζ, and if they
are orthogonal the step into direction ζ has length 0). Additionally, if the surrogate direction and
the gradient are not perfectly aligned, then the gradient estimate almost surely improves over the
surrogate direction due to the contribution from the evaluated directions orthogonal to ζ. In the
following we define our estimator formally and prove that the estimated direction possesses best
possible alignment with the gradient that can be achieved with our sampling scheme.

We assume that k pairwise orthogonal surrogate gradient directions ζ1, . . . , ζk are given to our
estimator. Denote by Rζ the subspace of Rn that is spanned by the ζi, and by R⊥ζ the subspace that
is orthogonal to Rζ . Further, for vectors v and5f , we denote by v̂ and 5̂f the normalized vector
v
‖v‖ and 5f

‖5f‖ , respectively. Let ε̂1, . . . , ε̂P be random orthogonal unit vectors from R⊥ζ . Then, our
estimator is defined as

g⊥ =

k∑
i=1

f(θ + σζ̂i)− f(θ − σζ̂i)
2σ

ζ̂i +

P∑
i=1

f(θ + σε̂i)− f(θ − σε̂i)
2σ

ε̂i . (2)

We write5f = 5f‖ζ +5f⊥ζ , where5f‖ζ and5f⊥ζ are the projections of5f on Rζ and R⊥ζ ,
respectively. In essence, the first sum in (2) computes5f‖ζ by assessing the quality of each surrogate
gradient direction, and the second sum estimates5f⊥ζ similar to an orthogonalized antithetic ES
gradient estimator, that samples directions from R⊥ζ , see (5). We remark that we require pairwise
orthogonal unit directions ε̂i for the optimality proof. Due to the orthogonality of the directions, no
normalization factor like the 1/P factor in (1) is required in (2). In practice, the dimensionality n
is often much larger than P . Then, sampling pairwise orthogonal unit vecotrs εi is nearly identical
to sampling the εis from a N (0, I) distribution, because in high-dimensional space the norm of
εi ∼ N (0, I) is highly concentrated around 1 and the cosine of two such random vectors is highly
concentrated around 0.

For the sake of analysis, we assume that f is differentiable and that the second order approximation
f(x + ε) ≈ f(x) + 〈ε,5f(x)〉 + εTH(x)ε, where H(x) denotes the Hessian matrix of f at x, is
exact. This assumption implies that

f(θ + σε̂)− f(θ − σε̂)
2σ

= 〈5f(θ), ε̂〉 , (3)

because the even terms cancel for antithetic sampling. The following proposition and theorems
provide theoretical understanding, how our gradient estimation scheme improves gradient estimation

3

Under review as a conference paper at ICLR 2020

in this smooth, noise-free setting. In the following, we will omit the θ in5f(θ). Our first proposition
states that g⊥ computes the direction in the subspace spanned by ζ1, . . . , ζk, ε1, . . . , εP that is most
aligned with5f .
Proposition 1 (Optimality of g⊥). Let ζ1, . . . , ζk, ε1, . . . , εP be pairwise orthogonal vectors in Rn.
Then, g⊥ =

∑k
i=1〈5f, ζ̂i〉ζ̂i +

∑P
i=1〈5f, ε̂i〉ε̂i computes the projection of 5f on the subspace

spanned by ζ1, . . . , ζk, ε1, . . . , εP . Especially, ε = g⊥ is the vector of that subspace that maximizes
the cosine 〈5̂f, ε̂〉 between5f and ε. Moreover, the squared cosine between g⊥ and5f is given by

〈5̂f, ĝour〉2 =

k∑
i=1

〈5̂f, ζ̂i〉2 +
P∑
i=1

〈5̂f, ε̂i〉2 . (4)

We remark that when evaluating 〈5f, vi〉 for arbitrary directions vi, no information about search
directions orthogonal to the subspace spanned by the vis is obtained. Therefore, one can only hope
for finding the best approximation of 5f lying within the subspace spanned by the vis, which is
accomplished by g⊥. The proof of Proposition 1 follows easily from the Cauchy-Schwarz inequality
and is given in the appendix.

