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Abstract

Importance sampling (IS) is a standard Monte Carlo (MC) tool to compute information
about random variables such as moments or quantiles with unknown distributions. IS
is asymptotically consistent as the number of MC samples, and hence deltas (particles)
that parameterize the density estimate, go to infinity. However, retaining infinitely many
particles is intractable. We propose a scheme for only keeping a finite representative subset
of particles and their augmented importance weights that is nearly consistent. To do so
in an online manner, we approximate importance sampling in two ways. First, we replace
the deltas by kernels, yielding kernel density estimates (KDEs). Second, we sequentially
project KDEs onto nearby lower-dimensional subspaces. We characterize the asymptotic
bias of this scheme as determined by a compression parameter and kernel bandwidth,
which yields a tunable tradeoff between consistency and memory. In experiments, we
observe a favorable tradeoff between memory and accuracy, providing for the first time
near-consistent compressions of arbitrary posterior distributions.

1. Introduction

Importance sampling is a MC method that addresses Bayesian inference in cases where
the distribution that relates observations to the hidden state is time-invariant (Tokdar
and Kass, 2010). More specifically, based upon independent samples from a proposal dis-
tribution, MC methods approximately compute expectations of arbitrary functions of the
unknown parameter via weighted samples generated from the proposal. Recently, use of
importance distributions to weight updates, e.g., coordinate descent (Allen-Zhu et al., 2016;
Csiba et al., 2015) or stochastic gradient descent (Borsos et al., 2018), have been developed.
Doing so yields faster deep network training (Johnson and Guestrin, 2018; Katharopoulos
and Fleuret, 2018) by weighting mini-batches (Hanzely and Richtárik, 2018). Furthermore,
in reinforcement learning (RL), an agent chooses actions according to a policy and then
updates the policy via rewards observed (Watkins and Dayan, 1992); however, this theo-
retically requires an inordinate amount of random actions to be chosen before reasonable
performance is learned (Tsitsiklis, 1994; Sutton et al., 2000), an issue known as the explore-
exploit tradeoff. To lessen its deleterious effect, exploratory actions may be chosen via an
importance distribution (Schaul et al., 2015) or policy updates may be chosen from previous
experience known to be safe (Precup et al., 2000).

Contributions. We propose a compression scheme that operates within importance
sampling, sequentially deciding which particles are statistically significant for the integral
estimation. To do so, we draw connections between proximal methods in optimization
(Rockafellar, 1976) and importance distribution updates: we view the empirical measure
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defined by importance sampling as carrying out a sequence of projections of un-normalized
empirical distributions onto subspaces of growing dimension. Then, we augment the sub-
space selection by replacing it by one that is nearby (according to some metric) but with
lower memory. These lower-memory subspaces are selected based on greedy compression
with a fixed budget parameter via matching pursuit (Pati et al., 1993). We combine this idea
with kernel smoothing of the empirical measure in order to exploit the fact that compact
spaces have finite covering numbers. Consequently, we have characterized the asymptotic
bias of this method as a tunable constant depending on the kernel bandwidth parameter and
a compression parameter. Experiments demonstrate that this approach yields an effective
tradeoff of consistency and memory for MC methods.

2. Elements of Importance Sampling

In Bayesian inference (Särkkä, 2013)[Ch. 7], we are interested in computing expectations

I(φ) = Ex[φ(x)
∣∣y] =

∫
x∈X

φ(x)p(x|y)dx (1)

on the basis of a set of available observations {yk}k≤K , where φ : Rp → R is an arbitrary
function, x is a random variable taking values in X ⊂ Rp which is typically interpreted as
the hidden parameter, and y is some observation process whose realizations yk are assumed
to be informative about parameter x. For example, φ(x) = x yields the computation of the
posterior mean, and φ(x) = xp denotes the p-th moment. In particular, define the posterior
distribution

p
(
x
∣∣ {yk}k≤K) =

p
(
{yk}k≤K

∣∣x) p (x)

p ({yk}k≤K)
. (2)

We seek to infer the posterior (2) with K data points {yk}k≤K available at the outset.
Even for this setting, estimating (2) has unbounded complexity (Li et al., 2005; Tokdar
and Kass, 2010) when the posterior is unknown. Thus, we prioritize efficient estimates of
(2) from an online stream of samples from an importance distribution to be subsequently
defined. Begin by defining posterior q(x) and un-normalized posterior q̃(x): q(x) = q̃(x)/Z,
and q̃(x):=q̃(x

