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ABSTRACT

The committor function is a central object of study in understanding transitions
between metastable states in complex systems. However, computing the commit-
tor function for realistic systems at low temperatures is a challenging task, due to
the curse of dimensionality and the scarcity of transition data. In this paper, we in-
troduce a computational approach that overcomes these issues and achieves good
performance on complex benchmark problems with rough energy landscapes. The
new approach combines deep learning, importance sampling and feature engineer-
ing techniques. This establishes an alternative practical method for studying rare
transition events among metastable states of complex, high dimensional systems.

1 INTRODUCTION

Understanding transition events between metastable states is of great importance in the applied
sciences. Well-known examples of the transition events include nucleation events during phase
transitions, conformational changes of bio-molecules, dislocation dynamics in crystalline solids,
etc. The long time scale associated with these events is a consequence of the disparity between the
effective thermal energy and typical energy barrier of the systems. The dynamics proceeds by long
waiting periods around metastable states followed by sudden jumps from one state to another. For
this reason, the transition event is called rare event. The main objective in the study of rare events
is to understand the transition mechanism, such as the transition pathway and transition states (or
bottlenecks). Some numerical methods have been proposed for this purpose, among which the well-
known ones include the nudged elastic band method (Jónsson et al., 1998), the string method (E
et al., 2002; 2007; Ren et al., 2005), the action based method (Olender & Elber, 1996), and the
transition path sampling technique (Bolhuis et al., 2002; Dellago et al., 2002), accelerated molecular
dynamics (Voter, 1997), etc.

One object that plays an important role in understanding the transition event is the committor func-
tion. This is a function which is defined in the configuration or phase space and describes the
progress of the transition. Most of the interesting information regarding the transition can be ex-
tracted from the committor function (E et al., 2005; Ren et al., 2005; E & Vanden-Eijnden, 2010).
For example, the transition states lie in the region where the committor value is around 1/2; the
transition path ensemble and the transition rate can be computed as well, based on the committor
function and the equilibrium probability distribution of the system.

The committor function has a very simple mathematical description - it satisfies the backward Kol-
mogorov equation. However, it is very difficult to compute in practice, due to the curse of dimen-
sionality. For example, consider a bio-molecule consisting of N atoms, then the equation needs
be solved in the configuration space of dimension 3N . Traditional numerical approaches, such as
finite difference or finite element methods, are computationally prohibited even when N = 2 or
3, and obviously out of the question for realistic physical systems. Alternative methods have been
proposed. In the transition path sampling technique (Bolhuis et al., 2002; Dellago et al., 2002),
the committor function is computed using Monte Carlo methods. In the finite-temperature string
method (Ren et al., 2005), the problem is reformulated as an equivalent variational form, which is
minimized in a particular function space. In the work of Lai & Lu (2018), the Kolmogorov equation
for the committor function is solved using a point cloud discretization.
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More recently, it is proposed to compute the committor function using neural networks (Khoo et al.,
2018). They obtained satisfactory numerical results for a model problem in 10 dimensions. The suc-
cess of this approach hinges on the availability of data, especially in the transition state region where
the committor function changes sharply from 0 to 1. As the term “rare event” suggests, such data is
rarely available. In Khoo et al. (2018), the data was generated by solving the underlying Langevin
dynamics at the physical temperature. While this works well when the physical temperature is high
in which case transitions are easily observed, it becomes less efficient when the temperature is low,
i.e. the case of rare events.

In this work, we propose an importance sampling technique to overcome this difficulty. Specifically,
we generate the data from the Langevin dynamics at an artificial temperature. This temperature is
high enough so that the transition event between the metastable states becomes less rare or even
frequent. This enables us to collect sufficient amount of data in the transition state region. The
difference between the physical temperature and the artificial temperature is accounted for by the
likelihood ratio in the objective function to be minimized. Furthermore, we introduce a new method
to impose the boundary conditions for the committor function, and employ collective variables as
the input features for the neural network.

The rest of the paper is organized as follows. The background and problem formulation is discussed
in Section 2. In Section 3, we introduce the key ingredients of our method, including the method
of imposing the Dirichlet boundary conditions, the importance sampling technique, and the neural
network architecture. Numerical results for two examples are presented in Section 4. Finally, we
draw conclusions in Section 5.