3.3 ITERATIVE GRADIENT ESTIMATION USING PAST DESCENT DIRECTIONS

Our gradient estimation algorithm iteratively applies the one step gradient estimator g⊥ by using the
gradient estimate of the last time step as surrogate direction for the current time step. Therefore, our
algorithm relies on the assumption that gradients are correlated from one time step to the next. This
assumption is justified since it is one of the reasons momentum-based optimizers (15; 16; 17) are
successful in deep learning. We also explicitly test this assumption experimentally, see Figure 1a.
The quality of the gradient estimate at any time step, depends on the quality of the surrogate gradient,
which might be restrained because (a) the previous gradient estimate might be very noisy, and (b)
the gradient changes with parameter updates. Our algorithm efficiently tackles problem (a), since it
improves the gradient estimate over the surrogate gradient at any time step. In order to theoretically
quantify this, we first analyse the case where the gradient does not change with parameter updates, i.e.
if a linear function is optimized. In this setting, we show that our algorithm needs a small factor more
than n (dimension) samples to align with the true gradient, see Theorem 1, which is close to optimal,
because at least n samples are required to determine the true gradient. Next, we incorporate problem
(b) into our analysis by considering general, non-linear functions, for which the gradient changes
with parameter updates. We show under some simplifying assumptions that, also in this case, our
algorithm builds up an improved gradient estimate over time, see Theorem 2.

We first need some notation. Denote by θt the search point, by 5ft = 5f(θt) the gradient and
by ζt the parameter update step at time t, that is, θt+1 = θt + ζt. The iterative gradient estimation
algorithm obtains the gradient estimate ζt by computing g⊥ with the last update direction ζt−1 as
surrogate gradient and P new random directions ε̂i. Formally, let ε̂1t , . . . , ε̂

P
t be pairwise orthogonal

unit directions chosen uniformly from the unit sphere, that is, they are conditioned to be pairwise
orthogonal and are marginally uniformly distributed. By defining εt =

∑P
i=1〈5ft, ε̂it〉ε̂it, and setting

ζt = g⊥, we obtain

ζt = 〈5ft, ζ̂t−1〉ζ̂t−1 +
P∑
i=1

〈5ft, ε̂it〉ε̂it = 〈5ft, ζ̂t−1〉ζ̂t−1 + 〈5ft, ε̂t〉ε̂t , (5)

where we used εt = ‖εt‖2/‖εt‖ · ε̂t = 〈5ft, εt〉/‖εt‖ · ε̂t = 〈5f, ε̂t〉ε̂t. Then, Equation 4 of
Proposition 1 turns into

〈5̂ft, ζt〉2 = 〈5̂ft, ζ̂t−1〉2 + 〈5̂ft, ε̂t〉2 . (6)

The next theorem quantifies how fast the cosine between ζt and5ft converges to 1, if5ft does not
change over time.
Theorem 1 (Convergence rate for linear functions). Let ζt be iteratively computed, as in Equation (5),
using the past update direction and P pairwise orthogonal random directions and let Xt = 〈5̂f, ζ̂t〉
be the random variable that denotes the cosine between ζt and 5ft at time t. Then, the expected

4

Under review as a conference paper at ICLR 2020

drift of X2
t is E[X2

t −X2
t−1|Xt−1 = xt−1] = (1− x2t−1) P

N−1 . Moreover, let ε > 0 and define T to
be the first point in time t with X2

t ≥ 1− δ. It holds

E[T] ≤ N − 1

P
min{(1− δ)/δ, 1 + ln(1/δ)} .

The first bound E[T] ≤ N−1
P

1−δ
δ is tight for δ close to 1 and follows by an additive drift theorem,

while the second bound E[T] ≤ N−1
P (1 + ln(1/δ)) is tight for δ close to 0 and follows by a variable

drift theorem, see appendix. We remark that in a smooth and noise-free setting, where one can sample
the true directional derivative with Equation (3), a cosine squared of 1−δ can be reached by sampling
(1 − δ)N random orthogonal directions, see Proposition 2 in the appendix. Since our algorithm
evaluates P + 1 directions per time step, it requires approximately min{1/δ, 1+ln(1/δ)

1−δ } times more
samples to reach the same alignment.

Naturally, the linear case is not the most interesting one. However, it is hard to rigorously analyse the
case of general f , because it is unpredictable how the gradient5ft differs from5ft−1. Note that
5ft−5ft−1 ≈ Hζt−1, where H is the Hessian matrix of f at θt−1. We define αt = 〈5̂ft, 5̂ft−1〉
and write 5̂ft = αt5̂ft−1 +5f⊥ where5f⊥ is orthogonal to 5̂ft and has squared norm 1− α2

t .
Then, the first term of (6) is equal to

〈5̂ft, ζ̂t−1〉2 = 〈αt5̂ft−1 +5f⊥, ζ̂t−1〉2 =
(
αt〈5̂ft−1, ζ̂t−1〉+ 〈5f⊥, ζ̂t−1〉

)2
.

