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Abstract. In this deliberately provocative position paper, we claim that ten years
into Linked Data there are still (too?) many unresolved challenges towards arriv-
ing at a truly machine-readable and decentralized Web of data. We take a deeper
look at the biomedical domain—currently, one of the most promising “adopters”
of Linked Data—if we believe the ever-present “LOD cloud” diagram.’ Herein,
we try to highlight and exemplify key technical and non-technical challenges to
the success of LOD, and we outline potential solution strategies. We hope that this
paper will serve as a discussion basis for a fresh start towards more actionable,
truly decentralized Linked Data, and as a call to the community to join forces.

1 Decentralisation Myths on the Semantic Web

Let us start with a rant. The Semantic Web is a story of failed promises with regards to
decentralization:

— We had hopes (as a community) to revolutionize Social Networks in a way that
every data subject owns and controls their social network data in decentralized
FOAF [11] files published in their personal Web space — we got siloed, centralized
social networks (Facebook, LinkedIn). Attempts to re-decentralize the Social Web,
for instance, through the work of the W3C Social Web WG* appear not to have
found major adoption at a level comparable with these siloed sites.

— We envisioned a decentralized network of ontologies on the Web that would
enable smart agents to seamlessly talk to each other, and that would enable easy
integration of data by following the guiding principles of ontology engineering and
Gruber’s often cited vision of ontologies as shared conceptualizations [29].° While

3 The Linking Open Data cloud diagram, available at http:/lod-cloud.net/, which has been reg-
ularly updated since 2007 by Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja Jentzsch
and Richard Cyganiak, with its latest version having been created in April 2018 [1].

* https://www.w3.org/wiki/Socialwg

> While there is some hope left, in ActivePub being picked up by several implementations, cf.

https://en.wikipedia.org/w/index.php?title=ActivityPub&oldid=84156883 1#Implementations,
reversing the network effects that have drawn a critical mass of users to these siloed sites
seems still far away.

or, as Dan Brickley, one of he inventors of FOAF stated slightly sarcastically in personal com-
munication: “we took one useful feature of RDF/RDFS (fine grained vocabulary composition)
and elevated it to a cult-like holy law, to the extent that anyone who created a useful RDF
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there are indeed certain areas in which ontologies are used to share conceptual-
izations of a domain, mostly these are insular efforts that do the job well for a
particular community. However, on Web scale, ontology and vocabulary reuse is
still extremely limited. Instead, we got a main central schema (schema.org), and
fast-growing community projects like Wikidata [63] refusing to buy into the need
for re-using terms from other ontologies.’

— We put a lot of effort into formal semantics and clean axiomatization of those
ontologies — we got logical inconsistency.® Whereas, serious attempts to apply such
reasoning about Web Data in the wild have either had to restrict themselves to
lightweight ontologies or have not been further developed in the past five years,
with (a) the semantics of OWL [58] and even parts of RDF(S) [10] turning out to
be too hard to grasp for normal Web users and developers to survive in the World
Wild Web [27,44]; and (b) the DL community mostly having turned their back to
seriously taking the challenge of decentralized applications at Web scale.

— Berners-Lee et al. in their original Semantic Web article [5] promised Web-scale
automation: automated calendar synchronisation, personalised health care assis-
tance, home automation — some of these applications are a reality now (Ama-
zon Alexa’s home control, or Google’s and Apple’s widely used services), but
rather than relying on a decentralized Semantic Web, use single companies’ cu-
rated knowledge bases — also now called “Knowledge Graphs” — that enhance these
companies’ services’ backend systems.

— More specifically, we see knowledge graphs evolve and embrace them as a success
story of the Semantic Web. Yet a good definition of what a Knowledge Graph is and
what differentiates it from an “ontology” is still to be provided — apart from the sin-
gle distinguishing feature that all known examples of knowledge graphs (Google’s,
Bing’s, and Yahoo’s knowledge graphs as well as their open pendants DBpedia and
Wikidata) are NOT decentralized.

So, here we are... however, there is one lighthouse project that clearly has imple-
mented the vision of a decentralized Semantic Web, this single project that we, as a
community, hinge upon and tend to accept as a clear success to wipe away all the failed
promises mentioned above is: Linked Data [7]. The promise to be able to publish struc-
tured data in a truly decentralized fashion, with a couple of simple principles to enable
the automatic retrieval and integration by just “following your nose”, i.e., dereferenc-
ing HTTP links. This principle is the most powerful promise that filled the community
with new enthusiasm through the so-called “LOD cloud”, cf. Fig. 1. If we measure the

vocabulary and wanted to keep improving it, found themselves pushed instead into combining
it with dozens of other half-finished, poorly documented efforts that weren’t really designed
to fit together nicely.”

7 The main reason for Wikidata not to prescribe existing vocabularies was to leave the commu-
nity freedom to link and use what they deem useful within one consistent scheme/namespace:
one of the reasons was to avoid the needed buy-in to existing ontologies, the popularity of
which or agreement about could shift over time. Therefore, they “left it to the community
to choose a stronger semantics - like OWL - or a weaker semantic - like SKOS[46] or not”
(personal communication Denny Vrandecié).

8 Even within DBpedia [48,6), the central crystalization point of the LOD cloud [8].



Fig. 1. The latest “LOD cloud” diagram [1], from April 2018, counting 1,184 datasets (left), and
the significant portion of life-sciences and biomedical data amongst it, with 339 datasets (right).

number of datasets published according to the four linked data principles [4] and that
link to each other, we find evidence of growth and prosperity (cf. Fig. 2), and hope to
finally make the vision of a decentralized Web of data come true. Meanwhile, indeed
this “cloud” contains over 1,184 datasets, which should be considered good news.

However, as we will discuss in the present paper, there are still serious barriers
to consume and use this data. Thus, we would like to take a step back and assess the
situation. We will identify some serious challenges in consuming and using Linked Data
from the “cloud”, with a deeper look at the biomedical domain. Then, we will question
the usefulness of the current LOD cloud, and, finally, we call for a more principled
restart and for more collaboration and decentralization in the community itself.