2 BACKGROUND

The typical starting point of transition modeling is the specification of a potential energy function
V : Ω ⊂ Rn → R, which takes as inputs the microscopic configuration x of the system (e.g. the
positions of the constituent atoms of a bio-molecule). The subset Ω is the configuration space under
consideration. Through standard statistical mechanics arguments, the probability density of the
system’s configuration is determined by the potential energy function V via the Boltzmann-Gibbs
distribution

p(x) =
1

Z
e−βV (x), (1)

where β = 1/kBT is the inverse temperature and Z =
∫

Ω
e−βV (x)dx is the normalization factor, or

partition function.

To study dynamical properties, one may consider the noisy gradient flow induced by V in the form
of an over-damped Langevin equation:

ẋ(t) = −∇V (x(t)) +
√

2β−1η(t), (2)

where η is a white noise. One can check that (2) has invariant distribution (1). Through this dynam-
ical model, it is clear how one can then introduce the notion of stability of the system: local minima,
or a collection of local minima, of V correspond to metastable configurations; at low temperatures
(large β), the system will remain in these configurations for exponentially long times before mak-
ing transition to another such configuration. Our principal goal is to study the transition dynamics
between two metastable configurations.

Consider two distinct metastable regions A,B ⊂ Ω, A ∩B = ∅. Consider the first hitting times of
set A and B

τA(x) = inf{t ≥ 0 : x(t) ∈ A, x(0) = x}, τB(x) = inf{t ≥ 0 : x(t) ∈ B, x(0) = x}. (3)

The committor function q : Ω→ [0, 1] is defined by

q(x) = Prob{τB(x) < τA(x)}. (4)

It can be shown that much of the vital information regarding transition pathways and rates can be
extracted from the committor function (E et al., 2005; E & Vanden-Eijnden, 2010). Hence, an effi-
cient numerical method to compute it for general systems is an important problem in computational
chemistry, structural biology and materials science.
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We consider the system in the domain Ω \ (A∪B) since the definition of q involves the first hitting
times of the boundary of A and B. It can be shown that q satisfies the backward Kolmogorov
equation with Dirichlet boundary condition (Gardiner, 1985),{

∇V · ∇q − β−1∆q = 0, x ∈ Ω \ (A ∪B),

q(x) = 0, x ∈ ∂A; q(x) = 1, x ∈ ∂B, (5)

where ∇ = ( ∂
∂x1

, ..., ∂
∂xn

) is the gradient operator, ∆ =
∑n
i=1

∂2

∂x2
i

is the Laplace operator and ∂A
(∂B) denotes the boundary of A (B). In addition, we impose the boundary condition∇q ·n = 0 on
∂Ω. The committor function is also the solution to the variational problem

min
q

1

Z

∫
Ω\(A∪B)

|∇q(x)|2e−βV (x)dx, (6)

where Z =
∫

Ω\(A∪B)
e−βV (x)dx, subject to the condition

q(x) = 0, x ∈ ∂A; q(x) = 1, x ∈ ∂B. (7)

The key challenge in using (5) to compute q is the curse of dimensionality: as the dimension n of
the configuration x increases, the computational complexity of classical finite difference and finite
element methods increase exponentially, thereby prohibiting the use of these methods for realistic
models. Although the variational formulation somewhat ameliorate this issue, at low temperatures
(large β), which is often the regime of interest for studying rare transition events, solving (6) be-
comes more challenging as the measure Z−1e−βV becomes more “singular”.

In the next section, we introduce our proposed method of combining deep learning and importance
sampling to efficiently compute q for high-dimensional systems and at low temperatures.