In the following, we assume that5f⊥ is a direction orthogonal to5ft−1 chosen uniformly at random.
Though, this assumption is not entirely true, it allows to get a grasp on the approximate cosine that
our estimator is going to converge to.
Theorem 2. Let ζt be iteratively computed using the past update direction and P pairwise orthogonal
random directions, see Equation (5), and let Xt = 〈5̂f, ζ̂t〉 be the random variable that denotes the
cosine between ζt and5ft at time t. Further, write 5̂ft = αt5̂ft−1+5f⊥, where 1 ≥ αt ≥ 0 and
assume that5f⊥ has a random direction orthogonal to 5̂ft−1. Choose ζt according to Equation (5)
and define Xt to be the cosine between 5̂ft and ζ̂t. Then,

E[X2
t |Xt−1 = xt−1] =

(
α2
tx

2
t−1 + (1− α2

t)(1− x2t−1)
1

N − 1

)(
1− P

N − 1

)
+

P

N − 1
.

The last theorem implies that the evolution of the cosine depends heavily on the cosine αt between

consecutive gradients. Let A =
(1−α2

t)
1

N−1 (1−
P

N−1)+
P

N−1

1−(α2
t+(1−α2

t)
1

N−1)(1−
P

N−1)
. Then, the theorem implies that the drift

E[X2
t −X2

t−1|Xt−1 = xt−1] is positive if xt−1 ≤ A and negative otherwise. Thus, if αt would not
change over time, we would expect Xt to converge to A.

TODO:explain comparison to practise plot: The predicted alignement of the gradient estimate with
the true gradient of Theorem 2 is plotted in Figure 1b. Though the assumptions of Theorem 2 are
technically not true, the close fit of the theoretical prediction gives empirical evidence that the analysis
captures the general behaviour of the gradient estimation process.

4 EXPERIMENTS

In this section, we will empirically evaluate the performance of our gradient estimation scheme when
combined with deep neural networks. In Section 4.1, we show that it significantly improves gradient
estimation for digit classifiers on MNIST. In Section 4.2, we suggest how to overcome issues that
arise from function evaluation noise. Finally, in Section 4.3, we evaluate our gradient estimation
scheme on RL environments and investigate further issues arising in this setting.

4.1 GRADIENT ESTIMATION AND PERFORMANCE ON MNIST

We observe that our approach significantly improves gradient estimation compared to standard ES.
Figure 1a shows that the key requisite of our iterative gradient estimation scheme is satisfied during

5

Under review as a conference paper at ICLR 2020

(a) (b)

Figure 1: Improved gradient estimation. (a) The gradients before and after a parameter update
are highly correlated. The cosine between two consecutive gradients (blue line) and the cosine
between two random vectors (green line) are plotted. (b) A network is trained with parameter updates
according to gES using SGD (blue line) and Adam (yellow line) as optimizers. At any step we
compute our gradient estimate with gour and the true gradient5f with backpropagation. The plot
shows that the ratio of the cosine between gour and 5f and the cosine between gES and 5f is
always strictly larger than 1.

training on MNIST, that is, that gradients between consecutive parameter update steps are correlated.
Figure 1b shows that our approach improves gradient estimation compared to ES during the whole
training process and strongly improves it in the beginning of training, where consecutive gradients are
most correlated, see Figure 1a. We observe that our approach strongly outperforms ES in convergence
speed and reaches better final performance for all hyperparameters we tested, see Figure 2 and
Table 1.

Implementation details: For these experiments, we used a fully connected neural network with
two hidden layers with a tanh non-linearity and 1000 units each, to have a high dimensional model
(∼ 1.8 million parameters) . For standard ES 128 random search directions are evaluated at each step.
For our algorithm the previous gradient estimate and 126 random search directions are evaluated. We
evaluated all directions on the same batch of images in order eliminate function evaluation noise and
we resampled after every update step. We used small parameter perturbations (σ = 0.001). This is
possible because no function evaluation noise is present and because the objective function is already
differentiable and therefore no smoothing is required. We test both SGD and Adam optimizers with
learning rates in the range 100.5, 100, . . . , 10−3.

Figure 2: Performance of ES (red lines) and our algorithm (blue lines) on MNIST classification. The
evolution of the training log-likelihood is plotted for the best three learning rates found for ES when
using the Adam optimizer (top) and SGD (bottom). Our algorithm uses the same learning rates and
hyper-parameters as ES.

6

Under review as a conference paper at ICLR 2020

Table 1: Results on the MNIST digit classification task. We report the best loss and the number of
steps until the training log-likelihood drops below 0.6, to observe the performance in the initial stages
of learning. The values are for the best performing learning rate for each optimizer.