Along these lines, in the remainder of this paper, we start with some background
on the genesis of the current LOD cloud in Section 2. We will then argue why the
biomedical domain has had such a strong interest in ontologies and Linked Data, and
is, therefore, well-suited as a show case to highlight the most urging challenges in Sec-
tion 3. Based on Linked Data from the biomedical domain, we will then highlight five
perceived main challenges we deem important to be addressed to make Linked Data
more usable and, therefore, useful. These challenges will be presented — by examples
and discussing their implications — in the course of Section 4. Finally, we conclude with
a call to collaboratively and openly address these challenges as a community in order
to (re-)decentralize the Semantic Web again in Section 5.

2 Background: The genesis of the LOD Cloud

The creation of a complete Web index is a never-ending story. Since the early days
of the Linked Data Web, several attempts have been created and failed to sustain ex-
haustive Linked Data Search engines, such as Sindice [47], SWSE [34], Watson [17],
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Fig. 2. The growth of the “LOD cloud” in number of datasets seems to indicate steady, while not
rapid or even overwhelming adoption; we still have to view this as opposed to the probably much
more rapid growth of other parts of the Web in the same time period [49]

Swoogle [22], just to name a few. Typically based on bespoke, crawler-based archi-
tectures, these search engines relied on either (i) collecting data published under the
Linked Data principles and particularly applying the “follow-your-nose” approach en-
abled through these principles (i.e., find more Linked Data by dereferencing links ap-
pearing in Linked Data), and sometimes (ii) relying on “registry” or “pingback” ser-
vices to collect and advertise linked data assets, such as Semantic Pingback [59]. In
the meantime, unfortunately all of these search engines have been discontinued, and we
are not aware of any active, public Semantic Pingback services. As more recent efforts,
the LOD-Laundromat project [3] offers an URL lookup service’ generated from/for
the (accessible parts of) the LOD cloud, and also the LOD Cache by OpenLinkSW!'°
remain available for LOD entity lookups and SPARQL queries, although it does not
provide a detailed specification of which datasets it indexes.

Both of these more recent efforts though, claim to refer to datasets in the LOD
cloud: the LOD cloud diagram [1] took a different approach, that is, it has been gener-
ated from metadata provided by the community at a (CKAN-driven) Open Data portal,
namely http://databub.io. Interestingly, this is only confirmed for its prior version in Au-
gust 2017, as references to datahub.io have been removed from the current, latest LOD
diagram version from April 2018; also note that datahub.io has moved in the meantime
and the old” LOD-cloud dataset metadata descriptions are only available via the sug-
gestively “deprecated” URL https://old.datahub.io/. We thus have to conclude that the
LOD-cloud is suffering from starvation as well, and the current noble effort by John
McCrae et al. (the creators and maintainers of the LOD cloud diagram) seems to be
likewise at risk.

? http://lotus.lodlaundromat.org/
19 Jod.openlinksw.com/



Still, the LOD-cloud at lod-cloud.net and its metadata at datahub.io seem to remain
the single most popular entry point to Semantic Web data (with the exception of domain
specific portals such as Bioportal [55], which we will discuss further in the next section).
The metadata the LOD cloud relies on, comprises metadata fields such as:

— tags, where as a pre-filter, only those datasets are included in the cloud that have
the tag “lod”,

— link descriptions, i.e. declarations of numbers of links to other datasets,

— resources, thatis, URLSs to access the dataset in the form of e.g. dumps, as SPARQL
endpoints, or semantic descriptions (e.g. in the form of a Void [2] descriptions) or
an XML sitemap.

Apart from the LOD cloud, a similar effort exists to collect and register Linked
Data vocabularies and document their interconnections in the Linked Open Vocabu-
laries (LOV) project by Vandenbussche et al. [60]. As opposed to the purely meta-
data based approach of the LOD cloud collection, LOV relies on curation and quality
checks, verification of parsable vocabulary descriptions, etc. We note that the distinc-
tion between Linked “vocabularies” and “data” is not always straightforward, with for
instance the entries of the BioPortal [55], a registry of ontologies (which could by def-
inition be considered as well as vocabularies), being (an in fact significant) part of the
LOD cloud, but not being present in LOV.

3 Linked Data in the Biomedical Domain

The biomedical domain is one of the earliest adopters of Semantic Web technologies
and Linked Data principles for representing, publishing, linking and querying data on
the Web. This adoption is starkly obvious in the well-known LOD cloud diagram, in
which the biomedical datasets make up the largest portion of the cloud (cf. Fig. 1). We
would expect to see a plethora of applications of LOD in biomedicine, however, they
are conspicuously missing. In this section, we briefly describe the LOD adoption in
major biomedical projects, and we discuss the challenges that make it very difficult to
use LOD effectively in biomedicine with the help of a use case. In the next section,
we will generalize these challenges and articulate our thoughts about potential steps to
alleviate these issues.

3.1 Linked Data Adoption in Biomedicine

Several key biomedical initiatives use Semantic Web technologies for the integration
of diverse datasets in fields, such as, neurosciences (e.g., NeuroCommons [51]), cancer
research (e.g., Granatum and Linked TCGA [30,54]), and drug discovery (e.g., Linking
Open Drug Data [35]). One of the most notable open-source projects, Bio2RDF, uses
Semantic Web technologies to build and provide the largest network of Linked Open
Data for the Life Sciences (LSLOD) from a diverse set of heterogeneously formatted
sources obtained from multiple data providers [14]. The Bio2RDF Release 3 consists of
around ~ 11 billion triples generated from 35 important biomedical data sources, such
as, DrugBank, PharmGKB and KEGG [14].



Data providers in the domain themselves, are now embracing Semantic Web tech-
nologies and started providing data dumps in RDF as alternative downloads. Some even
incorporate SPARQL functionality or standard enpoints in their web portals. For exam-
ple, the European Bioinformatics Institute (EBI) provides SPARQL access to their pro-
prietary databases (e.g., UniProt, ChEMBL, and Reactome) in the EBI-RDF platform
[36]. The National Center for Biological Investigation (NCBI) publishes the entire Pub-
Chem data repository [9] of biological assays and activities of compounds, as RDF data
dumps [26]. In February 2014, the National Library of Medicine’s (NLM) Linked Data
Infrastructure Working Group released an RDF version of the Medical Subject Head-
ings (MeSH) taxonomy [13]. All these initiatives are highly promising and illustrative
for the LOD adoption.