3 METHODS

Based on the approach introduced in Khoo et al. (2018), we use a deep neural network qθ, where {θ}
are trainable variables, to parameterize the committor function. Note that since the range of the com-
mittor function is [0, 1], we use a sigmoid activation for the output layer. With this parameterization
scheme, the variational problem (6) can be posed as an unsupervised learning problem

arg min
θ

∫
Ω\(A∪B)

|∇qθ(x)|2pβ(x)dx,

qθ(x) = 0, x ∈ ∂A; qθ(x) = 1, x ∈ ∂B. (8)

with pβ(x) = Z−1e−βV (x) being the equilibrium distribution. To solve (8), training data following
the equilibrium distribution pβ are sampled by taking snapshots from long trajectory of the Langevin
dynamics (2),

Below, we outline the three main novel aspects of our approach: 1) a network structure that deals
naturally with the boundary condition (7); 2) an importance sampling technique that allows for the
efficient computation of committor functions at low temperatures, which is important for studying
transition events; and 3) Using collective variables as a form of crude feature selection to improve
the efficiency of learning.

3.1 BOUNDARY CONDITIONS

To handle boundary conditions, Khoo et al. (2018) proposed adding a penalty term enforcing (7)
into the functional to be minimized to obtain the augmented problem

arg min
θ

1

Z

∫
Ω\(A∪B)

|∇qθ(x)|2e−βV (x)dx+ λ

∫
∂A

q2
θ(x)dµ∂A(x) + λ

∫
∂B

(1− qθ(x))2dµ∂B(x),

(9)
where λ is a parameter controlling the magnitude of the penalty terms, µ∂A and µ∂B are the equi-
librium distribution restricted on ∂A and ∂B, respectively.
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While this is straightforward to implement, the introduction of an additional penalty parameter may
require more tuning. Instead, we proceed differently by introducing a different parameterization of
qθ that naturally satisfies the boundary conditions (7). Concretely, we consider the composite form

q(x) = (1− χA(x)) [(1− χB(x))q̃(x) + χB(x)] , x ∈ Ω \ (A ∪B). (10)

Here χA(x) and χB(x) are two given smooth functions such that

χA(x) =

{
1, x ∈ ∂A
0, x ∈ Ω \ (Aε ∪Bε), χB(x) =

{
1, x ∈ ∂B
0, x ∈ Ω \ (Aε ∪Bε), (11)

where Aε and Bε are two sets expanded from A and B,

Aε =

{
x ∈ Ω : inf

y∈A
|x− y| ≤ ε

}
, Bε =

{
x ∈ Ω : inf

y∈B
|x− y| ≤ ε

}
. (12)

Away from ∂A and ∂B, χA and χB changes smoothly from 1 to 0 in a region of width ε, respectively.
The function q(x) of the form in (10) strictly satisfies the boundary conditions (7) and agrees with q̃
outside Aε and Bε,

q(x) = q̃(x), for x ∈ Ω \ (Aε ∪Bε). (13)

We then use a deep neural network to parameterize the function q̃, hence approximating the com-
mittor function q(x) as

qθ(x) = (1− χA(x)) [(1− χB(x))q̃θ(x) + χB(x)] , x ∈ Ω \ (A ∪B), (14)

where {θ} are trainable variables of the neural network. Thus, the constrained minimization prob-
lem (8) reduces to an unconstrained problem

arg min
θ

1

Z

∫
Ω\(A∪B)

|∇xqθ(x)|2e−βV (x)dx, (15)

where qθ(x) takes the form (14). Consequently, only the data following the stochastic process (2) is
needed to train the neural network.

3.2 IMPORTANCE SAMPLING

Another challenging problem is the sampling of pβ at low temperature T (large β). Naive sampling
using the dynamics (2) at low temperatures yields very few transition events and hence the distri-
bution pβ is not explored well enough to solve (15). Specifically, with very few observed transition
events, the majority of the sampled data will be clustered near the metastable states A and B, with
very few distributed in the region of our interest, i.e. the transition state region which lies in between
A and B. This will lead to a poor estimate of the committor function.

To address this problem, we consider another form of the problem (15)

arg min
θ

1

Z ′

∫
Ω\(A∪B)

|∇xqθ(x)|2e−(β−β′)V (x)e−β
′V (x)dx, (16)

where Z ′ =
∫

Ω\(A∪B)
e−β

′V (x)dx is the normalization factor and β′ = 1/kBT
′, with T ′ > T .