Optimizer Steps until loss < 0.6 Best loss

ES + Adam 433 0.242
Ours + Adam 182 0.216

ES + SGD 727 0.305
Ours + SGD 295 0.278

(a) Default ES (b) Ours with one past sample (c) Ours with four past samples

Figure 3: Using several past descent directions improves robustness to function evaluation noise. The
plots show the performance on MNIST digit classification task with (blue lines) and without (red
lines) function evaluation noise. The noise is created artificially by randomly permuting the fitness
values of the evaluated search directions (see Equation 2) in 20% of parameter updates. The x-axis
represents the number of proper (i.e. non-permuted) parameter updates. (a) Standard ES does not
suffer from this. (b) Function evaluation noise heavily impairs learning for our iterative gradient
estimation scheme when using one past update direction as surrogate gradient. (c) Using 4 past
update directions as surrogate gradients makes our iterative gradient estimation scheme robust to
function evaluation noise.

4.2 ROBUSTNESS TO FUNCTION EVALUATION NOISE

In practice, our iterative gradient estimation scheme may suffer from function evaluation noise
because it builds up good gradient estimates over several parameter update steps. Suppose that the
past update direction is a good descent direction but it performs poorly on the current batch used
for evaluation due to randomness in the batch selection or network evaluation process. Then, this
direction is weighted lightly when computing the new update direction, see Equation 5, and therefore
the information about this direction will be discarded. We empirically show, that our approach suffers
heavily from this issue when artificially injecting noise in the function evaluation process, see Figure
3b . Figure 3c shows, that this issue can be resolved by using the last k update directions for our
gradient estimator (see Equation 2). In this case, a good direction is only discarded, when it performs
poorly in k consecutive evaluation steps, which is very unlikely. We remark that the magnitude of
the parameter updates naturally limits k, because the k-th last update direction is only useful if it
is still correlated with the current gradient. Concretely, we found that using the last 4 parameters
updates was extremely helpful for smaller learning rates, even in the absence of noise (see Figure 3c).
However, it did not offer an advantage for larger learning rates.

4.3 ROBOTIC RL ENVIRONMENTS

For the next set of experiments, we evaluate our algorithm on three robotics tasks of the Roboschool
environment: RoboschoolInvertedPendulum-v1, RoboschoolHalfCheetah-v1 and RoboschoolAnt-v1.
Our approach outperforms ES in the pendulum task, and offers a small improvement over ES in the
other two tasks, see Figure 4. The improvement of our approach over standard ES is smaller on RL
tasks than on the MNIST task. Therefore, we first empirically confirmed that past updated direction
are also in RL correlated with the gradient. To test this, we kept track of the average difference
between random perturbations and the direction given by our algorithm, after normalizing the rewards.

7

Under review as a conference paper at ICLR 2020

We found that, the direction of our algorithm had an average weight of 1.11 versus the 0.65 of a
random direction.

RL robotics tasks bring two additional major challenges compared to the MNIST task. First,
exploration is crucial to escape local optima and find new solutions, and second, the function
evaluation noise is huge due to each perturbation being tested only on a single trajectory. Our
proposed solution of robustness against function evaluation noise intertwines with the exploration
issue. A rather small step size is necessary in order to use more past directions as surrogate gradients.
However, exploration in ES is driven by large perturbation sizes and noisy optimization trajectories.
We did not observe improvements when combining the approach of using several past directions with
standard hyperparameter settings. We believe that an exhaustive empirical study can shed light onto
the effect of our approach on exploration and may further improve the performance on RL tasks.
However, running extensive experiments for complex RL environment is computationally expensive.

Implementation details: We use most of the hyper-parameters from the OpenAI implementation 1 .
That is, two hidden layers of 256 units each and with a tanh non-linearity. Further, we use a learning
rate of 0.01, a perturbation standard deviation of σ = 0.02 and the Adam optimizer, and we also
apply fitness shaping (19). For standard ES 128 random perturbations are evaluated at each step. For
our algorithm the previous gradient estimate and 126 random perturbations are evaluated. For the
Ant and Cheetah environments, we observed with this setup, that agents often get stuck in a local
optima where they stay completely still, instead of running forward. As this happens for both, ES
and our algorithm, we tweaked the environments in order to ensure that a true solution to the task is
learned and not some some degenerate optima, we tweaked the environments in the following way.
We remove the penalty for using electricity and finish the episode if the agent does not make any
progress in a given amount of time. In this way, agents consistently escape the local minima. We use
a tanh non-linearity on the output of the network, which increased stability of training, as otherwise
the output of the network would become very large without an electricity penalty.