3.2 Challenges in Using Linked Data for Biomedical Applications

So far, significant resources have been invested in publishing biomedical data on the
LOD Cloud, however, yet to the best of our knowledge we did not find any major appli-
cations that use multiple Linked Data sources to generate new insights, or to discover
novel implicit associations serendipitously. In most cases, the publishers mention the
“potential” use cases achieved by publishing and querying biomedical data on the LOD
cloud in a controlled environment [54,38]. However, for most biomedical researchers
(and autonomous agents) querying against the LOD sources in the wild does not bear
fruitful results (or any useful results in most cases). We have identified the most impor-
tant show-stoppers for using LD in biomedicine as:

1. The availability of datasets (either as RDF dumps, or as functioning SPARQL
endpoints with significant uptime and latency);

2. The semantic heterogeneity among datasets (correct reuse of existing vocabularies
and ontologies, as well as existing entity URIs); and

3. The steep learning curve for understanding and using LD and Semantic Web tech-
nologies for biomedical researchers on the one hand as opposed to the steep learn-
ing curve for Semantic Web researchers to understand published biomedical data
on the other hand.

We will further describe these challenges with the help of a use case for which
Linked Data would be a natural fit, however impossible to use with the current state of
the LOD.

Use Case: Drug Repurposing. According to a recent study, drug discovery costs have
exploded. It now costs $2.87 billion (in 2013 dollars) for a bio-pharma company to re-
search and sell a new drug, and these costs are bound to increase exponentially [21]. To
mitigate the costs of drug discovery, researchers have started looking for novel uses of
existing drugs, often called drug repurposing [57]. Once a drug is released in the market
after clinical trials, federal regulators monitor the prevalence of adverse drug reactions
(ADR) in patients who are administered the particular drug, often called pharmacovig-
ilance or drug safety. Adverse drug reactions may not always be detected during the



clinical trials, and ADRs often manifest in patients who are prescribed multiple con-
comitant drugs that interact with each other [39].

For biomedical research pertaining to drug discovery, drug repurposing, and drug
safety, it is often necessary to retrieve and integrate all data and knowledge pertaining to
a given DRUG entity, and provide an aggregated summary to the biomedical researcher
(e.g., drug—protein target interactions, publications that mention drugs and their adverse
reactions, downstream drug targets located in biological pathways, assays that test the
binding activity of the “drug active ingredient”).

To address this problem, researchers have used conventional methods of data inte-
gration: download and process the data in varied formats (CSV, XML, MySQL databases),
reconcile entities, and then publish the systems pharmacology network [31,43]. For ex-
ample, Himmelstein, et al. [31] created a systems pharmacology network composed of
different biological entities (drugs, proteins, pathways, diseases) using a common data
model by integrating 29 different data and knowledge sources, manually. However, in
an ideal world and LSLOD Cloud, such a systems pharmacology network should just
be easily created by using a federated SPARQL CONSTRUCT query. Indeed, most of
these 29 sources are already available on the LSLOD Cloud, and should be query-able
according to the LOD Cloud Diagram.

Challenges. Unfortunately, the current state of the LSLOD Cloud (and by extrapo-
lating, the LOD Cloud) is not suitable for achieving seamless integration of data and
knowledge from multiple sources. We detail further the three challenges we mentioned
before.

The accessibility and availability of LSLOD sources as RDF dumps or SPARQL
endpoints are one of the major reasons why the LSLOD cloud cannot be queried and
consumed by biomedical researchers. We will discuss these issues in the Technical
Challenges section below in more detail. To give some examples from biomedicine:
even though the SPARQL endpoint of BioPortal (http://sparql.bioontology.org/) is mostly
available, it has not been updated in several years. Bio2RDF dumps are available only
via a Javascript-based page (http://download.bio2rdf.org/#/) that cannot be easily crawled
by machines (without, for example, using a headless browser interpreting the Javascript).
The liveliness of SPARQL endpoints depends heavily on the continuing support and in-
terest of their maintainers. Once the main maintainer moves on from the project, often,
the SPARQL endpoints are not updated anymore, and ultimately, they stop working.
Just to give a few example of such defunct biomedical datasets: the DERI HCLS work-
bench (http://hcls.deri.org:8080/openrdf-sesame/repositories/), the SIDER-Side Effect
Resource (http://wifo5-03.informatik.uni-mannheim.de/sider/), the STITCH-Chemical-
Protein Interactions dataset (http://wifo5-03.informatik.uni-mannheim.de/stitch/), and
the list can go on much longer.

The semantic heterogeneity of LSLOD is another major issue for its use within
biomedical applications. Automated traversal across datasets or integration work only
if the datasets are linked using the same identifiers for the same terms consistently.
While this might seem like a trivial requirement to satisfy, it is not what we find in
practice. For example, rather than using common vocabularies (e.g., from the LOV or
biomedical ontologies), data publishers use their own vocabularies to generate RDF



data (e.g., they use different URIs for the DRUG class). Even worse, publishers reuse
inconsistently (and often, incorrectly) the representations of URIs and IRIs for names-
paces. For example, we found the following UniProt URI representations in different
datasets:

- http://purl.uniprot.org/uniprot/

- http://bio2rdf.org/uniprot:

- http://purl.obolibrary.org/obo/UniProt:

- http://identifiers.org/uniprot/

- http://bioconto.de/sbml.owl#Uniprot:

All these URI prefixes are meant to refer to the same UniProt identifiers, e.g. Q9UJX6.
An application developer unaware of all these representations within different datasets
would have a hard time using data from different sources. This issue creates significant
burden on the side of application developers who query linked data (i.e., link traver-
sal/conventional query federation methods will just not work across these sources). This
“intent for reuse” is also present across biomedical ontologies — we have documented
all these cases in Kamdar, et al. [40,42].11.

Many biomedical projects had to address the semantic heterogeneity problem in or-
der to build applications. The most common solution is to use warehousing in which all
data is transformed under a common schema using a uniform set of notations. Projects,
such as, OpenPhacts [64], ReDrugs [45], DisQover!? De Witte et al. [18] use such a
warehousing approach, and they have been quite popular for developing biomedical
applications using Semantic Web technologies. However, all the respective projects re-
quire a lot of centralization and maintenance, and they also need to be updated when
the underlying content changes. Such a high effort requires significant resources and
therefore this solution can only be implemented as part of a consortium of companies.