Solving the new problem (16) requires sampling of pβ′(x) = Z ′
−1
e−β

′V (x) by simulating the
Langevin dynamics (2) at the high temperature T ′. This becomes much more efficient when T ′ is
sufficiently large, as energy barriers are much easier to cross at higher temperatures. In essence,
this is a form of importance sampling, and the function e−(β−β′)V (x) is the likelihood ratio associ-
ated with the change of measure. Note that the choice of importance sampling measure pβ′ is not
arbitrary. Its purpose is to produce enough sample points in the a priori unknown transition region
for us to estimate the committor function at low temperature T . Generic sampling measures (e.g.
uniform) will not achieve this goal in moderately high dimensions.
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Figure 1: Diagram of neural network structure with feature layer. The feature layer consists of collective
variables information. The connection between the input and feature layers is determined by the definition of
the collective variables, whereas the feature layer and the first hidden layer are fully connected.

3.3 COLLECTIVE VARIABLES

Very often, only a few coarse-grained variables, called the collective variables and denoted by
(z1(x), z2(x), ..., zm(x)) with m � n, play a major role in the transition event. For example,
in conformational changes of bio-molecules, it is often that only a few torsion or bond angles partic-
ipate the transitions between metastable states. In this situation, the committor function, being the
reaction coordinate for the transition, depends only on these collective variables

q(x) = f(z1(x), ..., zm(x)). (17)

This is a form of dimensional reduction or feature engineering, and the choice of {zi} often allows
one to build some degree of physical knowledge into the parameterization of q.

For the alanine dipeptide example to be discussed in the next section, we shall make use of collective
variables in the design of the first input transformation layer. The architecture of the network is
summarized in Figure 1.

4 NUMERICAL RESULTS

We demonstrate the effectiveness of the proposed numerical method using two benchmark problems:
one is the Mueller potential extended to high dimensions, the other is the isomerization of alanine
dipeptide.

4.1 EXTENDED MUELLER POTENTIAL

We first consider the Mueller potential embedded in the 10-dimensional (10D) space (Khoo et al.,
2018),

V (x) = Vm(x1, x2) +
1

2σ2

10∑
i=3

x2
i , x ∈ R10 (18)

where Vm(x1, x2) is the rugged Mueller potential in two dimensions (2D),

Vm(x1, x2) =

4∑
i=1

Di exp
(
ai(x1 −Xi)

2 + bi(x1 −Xi)(x2 − Yi) + ci(x2 − Yi)2
)

+ γ sin(2kπx1) sin(2kπx2), (19)

and a harmonic potential is used in each of the other eight dimensions. The parameters γ and k
control the roughness of the energy landscape, and σ controls the scale of the quadratic terms. In
this example, we use γ = 9, k = 5, σ = 0.05. The other parameters are taken from Lai & Lu
(2018).

We first use the finite element method (FEM) to solve the backward Kolmogorov equation (5) for
the 2D rugged Mueller potential Vm on Ω̃ = [−1.5, 1]× [−0.5, 2] by the solver FreeFem++ (Hecht,
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Table 1: Comparison of the committor function qθ obtained using neural network with the FEM solution
q for the extended Mueller potential. The error is computed on the 100 transition states sampled from the
dynamics (21). The statistics of the error (mean ± deviation) is based on 10 independent computations.

size of data set network structure RMSE MAE

2× 105 10-20-1 0.0464± 0.0179 0.0372± 0.0151
10-20-20-1 0.0483± 0.0106 0.0390± 0.0102

10-20-20-20-1 0.0483± 0.0170 0.0390± 0.0150

5× 105 10-20-1 0.0331± 0.0096 0.0282± 0.0098
10-20-20-1 0.0363± 0.0113 0.0307± 0.0116

10-20-20-20-1 0.0368± 0.0108 0.0318± 0.0107

2012). The numerical solution is denoted by qm. We ignore the discretization error in qm (which is
on the order of 10−5) and treat it as the “exact” solution. Then the “exact” solution for the committor
function in 10D is given by q(x) = qm(x1, x2), x ∈ Ω = {x : (x1, x2) ∈ Ω̃, x ∈ R10}. Figure 2
(left panel) shows the contour plots of the 2D rugged Mueller potential and the committor function
qm at kBT = 10 (the energy barrier from A to B is about 100).