Figure 4: Performance of our algorithm (red line) and ES (blue line) on three different Roboschool
tasks: Ant (left), Cheetah (center) and Pendulum (right). The plot shows the mean average reward
over 9 repetitions as a function of time-steps (in thousands).

5 CONCLUSION

We proposed a gradient estimator that optimally incorporates surrogate gradient directions and
random search directions, in the sense that it determines the direction with maximal cosine to the
true gradient from the subspace of evaluated directions. Such a method has many applications as
elucidated in (14). Importantly, our estimator does not require information about the quality of
surrogate directions, which allows us to iteratively use past update directions as surrogate directions
for our gradient estimator. We theoretically quantified the benefits of the proposed iterative gradient
estimation scheme. Finally, we showed that our approach in combination with deep neural networks
considerably improves the gradient estimation capabilities of ES, at no extra computational cost. The
results on MNIST indicate that the speed of the Evolutionary Strategies themselves, a key part in the
current Reinforcement Learning toolbox, is greatly improved. Within Reinforcement Learning an out
of the box application of our algorithm yields some improvements. The smaller improvement in RL
compared to MNIST is likely due to the interaction of our approach and exploration that is essential
in RL. We leave it to future work to explicitly add and study appropriate exploration strategies which
might unlock the true potential of our approach in RL.

1https://github.com/openai/evolution-strategies-starter

8

https://github.com/openai/evolution-strategies-starter

Under review as a conference paper at ICLR 2020

REFERENCES

[1] Ingo Rechenberg. Evolution strategy: Optimization of technical systems by means of biological
evolution. Fromman-Holzboog, Stuttgart, 104:15–16, 1973.

[2] Hans-Paul Schwefel. Evolutionsstrategien für die numerische optimierung. In Numerische
Optimierung von Computer-Modellen mittels der Evolutionsstrategie, pages 123–176. Springer,
1977.

[3] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

[4] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies
as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

[5] Krzysztof Choromanski, Mark Rowland, Vikas Sindhwani, Richard E Turner, and Adrian Weller.
Structured evolution with compact architectures for scalable policy optimization. arXiv preprint
arXiv:1804.02395, 2018.

[6] Xiaodong Cui, Wei Zhang, Zoltán Tüske, and Michael Picheny. Evolutionary stochastic gradient
descent for optimization of deep neural networks. In Advances in neural information processing
systems, pages 6048–6058, 2018.

[7] Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly Stadie, Filip Wolski, OpenAI Jonathan Ho,
and Pieter Abbeel. Evolved policy gradients. In Advances in Neural Information Processing
Systems, pages 5400–5409, 2018.

[8] David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In
Advances in Neural Information Processing Systems, pages 2450–2462, 2018.

[9] Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-dickstein.
Learned optimizers that outperform on wall-clock and validation loss. 2018.

[10] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[11] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292,
1992.

[12] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal represen-
tations by error propagation. Technical report, California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

[13] Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random
feedback weights support learning in deep neural networks. arXiv preprint arXiv:1411.0247,
2014.

[14] Niru Maheswaranathan, Luke Metz, George Tucker, Dami Choi, and Jascha Sohl-Dickstein.
Guided evolutionary strategies: augmenting random search with surrogate gradients. In Interna-
tional Conference on Machine Learning, pages 4264–4273, 2019.

[15] Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

[16] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In International conference on machine learning,
pages 1139–1147, 2013.

[17] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[18] Nikolaus Hansen. The cma evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772,
2016.

[19] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber.
Natural evolution strategies. The Journal of Machine Learning Research, 15(1):949–980, 2014.

9

Under review as a conference paper at ICLR 2020

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[21] Johannes Lengler and Angelika Steger. Drift analysis and evolutionary algorithms revisited.
Combinatorics, Probability and Computing, 27(4):643–666, 2018.

A PROOF OF THEOREMS

In this Section we prove the theorems from the main paper rigorously.

A.1 PROOF OF PROPOSITION 1

Note that for this theorem there is no distinction between the directions ζi and εi. For ease of notation,
we denote ζ1, . . . , ζk, ζ1, . . . , ζP by ε1, . . . , εm. The theorem is a simple application of the Cauchy-
Schwarz inequality. Denote by 5f‖εi =

∑m
i=1〈5f, ε̂i〉ε̂i the projection of 5f on the subspace

spanned by the εis, and let ε =
∑m
i=1 αiε̂

i be a vector in that subspace. Then, the Cauchy-Schwarz
inequality implies

〈5f, ε〉 = 〈5f‖εi , ε〉 ≤ ‖ 5 f‖εi‖‖ε‖ . (7)

Equality holds if and only if ε and5f‖εi have the same direction, which is equivalent to ε = αgour
for some α > 0. In particular, in this case the cosine squared between5f and ε is

〈5̂f, ε̂〉2 =
‖ 5 f‖εi‖2

‖ 5 f‖2
=

m∑
i=1

〈5̂f, ε̂i〉2 (8)

A.2 EXPECTATION OF COSINE SQUARED OF RANDOM VECTORS FROM THE UNIT SPHERE

We need the following proposition for the proofs of Theorem 1 and 2.