Essentially, these approaches enforce our view that decentralization is not possible
in the current state of the LOD Cloud (where for instance, as we will later discuss,
neither versioning nor accessability can be monitored easily, nor the ownership or re-use
of certain namespace prefixes or identifier schemes is in any way regulated or findable,
which would be prerequisites).

Conventional query federation methods (e.g., FedX [56], SPLENDID [28]) are of-
ten evaluated as closed-box systems (i.e., the datasets are refined and deployed lo-
cally and known), and are never evaluated in the wild [53,52]. To give our reader
an idea, to retrieve and integrate all drug—protein interactions from 4 sources on the
LSLOD Cloud—which should be a straightforward task—will require a complex fed-
erated query with > 20 triple patterns (not considering the inconsistent URI representa-
tions of entities) [39]. Compiling such a complex query is not only impossible for most
biomedical researchers, but also difficult for most computer scientists, leaving alone the
executability on SPARQL endpoints that —if available— typically impose strict limits
and easily run into timeouts on complex queries. Trying to generate a systems pharma-
cology network as presented by Himmelstein et al. [31] using query federation methods
is almost impossible with the current LSLOD.

' We also present these discrepancies visually at: http://onto-apps.stanford.edu/lslodminer
12 DisQover uses federation in the sense that all data sources are first transformed under the
common schema and notations, and then they are divided into different endpoints.



The steep learning curve in understanding and using LD and Semantic Web tech-
nologies is another major impediment to the effective use of LD in biomedicine. Data
publishers lack tools and guidelines to help them discover and reuse existing content in
a correct way, hence reducing the risk of semantic heterogeneity. Our recent study on
the analysis of 4 years of BioPortal usage logs found that most users have not explored
or queried a large proportion of most ontologies (especially lower levels) either through
the BioPortal web interface, or through the API [41]. BioPortal ontologies comprise of
a major portion of the LOD Cloud'3. If biomedical users never explore or query onto-
logical content in BioPortal, how will they reuse this ontological content? It is proba-
bly naive to expect that biomedical researchers will formulate sophisticated SPARQL
queries, without minimal automated support, over heterogeneous LOD sources that are
rarely updated (and in many cases, do not have available RDF dumps or functioning
SPARQL endpoints) for their data and knowledge integration needs.

So, where does this leave us? We have seen a lot of resources being put into pub-
lishing and using Linked Data in biomedicine, but a “killer app” is still missing. We
tried to explain in this section our (often frustrating) experiences with using LD for
building biomedical applications. Similarly to the projects that chose in the end to use
a centralized warehousing approach, we found the current state of the LSLOD to be
largely insufficient to sustain any real application, plus if a central warehouse is used,
the use and benefits of RDF and Linked Data over conventional databases and ware-
houses technologies, where more trained people are available, remain questionable.

4 Key Challenges in usage and adoption of Linked Data

Reasons for LOD not yet having reached its full potential are manifold and not simple,
and we do not claim to be exhaustive herein; yet, following on from the aforemen-
tioned challenges in the biomedical domain, we would like to provide a list from the
experiences of the authors to help explain some major challenges in the current state of
affairs around LOD. We have chosen to divide reasons into technical and non-technical
underlying challenges.

4.1 Technical challenges

As already hinted in Section 2, the current model of collection of LOD by meta-data
published once-off by the creators of datasets has lead to mainly a nice drawing, rather
than making Linked Data accessible and usable. In fact, we see the following major
challenges when attempting to use Linked Data, parts of which we underpin by some
preliminary analyses on the metadata from old.datahub.io; we are obviously not the
first ones to recognize these as such, wherefore we will accompany them with similar
analyses and references where available. Yet, we focus on challenges which we believe
to need a solution first, before we can dream about federated queries or optimizing query
answering over linked data (which is what we do mostly in our research papers now —
without practical applications over several datasets in real existing Linked Data).

13 Obviously these ontologies are also available through other portals that may be used by most
biomedical researchers, however it only strengthens our point that the LOD Cloud diagram has
resources that are never accessed.



query conformant responses
ASK {?S 7P 70 } 195 (true) + 7 (false)
ASK {} 150 (true) + 7 (false)
ASK {GRAPH ?G {?S 7P ?0 }} 192 (true) + 9 (false)
ASK {GRAPH G {}} 146 (true) + 11 (false)
SELECT (count(*) AS ?C) WHERE {?S ?P ?0 } 143 (137 non-zero)
SELECT (count(*) AS ?C) WHERE { GRAPH ?G { ?S ?P 20 }}|134 (132 non-zero)

Table 1. SPARQL protocol conformant responses out of the 251 of overall 440 endpoints that
responded at all.

Availability and resource limits. As a result of a recent analysis we did over the
metadata on datahub.io, we unfortunately confirmed a very low level of availability of
resources, which was already identified as one of the main challenges in the biomedical
domain: among the mentioned 5435 resources in the 1281 "LOD”-tagged datasets on
datahub.io, there are only 1917 resources URLs that could be dereferenced. Among all
the datasets only 646 dataset descriptions contain such dereferenceable (not counting
links to PDF, CSV, TSV files) resource URLs; i.e., almost half, 635 dataset descriptions
contain no dereferenceable resource URLs that would point to data at all. We applied
a best effort here, that is dereferencing both HTTP and FTP URLs with a timeout of
10 seconds awaiting a potential response, counting all 2xx return codes for a HEAD
request for HTTP (and following redirects), or, resp. LIST requests for the containing
directory for FTP as positives. This confirms the similar experiments by Debattista in
his thesis [19, Section 9] and in a more recent article [20]; many LOD cloud datasets
are indeed not even being mentioned in his quality assessment framework'#, which only
covers 130 accessible datasets.

We note that even a best effort of availability could be viewed as optimistic, if we
look in a finer grained analysis of the different different formats in these URLsS, cf.
Figure 3, e.g. concerning SPARQL endpoints: indeed our small experiment reconfirms
that, among the mentioned 444 potential SPARQL endpoint URLs in metadata, only
252 responded at all, and only 195 responded “true” to a simple ASK {?S 2P 20}
query.' Table 1 shows the numbers for responding endpoint (without timeouts) to a set
of test queries, which seem to indicate a considerable number of non-responding and
also non-SPARQL-protocol-conformant endpoints.