Next, we compute the committor function in the 10D space using the method proposed in sec-
tion 3. The Mueller potential (19) has two local minima around a ≈ (−0.558, 1.441) and
b ≈ (0.623, 0.028), respectively. We take the two metastable sets A and B as the cylinders cen-
tered at (x1, x2) = a and (x1, x2) = b respectively, each with radius r = 0.1. The function χA(x)
is constructed as

χA(x) =
1

2
− 1

2
tanh

[
1000

(
|(x1, x2)− a|2 − (r + δ)2

)]
, x ∈ R10 (20)

with δ = 0.02 and similarly for χB(x). These two functions satisfy (11) approximately.

We generate the data at the artificial temperature kBT ′ = 20 by solving the Langevin equation (2)
using the Euler-Maruyama scheme with time step ∆t = 10−5. We take one sample for every 100
time steps, and only keep those data points with coordinates x ∈ Ω \ (A ∪ B). Of these data, 70%
and 30% serve as the training and validation dataset respectively. The neural network used in this
example is fully connected, and the hyperbolic tangent (tanh) function is used as the activation func-
tion in the hidden layers. We take the batch size as 105 and use the package Tensorflow (Abadi et al.,
2016) with Adam optimizer (Kingma & Ba, 2014) to train the network at the physical temperature
kBT = 10.

To quantitatively evaluate our results, we compare the committor function qθ obtained using the neu-
ral network with the FEM result q. For rare events considered here, the committor function near the
transition state region (i.e. the region near the minima of V (x) on the iso-surface where q ≈ 1/2)
is of our interest, since this region represents the bottlenecks to the transition. The committor func-
tion in this region is also the most difficult to compute, as data here is typically scarce. Therefore,
we shall focus our evaluation of the numerical results in this region. To this end, we carry out the
constrained sampling in the transition state region by simulating the dynamics

ẋ = −∇ (V (x) + Vq(x)) +
√

2β−1η, (21)

where the additional potential Vq(x) = 1
2κ(qθ(x)− 1

2 )2 with κ = 3× 104 is to constrain the system
on the 1/2-isocommittor surface Γ1/2 = {x ∈ Ω : qθ(x) = 1/2}. After equilibration, we sampled
100 points. These points, projected on the (x1, x2) plane, are shown in Figure 2 (middle and right
panels). The region where these points are clustered is the transition state region. Also shown in
Figure 2 (middle and right panels) is a comparison of the 1/2-isosurface of qθ with that obtained
from the FEM calculation. Evidently these two agree well in the transition state region. Certain
discrepancy occurs away from the transition state region, due to the lack of training data there;
nevertheless, those regions are irrelevant to the transition events.

We also computed the root-mean-square error (RMSE) and mean-absolute error (MAE) between
qθ and the FEM solution at the sampled 100 transition states. The results are reported in Table 1.
The errors are based on 10 independent computations. We observe that the numerical results are
insensitive to the number of hidden layers, but the accuracy improves for larger set of training data.
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Figure 2: Left: The green filled contours indicate the committor function qm computed using FEM at kBT =
10. Middle and right: The 1/2-isosurfaces (projected onto the (x1, x2) plane) of the committor function qθ
obtained using the neural network and that obtained from the FEM calculation at kBT = 10. The two panels
depict the numerical results using the 10-20-1 network (i.e. 1 hidden layer with 20 nodes; middle panel) and the
10-20-20-1 network (i.e. 2 hidden layers with 20 nodes on each layer; right panel), respectively. The discrete
points show the sampled 100 transition states.
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Figure 3: Left: Schematic representation of the alanine dipeptide (CH3-CONH-CHCH3 -CONH-CH3). Right:
The adiabatic energy landscape of alanine dipeptide, which is obtained by minimizing the potential energy of
the molecule with (φ, ψ) fixed. The red rectangle indicates the transition state region from earlier studies.

4.2 ALANINE DIPEPTIDE

In this example, we study the isomerization process of the alanine dipeptide in vacuum at T =
300K. The isomerization of alanine dipeptide has been the subject of several theoretical and com-
putational studies (Apostolakis et al., 1999; Bolhuis et al., 2000; Ma & Dinner, 2005; Ren et al.,
2005), therefore it serves as a good benchmark problem for the proposed method.