Proposition 2. Let û be an N -dimensional unit vector, and let ε̂1, . . . , ε̂P be pairwise orthogonal
vectors sampled uniformly from the N -dimensional unit sphere, that is, they are marginally uniformly
distributed and conditioned to be pairwise orthogonal. Then, the expected cosine squared of û and
ε =

∑P
i=1〈u, ε̂i〉ε̂i is

E[〈û, ε̂〉2] = P

N

Proof. Note that

〈û, ε̂〉2 =
1

‖ε‖2
〈û, ε〉2 =

1∑P
i=1〈û, ε̂i〉2

(
P∑
i=1

〈û, ε̂i〉2
)2

=

P∑
i=1

〈û, ε̂i〉2

Denote by S the N -dimensional unit sphere. Linearity of expectation implies that

E[〈û, ε̂〉2] =
P∑
i=1

E[〈û, ε̂i〉2]

=
P

V ol(S)

∫
S

〈û, v〉2 dv

10

Under review as a conference paper at ICLR 2020

By rotational invariance of the unit sphere, we can replace û by e1 = (1, 0, . . . , 0) and obtain

E[〈û, ε̂〉2] = P

V ol(S)

∫
S

〈e1, v〉2 dv

=
P

V ol(S)

∫
S

v21 dv

=
P

N · V ol(S)

∫
S

N∑
i=1

v2i dv

=
P

N · V ol(S)

∫
S

1 dv

=
P

N

A.3 PROOF OF THEOREM 1

In order to prove Theorem 2, use Equation 6 to compute how X2
t = 〈5̂f, ζ̂t〉2 depends on X2

t−1.
Then, we apply a variable transformation to Xt in order to be able to apply the additive and variable
drift theorems from (21), which are stated in Section B.

We can split the normalized gradient 5̂f = 5f⊥ζ̂t−1
+5f‖ζ̂t−1

into an orthogonal to ζ̂t−1 part and

a parallel to ζ̂t−1 part. It holds ‖ 5 f⊥ζ̂t−1
‖2 = 1− 〈5̂f, ζ̂t−1〉2 and 〈5̂f‖ζ̂t−1

, ε̂t〉 = 0 since ε̂t is a

unit vector orthogonal to ζ̂t−1. Recall that 5̂f⊥ζ = 5f⊥ζ
‖5f⊥ζ‖ , then

〈5̂f, ε̂t〉2 = 〈5f⊥ζ̂t−1
, ε̂t〉2 = (1− 〈5̂f, ζ̂t−1〉2)〈5̂f⊥ζ , ε̂t〉2 = (1−X2

t−1)〈5̂f⊥ζ , ε̂t〉2 , (9)

and therefore by Equation 6

X2
t = 〈5̂f, ζ̂t−1〉2 + 〈5̂f, ε̂t〉2 = X2

t−1 + (1−X2
t−1)〈5̂f⊥ζ , ε̂t〉2 . (10)

Define the random process Yt = 1−X2
t . It holds

Yt = 1−X2
t−1 + (1−X2

t−1)〈5̂f⊥ζ , ε̂t〉2 = Yt−1(1− 〈5̂f⊥ζ , ε̂t〉2) , and (11)

E[Yt|Yt−1 = yt−1] = yt−1

(
1− E[〈5̂f⊥ζ , ε̂t〉2]

)
= yt−1

(
1− P

N − 1

)
, (12)

where we used Proposition 2 in the N − 1 dimensional subspace that is orthogonal to ζt−1.

In order to derive the first bound on T , we bound the drift of Yt for Yt ≥ δ.