Towards a solution path: As a part of a solution path, we view regular monitoring
frameworks like SPARQLES [61],'®, or the Dynamic Linked Data Observatory[37],"”
as essential, which both (i) assess which parts of the LOD cloud are still “alive” and
also (ii) could notify the providers and publishers about potential problems. Similarly,

' http://jerdeb.github.io/lodqa

15 Also, some endpoint implementations returned non-SPARQL-protocol-conformant results
such as http://identifiers.org/services/sparql which returns “false”” on above ask query, although
clearly its default graph is not empty.

16 http://sparqles.ai.wu.ac.at/

17 http://km.aifb kit.edu/projects/dyldo/
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URL type guessed by suffix and format:
2500

2064 2079
2000

1500
1000

00 444

438
299
111
0 |

spargl rdf html/xm| other (zipped)  other (unknown) Non-RDF
(pdf,csv,tsv)

Fig. 3. types of URLs in the “LOD cloud” guessed by declared metadata format and suffixes.

Debeattista’s fine-grained quality framework mentioned above, aimed originally at re-
assessing and testing LOD data regularly could be a valid starting point, but seems to
not have been updated since 2016. The same applies for the LOD Laundromat crawl,
which is not updated on a regularly basis.

Outdated, as well as non-available data is worthless and the frustrating experiences
of not finding half the resources when trying to retrieve Linked Data, rather jeopardizes
the LOD initiative than inviting externals to our own close community to buy in to the
ideas of Linked Data. That is, the LOD cloud itself needs to be “live” and providers that
do not comply with minimal availability over a certain duration should be notified and
removed. Also, notoriously outdated, stale data should not be listed.

Size and Scalability. The situation in terms of dataset sizes have changed dramatically
since the early days of semantic search engines, where relatively small amounts of
triples could be feasibly managed in a single triple store: few datasets generated from
big databases reach dramatic sizes. For instance, the latest edition of DBpedia (2016-
10), consists of more than 13 billion triples, Wikidata comprises +5B triples and the
whole LOD-Laundromat project, which attempts to process and cleanse the accessible
part of the LOD cloud, reports at the moment 38.8b indexed triples.

We also note that, to the best of our knowledge, current triple stores on commodity
servers do not scale up to more than 50b triples, apart from lab experiments on hardware
probably not yet available to most research labs in our community: AllegroGraph and
Oracle triple stores have reported dealing with up to 1 trillion triples.'®

18 f. https://www.w3.org/wiki/LargeTripleStores, last retrieved 2018-05-16, where we note that
these experiments have been conducted on synthetic LUBM data, which does not necessarily
reflect the characteristics of Linked Data “in the wild”.
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We already see sizes of triples reported on the LOD cloud diverging from what a
simple SELECT (COUNT (%) AS ?C) WHERE {?S ?P 20} to their endpoint
reports in various example, just to name some: the Pubmed-Bio2RDF endpoint !, re-
ports 1.37b triples on the query above,”’ whereas the dump?®' reports 1.8b triples. Yet
again, on a side note, different to both of that, the metadata at datahub.io reports 5b
triples for the same dataset,??, where however it cannot be easily determined in how
far these numbers refer to different versions or subsets of the dataset. Likewise, Wiki-
data’s query service responds to the same query a number of 5.2b triples, which is
significantly lower than the 5.7b triples we retrieved from the dump mentioned above.

In addition to that, it is mostly impossible to indeed retrieve all triples from a
SPARQL endpoint, due to result size restrictions that many endpoints apply, either in
the form of timeouts or only returning a certain maximum number of results/triples. For
details, see also [12], which discusses some of these restrictions, and also explains, why
in general they cannot be trivially circumvented, e.g. by “paging” results with LIMIT
and OFFSET. As another example of related problems, Uniprot, reported to have +39b
triples served on its public endpoint, cf. Footnote 18, times out on the simple query to
count its triples mentioned above.

Another potential challenge in terms of size and scalability is the amount of dupli-
cates in current dumps: as an example, the PubMed RDF dump from Bio2RDF we men-
tioned above, cf. Footnote 21, consists of +7.22b nquads spread over 1151 dump files.
A lot of triples are actually duplicated across these dump files from the same dataset;
downloading all of these and de-duplicating them locally both wastes bandwidth and
makes processing such dumps unnecessarily cumbersome.

Towards a solution path: It seems that in order to avoid both such discrepancies and
bottlenecks for downloads and query processing, a combination of (i) dumps provided
in HDT [23], a compressed and queryable RDF format, as well as (ii) Triple Pattern
Fragments (TPF) endpoints [62] as the standard access method for Linked Datasets
could alleviate some of these problems: the triple-patterns fragment interface — essen-
tially limits queries to an endpoint to simple triple matching queries which offloads pro-
cessing of complex joins and other operations to the client-side, while still not having to
download complete dumps. HDT,?® on the other hand is an already compressed dump-
format that allows such triple pattern queries without decompression and also guaran-
tees duplicate-freeness. Notable, there are already several TPF endpoints available,?*
most of them powered by HDT in the backend, thus creating a small server-footprint
and -load, for either answering triple pattern queries or downloading the whole dump.
Notably, HDT has also been recently extended to handle also quads besides RDF triple
dumps, thus also being usable for datasets consisting of different (sub)graphs [24]; an

1 http://pubmed.bio2rdf.org/sparql

20 The same number is returned on a query for quads, i.e. SELECT (COUNT (%) AS 2C)
WHERE {GRAPH ?G {?S ?P ?20}}, which is of course not necessarily the case for all
SPARQL endpoints.

2! http://download.bio2rdf.org/#/release/4/pubmed/

22 https://old.datahub.io/dataset/bio2rdf-pubmed

2 http://rdfhdt.org

2 http://linkeddatafragments.org/
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analogous extension of the TPF interface to quads would be straightforward. Lastly, we
note that e.g. the number of triples it encoded and stored during dump generation in the
metadata header of HDT files, thus providing a single, reliable entry to the dataset size.

Findability and (Meta-)Data Formats. The current metadata available on the LOD
cloud does not tell us a lot about how to access the single datasets.