The molecule has a simple chemical structure, yet it exhibits some of the important features common
to biomolecules. Figure 3 shows the stick and ball representation of the molecule (left panel) and
its adiabatic energy landscape on the plane of the two backbone torsion angles φ and ψ. There
are two metastable conformers C7eq and Cax located at (−85◦, 75◦) and (72◦,−75◦), respectively.
Accordingly, the metastable sets A and B are chosen as

A = {x : |(φ(x), ψ(x))− C7eq| < 10◦} , B = {x : |(φ(x), ψ(x))− Cax| < 10◦} . (22)

Our goal is to compute the committor function and then sample the transition states at the temper-
ature T = 300K. To generate the training data, we raise the temperature to T ′ = 800K, and use
the parallel molecular dynamics package NAMD (Phillips et al., 2005) to simulate the Langevin dy-
namics of the molecule. We run 108 steps with the time step ∆t = 2 fs, and sample one data for
every 100 steps. Figure 4 shows the distribution of the sampled data points on the (φ, ψ) plane (right
panel). As a comparison, we also run the dynamics at the physical temperature T = 300K, and plot
the distribution of the sampled data (left panel). It is seen that at the temperature T = 300K, no
transition from C7eq to Cax is observed within the simulation time; consequently, no training data
is collected in the transition state region, the region of our interest. This demonstrate the benefit of
the importance sampling technique proposed in this work.

Next, we discuss feature engineering via collective variables. It is known that, very often the confor-
mational changes of bio-molecules can be adequately described by a few collective variables such
as torsion angles. Using this information, we design the first layer of our network to extract 9 such
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Figure 4: Distribution of the data sampled from the Langevin dynamics of alanine dipeptide at the temperature
T = 300K (left) and T ′ = 800K (right).

Figure 5: Distribution of committor values for the 100 states sampled on the 1/2-isosurface of qθ . The
committor values are computed from direct Monte Carlo simulation. Left: 66-18-30-30-1 network; Right:
66-18-20-20-20-1 network.

torsion angles from the molecule, whose sines and cosines are then fed into the hidden layers as
extracted features. Note that these include the four torsion angles identified in Maragliano et al.
(2006) as approximately adequate in describing the transition, but we do not a priori assume that we
know this precise information, and a redundant description is supplied.

The results shown below were obtained using two million data points sampled outside A and B at
T ′ = 800K. These data are equally split into the training and validation sets. We first train the
network at T ′ = 800K by setting the likelihood ratio equal to 1. Then we use the result as the
initial network to compute the committor function at T = 300K. The training of the network is
done by using the Adam optimizer with batch size 5× 105. The computation is terminated when the
validation error no longer decreases.

For this high-dimensional problem, we cannot afford to compute the committor function using the
FEM method as we did in the first example. In order to check the accuracy of the numerical results,
in particular, whether the 1/2-isocommittor surface really locates the transition states, we carry
out the constrained Langevin dynamics simulation on the 1/2-isocommittor surface at T = 300K.
Following the dynamics, we collect 100 states. The committor values of these states are computed
directly using the Monte Carlo method. Specifically, we generate 200 trajectories initiating from
each of states with random initial velocities and estimate the probabilities (i.e. committor values)
of the system reaching B before A (c.f. (4)). If adequate accuracy is achieved, we would expect
the computed probabilities to cluster around 1/2. Figure 5 shows the resulting distribution of the
committor values, which confirm the efficiency and accuracy of our method.

5 CONCLUSION

In this paper, we introduced a method of computing the committor function at low temperatures,
which characterizes rare transition events between metastable states. The main idea is to combine
deep learning with importance sampling and feature engineering in order to overcome the curse of
dimensionality associated with realistic systems and the scarcity of transition events at low tem-
peratures. Our method is demonstrated to be effective on a relatively simple example involving
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the rugged Mueller potential, as well as a more complex benchmark example of the alanine dipep-
tide molecule. This provides an alternative approach to study complex systems with rough energy
landscapes.
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