E[Yt|Yt−1 = yt−1, yt−1 ≥ δ] = yt−1 − yt−1
P

N − 1
≤ yt−1 − δ

P

N − 1
,

where we used Equation 12 and yt−1 ≥ δ. In order to apply Theorem 3, we define the auxiliary
process Zt = Yt − δ. Then, T is the expected time that Zt hits 0. Since E[Zt|Zt−1 = zt−1, zt−1 ≥
0] ≤ zt−1 − δ c

N−1 and Z0 = 1− δ, Theorem 3 implies that

E[T] ≤ 1− δ
δ

N − 1

P

In order to apply Theorem 4, to show the second bound on T , we need to rescale Yt such that it takes
values in {0} ∪ [1,∞). Define the auxiliary process Zt by

Zt =

{
Yt/δ if Yt ≥ δ
0 if Yt < δ

. (13)

11

Under review as a conference paper at ICLR 2020

Then, T is the expected time that Zt hits 0. The process Zt satisfies

E [Zt|Zt−1 = zt−1, zt−1 ≥ 1] ≤ E [Yt/δ|Yt−1 = δzt−1, zt−1 ≥ 1] ≤ zt−1
(
1− P

N − 1

)
,

where we used Equations 13 and 12. Since Z0 = 1/δ, Theorem 4 implies for h(z) = z c
N−1 that

E[T] ≤ N − 1

P
+

∫ 1/δ

1

N − 1

Pu
du =

N − 1

P
(1 + ln(1/δ)) .

A.4 PROOF OF THEOREM 2

In order to prove the theorem, we need to understand how Xt depends on the value of Xt−1. It
holds X2

t = 〈5̂ft, ζ̂t−1〉2 + 〈5̂ft, ε̂t〉2. As in Equation 12, we can write 〈5̂ft, ε̂t〉2 = (1 −
〈5̂ft, ζ̂t−1〉2)〈5̂f⊥ζ̂t−1

, ε̂t〉2, and note that E[〈5̂f⊥ζ̂t−1
, ε̂t〉2] = P

N−1 follows by Proposition 2 and
the definition of ε̂t. This implies that

E[X2
t |Xt−1 = xt−1] =

(
1− P

N − 1

)
E[〈5̂ft, ζ̂t−1〉2|Xt−1 = xt−1] +

P

N − 1
(14)

To understand how the Xt evolves we need to analyze how 〈5̂ft, ζ̂t−1〉2 relates to Xt−1 =

〈5̂ft−1, ζ̂t−1〉2. To that end, we set αt = 〈5̂ft, 5̂ft−1〉 and write 5̂ft = αt5̂ft−1 +5f⊥5ft−1

where5f⊥5ft−1
is orthogonal to5ft−1 and has norm 1− α2

t . Then,

〈5̂ft, ζ̂t−1〉2 = 〈αt5̂ft−1 +5f⊥5ft−1 , ζ̂t−1〉2 =
(
αt〈5̂ft−1, ζ̂t−1〉+ 〈5f⊥5ft−1 , ζ̂t−1〉

)2
.

It follows that

E[〈5̂ft, ζ̂t−1〉2|Xt−1 = xt−1] (15)

= α2
tx

2
t−1 + 2αtxt−1E[〈5f⊥5ft−1

, ζ̂t−1〉] + E[〈5f⊥5ft−1
, ζ̂t−1〉2] (16)

= α2
tx

2
t−1 + (1− α2

t)(1− x2t)
1

N − 1
, (17)

where we used E[〈5f⊥5ft−1 , ζ̂t−1〉] = 0, which follows from the assumption of5f⊥5ft−1 being
a random direction orthogonal to5ft−1, and that

E[〈5f⊥5ft−1
, ζ̂t−1〉2] = E[〈5f⊥5ft−1

, ζ̂t−1⊥5ft−1
〉2]

= ‖ 5 f⊥5ft−1‖2‖ζ̂t−1⊥5ft−1‖2E[〈
5f⊥5ft−1

‖ 5 f⊥5ft−1‖
,
ζ̂t−1⊥5ft−1

‖ζ̂t−1⊥5ft−1
‖
〉2]

= (1− α2
t)(1− x2t)

1

N − 1
,

which follows from ‖5f⊥5ft−1
‖2 = 1−α2, ‖ζ̂t−1⊥5ft−1

‖2 = 1−x2t and Proposition 2 for P = 1
using that5f⊥5ft−1

is a random direction orthogonal to5ft−1. Then, plugging Equation (17) into
(14), implies the theorem.

B DRIFT THEOREMS

For the proof of Theorem 1, we use two drift theorems from (21), which we restate for completeness.
Theorem 3 (Additive Drift, Theorem 1 from (21)). Let (Xt)t∈N0

be a Markov chain with state space
S ⊂ [0,∞) and assume X0 = n. Let T be the earliest point in time t ≥ 0 such that Xt = 0. If there
exists c > 0 such that for all x ∈ S, x > 0 and for all t ≥ 0 we have

E[Xt+1|Xt = x] ≤ x− c .
Then,

E[T] ≤ n

c
.