Over time, various dataset description formats and mechanisms have been proposed,
typically (i) VoID descriptions, (ii) (Semantic) Sitemaps, and (iii) SPARQL service
endpoint descriptions. In the following, we analyze the current state of affairs in the
LOD cloud.

The Vocabulary of Interlinked Datasets (VoID) had been designed as a minimalistic en-
try point for describing datasets and how to access them, containing properties for locat-
ing dumps (void:dataDump), finding SPAQL endpoints (void:sparglEndpoint)
or describing the size of the dataset in terms of numbers of triples (void:triples)
and other structural statistics. In order to find the VoID description, it is suggested to
place the dataset description under /.well-known/void in the root directory of a
Web-server.

There are various problems with this approach: firstly, different datasets hosted un-
der one common domain/server cannot provide different dataset descriptions; as an
illustration obviously https://github.com/.well-known/void does not return
a valid VoID description, although github is gaining popularity for hosting Linked
Data sets. Secondly, even the “epicenter” of the LOD-cloud, dbpedia.org does not
follow the rules and provides a VoiD description at the non-obviously findable URL
http://dbpedia.org/void/page/Dataset instead. Lastly, indeed, among all 881
hostnames mentioned in URLSs in datahub.io’s metadata, 159 respond to an HTTP Get
with this recipe, at least 75 of which though seem to be HTML responses, and only
56 valid RDF;? Without going into further detail, even if the HTML contained RDFa
(which in the cases we inspected it did not), it seems that easy to parse RDF results with
valid Vold descriptions seem to be the exception.

(Semantic) Sitemaps XML Sitemaps 2° seem to be a more commonly implemented
pattern to discover data and pages accessible via an HTTP server, not least because of
their recommendation by search engines. It is a simple XML format that should guide
crawlers across sites, where Tummarello et al. had even proposed an extension of the
Sitemaps protocol to link to RDF datasets specifically [16], that has been implemented
in Sindice [47]. Sitemaps are expected to be found under the root of a dataset’s directory
on a host in a file called ‘sitemap.xml’, that is, not necessarily directly underneath root
directory of the host address. datahub.io’s metadata contains hints (by filename) to such
sitemaps for 57 datasets, 56 indeed returning valid sitemaps, and 55 of which indeed
use the semantic sitemap extension [16] (52 containing a sc : dat aDump attribute and
53 containing a sc:sparqlEndpoint field). So, overall, while semantic sitemaps are only
used for a marginal 5% of the datasets in datahup.io, they seem to be fairly consistent.

25 We tested all hosts from the URLSs that provided non-error results
26 hitps://www.sitemaps.org/protocol.html
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SPARQL service endpoint descriptions according to the SPARQLI1.1 specification,
“SPARQL services made available via the SPARQL Protocol SHOULD return a ser-
vice description document at the service endpoint when dereferenced using the HTTP
GET operation without any query parameter strings provided. This service description
MUST be made available in an RDF serialization, MAY be embedded in (X)HTML by
way of RDFa [RDFA], and SHOULD use content negotiation [ CONNEG] if available
in other RDF representations.” Yet, out of the 251 potential respondent endpoint ad-
dresses mentioned above only 136 respond to this recipe, out of which in fact 63 return
HTML (mostly query forms), even if attempting CONNEG.?’

We note that while some of these mentioned HTML responses might contain RDFa,
it is still an extra step to extract and parse and each such extra step will bloat a po-
tential consuming client unnecessarily. Similarly, when attempting to find data dumps,
without a semantic sitemap or a VoID file in place, our best guess would be to guess
and try parsers from “format” descriptors in the metadata or from filename suffixes.
An additional complication here are compressed formats, where attempting different
decompression formats (gzip, bzip, tar, zip, just to name a few), sometimes even used
in combination, further complicate accessibility. Some of the the guessed formats we
found in all URLs are listed again in Fig. 3 above.

We also note that by manual inspection, some endpoint addresses or accessibility of
datasets could be recovered, but since we herein would like to emphasize on machine
accessibility, manual “recovery” seems an undesirable option.

Towards a solution path: We feel that as for automatic findability, Semantic Sitemaps
with pointers to a VoID description, with concrete pointers to primarily a dump, prefer-
ably in HDT as well as (optionally) a pointer to a SPARQL endpoint (or TPF endpoint)
should be the commonly to be agreed upon practice. We note here, that the use of HDT
makes this task even simpler, as indeed the Header part of an HDT dump file holds a
place for metadata descriptions about the dataset readily.?® Also, SPARQL endpoints
should provide service descriptions in easily accessible RDF (not RDFa) available via
CONNEG, where again these SPARQL service descriptions should describe service
limitations (such as e.g. result size limits or connection limits and timeouts). Also, the
service description should declare potential differences between the data in the dump
and in the endpoint, if any. We emphasize here, that to the best of our knowledge there
is no agreed upon vocabulary for SPARQL endpoint restrictions and capabilities.

“RDF Data Quality” of Datasets and the “Semantics of Links”. The linked data
principles define rough guidelines on derefenceability and linkage of datasets, yet in
order for RDF datasets, once downloaded, to be truly machine-processable and being
able to traverse and interpret those links fruitfully, more detailed guidelines seem to

27 with sending an ’Accept: text/turtle, application/n-triples, application/trig,
application/n-quads, application/rdf+xml, =’ header.

28 In fact, some automatically computable VoID properties are already computed and included in
HDT’s header per default, and it is well possible to add additional properties such as pointers
to (SPARQL or Linked Data fragments) endpoints, or used namespaces within this header, as
a single point of access through an HDT dump file.
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be indispensable: in an early approach, Hogan et al. proposed the “Pedantic Web”[33]
alongside with an in the meanwhile discontinued tool, RDFAlerts, to check and assess
the quality, dereferenceability, and finally syntactical (e.g. use of ill-defined literals)
logical consistency (in terms of RDFS/OWL inferences, use of literals in place of ob-
ject properties, availability of definitions for used properties and classes, etc.) of RDF
datasets. A lot of these checks though, were not necessarily designed to scale to datasets
of billions of triples, or, resp. should be reassessed in terms of feasibility. Again, HDT
could serve as a basis for scalable, out-of -the-box implementations of such checks on
a dataset level.