∣∣y)=p
(
{yk}k≤K

∣∣x) p (x) is a non-negative function proportional to poste-
rior q(x|y):=q(x) = p

(
x
∣∣y)1 that integrates to normalizing constant Z:=p ({yk}k≤K). In

Monte Carlo, we approximate (1) by sampling. Hypothetically, we could draw N (not nec-
essarily equal to K) samples x(n) ∼ q(x) and estimate the expectation in (1) by the sample
average Eq(x)[φ(x)] ≈ 1

N

∑N
n=1 φ(x(n)), but typically it is difficult to obtain samples x(n)

from posterior q(x) of the hidden state. To circumvent this issue, define the importance
distribution π(x)2 with the same (or larger) support as true density q(x), and multiply and
divide by π(x) inside the integral (1):∫

x∈X
φ(x)q(x)dx =

∫
x∈X

φ(x)q(x)

π(x)
π(x)dx, (3)

1. Note that q(x) and q̃(x) depend on the data {yk}k≤K , although we drop the dependence to ease notation.
2. In general, the importance distribution could be defined over any observation process π(x

∣∣ {yk}), not
necessarily associated with time indices k = 1, . . . ,K. We define it this way for simplicity.

2
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where the ratio q(x)/π(x) is the Radon-Nikodym derivative, or unnormalized density, of
the target q with respect to the proposal π. Then, rather than requiring samples from true
posterior x(n) ∼ q(x), one may sample from importance distribution x(n) ∼ π(x), n =
1, ..., N , and approximate (1) as

ÎN (φ) :=
1

N

N∑
n=1

q(x(n))

π(x(n))
φ(x(n)) =

1

NZ

N∑
n=1

g(xn)φ(x(n)), where g(x(n)) :=
q̃(x(n))

π(x(n))
(4)

are the importance weights. We note that in practice, we cannot calculate q(x(n)) since the
target distribution q(x) is unknown and hence we calculate it using Bayes rule as follows:

q(x(n)) =
p
(
{yk}k≤K

∣∣x(n)
)
p
(
x(n)

)∫
p
(
{yk}k≤K

∣∣x) p (x) dx
. (5)

Substituting (5) into (3), we obtain g(x(n)) :=
p
(
{yk}k≤K

∣∣x(n)
)
p(x(n))

π(x(n))
. Note that (4) is

unbiased, i.e., Eπ(x)[IN (φ)] = Eq(x)[φ(x)] and consistent with N . Moreover, its variance
depends on how well the importance density π(x) approximates the posterior (Elvira et al.,
2019). Example priors and measurement models include Gaussian, Student’s t, and Uni-
form. Which one is appropriate depends on the context (Särkkä, 2013). The normalizing
constant Z can be also estimated with IS as Ẑ := 1

N

∑N
n=1 g(x(n)). Hence, we can replace

Z in Eq. (4) by Ẑ. Then, the new estimator is given by

IN (φ) :=
1

NẐ

N∑
n=1

g(x(n))φ(x(n)) =
1∑N

j=1 g(x(j))

N∑
n=1

g(xn)φ(x(n)) =
N∑
n=1

wnφ(x(n)), (6)

where the “self-normalized” w̄(n) weights are defined w̄(n) := g(x(n))∑n
u=1 g(x

(u))
. The estimator

IN (φ) is the self-normalized importance sampling (SNIS) estimator. It is important to
note that the estimator IN (φ) can be viewed as integrating a function φ with respect to

distribution µN defined as µN (x) :=
N∑
n=1

w̄(n)δx(n) , which is called the particle approximation

of q where δx(n) denotes the discrete Dirac delta (indicator) which is 1 if x = x(n) and null
otherwise. This delta expansion is one reason importance sampling is also referred to as
histogram filters, as they quantify weighted counts of samples across the space.

As stated in (Agapiou et al., 2017), for consistent estimates of (1), we require that
N , the number of samples xn generated from the importance distribution, and hence the
parameterization of the importance distribution, grows unbounded as it accumulates every
particle previously generated, as N → ∞. We are interested in allowing N , the number
of particles, to become large (possibly infinite), while the importance distribution’s com-
plexity is moderate, thus overcoming an instance of the curse of dimensionality in Monte
Carlo methods. Next, we proposed a compressed kernelized importance sampling algorithm
summarized in Algorithm 1.