12

Under review as a conference paper at ICLR 2020

(a) (b)

Figure 5: Performance when optimizing a quadratic function. Performances of our approach (green),
standard ES (blue) and SNES (red). (a) On small dimensional functions (N = 32 and 16 sampled
directions per time step) SNES outperforms our approach and standard ES. Our approach and ES
do not improve further because they do not adapt their stepsize. (b) For high dimensional functions
(N = 10000 and 16 sampled directions per time step), our approach outperforms SNES and standard
ES.

Theorem 4. Variable Drift, Theorem 4 from (21)] Let (Xt)t∈N be a Markov chain with state space
S ⊂ {0} ∪ [1,∞) and with X0 = n. Let T be the earliest point in time t ≥ 0 such that Xt = 0.
Suppose furthermore that there is a positive, increasing function h : [1,∞)→ R>0 such that for all
x ∈ S, x > 0 we have for all t ≥ 0

E[Xt+1|Xt = x] ≤ x− h(x) .

Then,

E[T] ≤ 1

h(1)
+

∫ n

1

1

h(u)
du .

C ADDITIONAL EXPERIMENTS

This section presents some additional experiments. We will incorporate a polished version of this
section into the experiments section of the main paper, for the camera ready version of the paper.

C.1 COMPARISON OF OUR APPROACH TO SEPARABLE NES AND GUIDED ES

We consider the toy task of optimizing a quadratic function f(x) = ‖Ax‖22 as considered in (14).
Figure 5 compares our approach to a diagonal approximation of CMA-ES, that is, seperable natural
ES (SNES) from (19), that has the same runtime and memory complexity as our approach. While
SNES works verv well for small diminsional parameter space (N = 32 , see Figrue 5a), it is clearly
outperformed by our approach for high dimensional paramater spaces (N = 10000, see Figure 5b).

Further, we compare our one step gradient estimator g⊥ to the guided-ES gradient estimator proposed
in (14). Again the goal is to optimize a quadratic function f(x) = ‖Ax‖22. Both estimators receive a
surrogate gradient ζ for the optimization. The surrogate gradient is created as in (14): A normalized
random bias b (drawn once at the beginning of optimization) and a normalized noise direction n
(resampled at every iteration) are added to the true gradient. that is, ζ(x) = 5f(x)+(b+n)‖5f(x)‖2
Figure 6 shows that our approach outperforms guided-ES no matter how the parameter α controlling
the bias variance trade-off of guided-ES is set.

Implementation details: For Figure 5b, x has dimension N = 10000 and is initalized by sampling
x0 ∼ N (0, I). A is a matrix of dimension 100×10000, and its entries are samples from aN (0, 0.001)
distribution, where the variance is chosen such that the initial loss is approx 1. For Figure 5a, x has
dimension N = 16 and A has dimension 16× 16. The hyperparamters for our approach and standard
ES are the learning rate β and perturbation size σ. The hyperparamters for SNES are learning rate

13

Under review as a conference paper at ICLR 2020

Figure 6: Optimizing a quadratic function with biased surrogate gradients. Performances of our
approach (green line), SGD using the surrugate gradient for the parameter update (purple line), ES
(blue line), guided-ES (yellow line) are plotted. Our approach (green line) improves sharply, making
use of the biased gradient, until it becomes useless (crossing with purple line). For guided-ES,
we observed a binary behaviour when optimizing for the parameter that controls the bias-variance
trade-off analysed in (14). Either it follows the surrogate gradient very closely or it behaves similarly
to ES. This observation is consistent with the analysis conducted in (14). The optimal value that we
found for this parameter is very close to 1 and results in a performance very close to ES (yellow and
blue lines).

14

Under review as a conference paper at ICLR 2020

β, learning rate βσ for the step size adaptation and perturbation size initialization. We performed a
hyperparameter search for all these hyperparameters and plotted the best performance.

15

	Introduction
	Related Work
	Gradient Estimation
	The ES Gradient Estimator
	Our One Step Gradient Estimator
	Iterative Gradient Estimation Using Past Descent Directions

	Experiments
	Gradient Estimation and Performance on MNIST
	Robustness to Function Evaluation Noise
	Robotic RL environments

	Conclusion
	Proof of Theorems
	Proof of Proposition 1
	Expectation of Cosine Squared of Random Vectors from the Unit Sphere
	Proof of Theorem 1
	Proof of Theorem 2

	Drift Theorems
	Additional Experiments
	Comparison of our approach to separable NES and guided ES