Besides the aforementioned “semantic heterogeneity” issue in the biomedical do-
main, as a particular additional example of checks that should be automatically per-
formed on a dataset level, we mention the links in the LOD cloud diagram, shall in-
dicate in how far one dataset links to another dataset; to the best of our knowledge,
these links and their strength, have been created so far from datahub.io’s metadata field
links:<Dataset—-acronym>, i.e. been typically manually specified by the con-
tributors of said metadata: the definition for how such links should be declared on lod-
cloud.net provides the following inclusion/exclusion criterion for datasets in the LOD
cloud: “The dataset must be connected via RDF links to a dataset that is already in the
diagram. This means, either your dataset must use URIs from the other dataset, or vice
versa. We arbitrarily require at least 50 links.” An older version of the page also pro-
vided a slightly more concrete definition of what is meant by a link here: “A link, for
our purposes, is an RDF triple where subject and object URIs are in the namespaces
of different datasets.” We however find this definition hard to assess. Since so concrete
guideline with regards to “ownership” of name spaces is provided here, any attempt
to compute such links automatically is doomed to fail. As from our observation when
investigating different datasets, it is by no means always clear

1. to which namespace a URI belongs, or
2. to which dataset a namespace belongs

As for 1, we note that in many cases it is not even clear entirely purely from the RDF
data which part of the URIs in a dataset denote namespaces: namespaces and gnames
in RDF have no special status as in XML, they simply denote prefixes; while certain
“recipes” for such prefixes exist, such as most commonly used °/’ and ‘# prefixes,
some ontologies use completely different recipes to separate identifiers from prefixes.
In fact, various datasets “mint” URIs with differing recipes, for instance, we find the
prefix scheme http://bioonto.de/sbml.owl#Uniprot: within the BIOMDELS
ontolgy from Bioportal, with 562 identifiers using this scheme, e.g.
http://bioonto.de/sbml.owl#Uniprot:Q9UJX6.
In this case, what is the namespace prefix? It seems intuitive that this URI minting
scheme is referring to UNIPROT which indeed means the dereferenceable URL
https://www.uniprot.org/uniprot/Q9UJX6.
Now, at a closer look this example?® illustrates several problems at once:

— itis unclear which prefix denotes the “namespace”: http://bioonto.de/sbml.owl#
or rather http://bioonto.de/sbml.owl#Uniprot:?

% which is one of many, we emphasize it is not our intention to point fingers to anyone!
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— the same entities exist in the LOD cloud under different, disconnected namespace
prefixes, such as the Uniprot identifier Q9UJX6, the “official” prefix of which
iSs http://purl.uniprot.org/uniprot/Q9UJx6 as per the authoritative pay-
level-domain uniprot.org.

— the overall “#namespace” http://bioonto.de/sbml.owl# does not refer to
a dereferenceable URI; the data itself comes in fact from a dataset dump in an
old version of bioportal, that has been fixed in the meantime, but nonetheless it
serves for illustration; a detailed analysis of present such quality issues in the
LOD-cloud is still on our agenda, but we have reason to believe that many such
issues still persist also in the current LOD cloud. In fact the example BIOMOD-
ELS ontology dataset now exists on different places in the LOD cloud, within
BIO2RDEF, within BIOPORTAL, but also as an RDF dataset directly published
by EBlat ftp://ftp.ebi.ac.uk/pub/databases/RDF/biomodels/ in three
different “RDF exports” of the same database.

While — depending on the serialisation — namespaces could be filtered out based on
being explicitly represented (e.g. marked with XML namespaces in RDF/XML or by
@prefix declaration in Turtle, respectively, this seems not to be a reliable way of recog-
nizing all used namespaces within an RDF datadump in a declarative machine-readable
manner. Plus, as the example illustrates, even if we had all namespaces occurring within
a dataset, various URL schemes used refer to either non-dereferenceable or non-RDF
publishing third-party namespaces, that cannot be simple assigned to “belonging” to a
single dataset. More issues about URI schemes and namespaces and term (non-)re-use
have been described in [42] and [40].

Last, but not least, as an open problem, links in one dataset always refer to a partic-
ular version of the linked dataset, which if not archived cannot be guaranteed to persist
or being dereferenceable in the future. For a more sustainable version of Linked Open
Data, we therefore deem versioned Linked Data as well as archives a necessity.

Towards a solution path: We feel that in order to avoid such issues, to be established
best practices for Linked Data publishing would need to provide more guidelines for
URL minting and reuse. Namespace and ID minting should probably be restricted to
machine-recognizable patterns (such as strict adherence to ‘/* and ‘#-namespaces),
with dereferenaceable namespace URLs). Ownership of a namespace could — for in-
stance — be restricted to pay-level-domain, that is, definition of namespaces being re-
stricted to the own pay-level domain, and URL and namespace schemas given a clear
machine-readable ownership relation. We leave a concrete definition of such a machine-
readable and assessable ownership open for now, but refer to similar concepts and
thoughts about URI “authority” having been discussed before in the context of onto-
logical inference by Hogan in his thesis [32, Section 5] as a potential starting point.
Hogan’s thesis also contains some details on scalable implementations of the above-
mentioned checks that have been described in RDFAlerts [33] earlier, which we believe
could be implemented directly and efficiently on top of indexed compressed formats
HDT, which we leave to future work on our agenda for now.

As for archiving and versions, we refer to [25] and references therein in terms of
starting points; although no single agreed proposal exists at this point for how to publish
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versioned RDF archives we again refer to possible HDT-based solutions, particularly
enabled through the recent extension of HDT to handle quads [24].

4.2 Non-Technical Challenges

Even if we will be able to solve all the above technical challenges, there are several
pertinent issues that are in the critical path to the success of LOD. That is, we also see
many non-technical challenges that should be fixed in order to stimulate adoption of
linked data, a non-exhaustive list of which we briefly describe hereafter.

Completeness/Consistency. Several well-known and important RDF datasets are miss-
ing in the LOD cloud, e.g. EBI RDF is not there (plus various other well-known data
bases from the biomedical and life sciences domain), which have gone through the ef-
fort of publishing RDF, but not taken the additional hurdle of manually adding and
updating their metadata in yet another centralized catalog such as datahub.io. For simi-
lar reasons, e.g., Wikidata is not a dataset in the LOD cloud, although it is clearly linked
well with several datasets present.