3



Algorithm 1 Compressed Kernelized IS (CKIS)

Require: Observation model p(y
∣∣x) and prior p(x) or target distribution q(x) (if known), impor-

tance distribution π(x), Observation collection {yk}Kk=1

for n = 0, 1, 2, . . . , N do
Simulate one sample from importance dist. x(n) ∼ π(x)

Compute the importance weight g(x(n)) := q̃(x(n))
π(x(n))

Normalize weights w(n) as follows:

w̄(j) :=
w(j)∑n
u=1 w

(u)
znw

(j), j = 1, ..., n. , where zn =

n∑
u=1

w(u)

Update kernel density via last sample & weight

µ̂n = µ̃n−1 + g(x(n))κx(n)(x)

Revise dictionary D̃n=[Dn−1; x(n)] and importance weights gn=[gn−1; g(x(n))]
Compress kernel density estimate sequence as

(µ̃n,Dn,gn) = KOMP(µ̂n, D̃n, g̃n, εn)

Normalized weights to ensure valid probability measure w̃n

Estimate the expectation as În =
∑|Dn|
u=1 w̄

(u)φ(x(u))
end for

3. Balancing Consistency and Memory

In this section, we establish conditions under which the asymptotic bias is proportional to
the kernel bandwidth and the compression parameter using posterior distributions given by
Algorithm 1. The results permits characterizing the bias of Algorithm 1 given next.

Theorem 1:
Under Assumptions 1-3 in (Koppel et al., 2019), the estimator of Algorithm 1 exhibits

posterior contraction:∣∣∣ sup
|φ|≤1

(
E[ÎN (φ)− I(φ)]

) ∣∣∣ ≤ O(ε+ σ2κh
2 +

1√
Nh

+O
(

1√
N

)
+ h3

)
+

24

N
ρ, (7)

and hence, as N → ∞, is consistent when compression budget and bandwidth go to null
ε, h→ 0.

Theorem 1 (proof in (Koppel et al., 2019)) establishes that the compressed kernelized im-
portance sampling scheme proposed in Algorithm 1 is nearly asymptotically consistent, and
can be made arbitrarily close to exact consistency by sending the bandwidth h and com-
pression budget ε to null. However, when these parameters are fixed positive constants,
they provide a tunable tradeoff between bias and memory.

Theorem 2:
Denote as µ̂n the empirical distribution defined by Algorithm 1 whose model order is
Mn after n particles generated from importance density π(x). Under some Assumptions
(detailed in (Koppel et al., 2019)), for compact feature space X and bounded importance
weights g(x(n)), Mn <∞ for all n.
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4. Experiments
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Figure 1: Simulation results for Algorithm 1 run with Gaussian kernel (h = 0.01) and compression
budget ε = 3.5 for the problem (8). The memory-reduction scheme nearly preserves statistical
consistency, while yielding reasonable complexity.

In this section, we conduct a simple numerical experiment to demonstrate the efficacy of
the proposed algorithm in terms of balancing model parsimony and statistical consistency.
We consider the problem of estimating the expected value of function φ(x) with the target
q(x) and the proposal π(x) given by

φ(x)=2 sin

(
2π

3x

)
, q(x)=

1√
2π

exp

(
−(x− 1)2

2

)
, π(x)=

1√
4π

exp

(
−(x− 1)2

4

)
, (8)

to demonstrate that generic Monte Carlo integration allows one to track generic quantities
of random variables that are difficult to compute under usual probabilistic hypotheses.
Fig. 1a shows the un-normalized integral approximation error for Algorithms with and
without compression, which are close, and the magnitude of the difference depends on the
choice of compression budget. This trend is corroborated in the evolution of (normalized)
integral estimates in Fig. 1b: very little error is incurred by kernel smoothing and memory-
reduction. The actual magnitude of the error relative to the number of particles generated
is displayed in Fig. 1c: observe that the error settles on the order of 10−3. In Fig. 1d,
we display the number of particles retained by Algorithm 1, which stabilizes to around 56,
whereas the complexity of the empirical measure without compression grows linearly with
sample index n, which noticeably grows unbounded.
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Zeyuan Allen-Zhu, Zheng Qu, Peter Richtárik, and Yang Yuan. Even faster accelerated
coordinate descent using non-uniform sampling. In International Conference on Machine
Learning, pages 1110–1119, 2016.

Zalán Borsos, Andreas Krause, and Kfir Y Levy. Online variance reduction for stochastic
optimization. In Proceedings of the 31st Conference On Learning Theory, volume 75,
pages 324–357. PMLR, 2018.
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