Overall, the burden of manually and pro-actively needing to provide and maintain
LOD cloud metadata on the publisher-side has proven unsustainable.

Trust. Besides the pervasive issues of availability and reliability, developers are right-
fully worried that the published data in the cloud is not kept up to date, and as such
the technical issues mentioned above might overall give rise to (or have already given
rise to, possibly) doubts on the technology and principles of Linked Data. Stale datasets,
while still available, but with outdated, once-off RDF exports of in the meantime evolved
databases, likewise raise trustworthiness issues in Linked Data.

While it seems to have been a sufficient incentive to “appear” in the LOD cloud
to publish datasets adhering to Linked Data principles, a similarly strong incentive to
sustain and maintain quality of published datasets seems to be missing.

It is therefore important for us as a community to keep this project up and alive, by
creating sustainable publishing and monitoring processes.*

Governance. We note that not only trust in the LOD cloud itself, but also mutual trust
between LOD providers may be a problem that is difficult to circumvent. For instance
the presence of various different unlinked “RDF dumps” or LOD datasets that actually
arise from exports of the same legacy database (BIOMODELS given as one illustrative
example of many above) could be potentially related to many of our exports and datasets
having been created in isolation, by closed groups, without inviting collaboration or
being based on infrastructures to share and evolve those exports jointly. We feel that
this issue can only be solved by a more collaborative, and truly open governance.

30 Of course, with the alternative to eventually re-brand it under a different name after survival
of an “LOD winter” from unfulfilled expectations)
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Documentation and Usability. Besides the technical accessibility discussed above, us-
ability issues and documentation standards have been long overlooked in many Linked
Data projects. Industry-strength tools to consume and use Linked Data with sufficient
documentation are still under-developed.

We believe this issue can be ameliorated by: (1) better metadata for describing the
datasets; (2) better documentation for using the datasets, including sample queries; (3)
better tool support for enabling reuse of existing vocabularies; and (4) Supporting and
promoting the use of developer-friendly formats, such as JSON-LD.

In addition, in terms of positive examples, we would again like to name the afore-
mentioned HDT and TPF projects, as well as useful SPARQL query editing tools such
as YASGUI [50] or Wikidata’s query interface, which have appeared in the last two
years; we need more tools like those.

Funding & Competition. Last, but not least, while the EU and other funding agencies
have supported our endeavor to create a Web of data greatly, we also feel that there are
problematic side effects which need discussion and counter-strategies:

— cross-continental research initiatives are not being funded
— EU project consortia are typically being judged by complementary partner expertise

Both these factors, which prevent research groups working on overlapping topics from
collaboration, and rather stimulate an environment of isolated closed research than open
collaboration to jointly address the issues mentioned so far.

Lack of collaboration may in other cases also just be caused by the disconnect of
research communities: this is for instance exemplified by the Semantic Web in Life Sci-
ences community, for instance seemingly having recently started efforts very similar to
SPARQLES [61] in building up a completely independent SPARQL endpoint monitor-
ing framework [65],3!, not even citing SPARQLES (sic!), which seems unnecessarily
duplicating efforts instead of collaboratively developing and maintaining such services.

5 Conclusions and Next Steps

So, is Linked Data doomed to fail? In this paper we did not present a lot of new insights,
but our deliberatively provocative articulation of rethinking Linked Open Data and its
principles. It is not too late to counteract and join forces. We hope that our summary
of problems and challenges, reminders of valuable past attempts to address them, and
outline of potential solution strategies can serve as a discussion basis for a fresh starts
ahead towards more actionable Linked Data.

On the bright side, the biomedical community has been very successful in using
OWL and Semantic Web technologies for the management of large biomedical vo-
cabularies and ontologies. The poster child is the development of the Gene Ontology
(GO) [15], arguably the most important biomedical ontology in existence and with the
highest impact in the community. In our opinion, the main factors contributing to the
big success of the GO are: (1) Having a dedicated and very active development team

3! available at http://yummydata.org/endpoints
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behind it with continuous funding over several years; (2) Actively building a strong
community of domain users from different areas, and using their needs as the driver for
the ontology development; (3) Having an exemplary documentation, not only about the
ontology itself, but also about how to use it in applications targeted to domain users, as
well as documentation about the processes for building and maintaining the GO; (4) Us-
ing a principled approach for developing the ontology; (5) Using automated pipelines
to check and ensure the quality of the ontology (and also document the whole process).
Our hope is that the Linked Data community can learn from the development of GO,
and that it will try to apply some of the same approaches that proved to be so successful.
We believe the community needs to work on those by joining forces, rather than by
competition. We also argued that HDT a compressed and queryable dump format for
Linked Datasets, could play a central role as a starting point to address some (but not
all) of these challenges, i.e., implicitly suggesting a fifth Linked Data principle” [4]:

5. Publish your dataset as an HDT dump, including VoID metadata as part of
its header and declaring (i) the (authoritatively) owned namespaces, (ii) links
to previous and most current versions of the dataset, (iii) and — whenever you
use namespaces owned by other datasets or ontologies — the links to specific
versions of these other datasets.

In fact, the original goal we had with this paper was to demonstrate how you can
auto-generate LOD clouds from a set of HDT dumps, but as we got stuck already with
so many of the other issues mentioned throughout what you just read, we got — let’s
say — dragged away a bit; this original goal is still on our agenda for future work: other
issues arose, that seem equally important, such as the establishment of collaborative
and shared research infrastructures to guarantee sustainable funding and persistence of
Linked Data assets, as we have seen many promising efforts and initiatives mentioned
in this paper having discontinued unfortunately. In the meanwhile, we hope that the
upcoming DeSEMWEB workshop at ISWC2018, but also initiatives like the recently
US-founded “Open Knowledge Network™3? initiative or the upcoming Dagstuhl sem-
inar on “New Directions for Knowledge Representation on the Semantic Web”3* will
provide platforms to openly discuss such a fresh start.

Finally, we admit the present paper is a bit long for a vision paper: we decided not
to shorten it and rather would like it to be understood as a vision paper with a strong
survey character, as we considered it necessary to give an — even if not exhaustive —
account to prior work that should be potentially re-considered for jointly addressing the
challenges mentioned herein.
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