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Abstract

We consider the issue of biases in scholarly research, specifically, in peer review.
There is a long standing debate on whether exposing author identities to reviewers
induces biases against certain groups, and our focus is on designing tests to detect
the presence of such biases. Our starting point is a remarkable recent work by
Tomkins, Zhang and Heavlin which conducted a controlled, large-scale experiment
to investigate existence of biases in the peer reviewing of the WSDM conference.
We present two sets of results in this paper. The first set of results is negative,
and pertains to the statistical tests and the experimental setup used in the work of
Tomkins et al. We show that the test employed therein does not guarantee control
over false alarm probability and under correlations between relevant variables,
coupled with any of the following conditions, with high probability can declare
a presence of bias when it is in fact absent: (a) measurement error, (b) model
mismatch, (c) reviewer calibration. Moreover, we show that the setup of their
experiment may itself inflate false alarm probability if (d) bidding is performed in
non-blind manner or (e) popular reviewer assignment procedure is employed. Our
second set of results is positive, in that we present a general framework for testing
for biases in (single vs. double blind) peer review. We then present a hypothesis
test with guaranteed control over false alarm probability and non-trivial power even
under conditions (a)–(c). Conditions (d) and (e) are more fundamental problems
that are tied to the experimental setup and not necessarily related to the test.

1 Introduction

Past research in social sciences indicates that humans display various biases including gender, race and
age biases in many critical domains such as hiring [4], university admission [32], bail decisions [2]
and many others. Our focus is on fairness in academia and scholarly research, and specifically, on
biases in peer review. Peer review is a backbone of scholarly research and is employed by a vast
majority of journals and conferences. Due to the widespread prevalence of the Matthew effect –
rich get richer and poor get poorer – in academia [31, 27], any biases in peer review can have far
reaching consequences on career trajectories of researchers. Specifically, we follow the long-standing
debate [6, 25, 26, 1, 23, 8, 35, 14, and references therein] on whether the authors’ identities should
be hidden from reviewers or not. The focus of this paper is on designing statistical tests to detect the
presence of biases in peer review.

In a recent remarkable piece of work, Tomkins et al. [33] conducted a large scale (semi-) randomized
controlled trial during the peer review for the ACM International Conference on Web Search and Data
Mining (WSDM) 2017. In their experiment, the entire pool of reviewers was partitioned uniformly
at random into two equal groups – single blind and double blind – and each paper was assigned
to two reviewers from each of the groups. In this manner, the peer-review data contained both
single-blind and double-blind reviews for each paper. The experiment allowed them to conduct a
causal inference to test for biases, and conclude that the single-blind system induces a bias in favor of
papers authored by (i) researchers from top universities, (ii) researchers from top companies and (iii)
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(a) Bias is absent. Any valid
test must have false alarm prob-
ability below 0.05.
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Figure 1: Synthetic simulations evaluating performance of the test in Tomkins et al. [33] (“previous
work”) and the test proposed in this paper (“DISAGREEMENT test”). Subfigures (a) and (b) are in
presence of correlations and noisy estimates of true scores by double-blind reviewers; subfigure (c)
has zero correlations and perfect estimate of true scores by double-blind reviewers. Details of the
simulation setup are provided in Section 3. The error bars are too small to be visible.

famous authors. Interestingly, no bias against female-authored submissions was detected by their
test, though a meta-analysis confirmed the presence of such bias. The conclusions of this experiment
have had a significant impact. For instance, the WSDM conference itself completely switched to
double-blind peer review starting 2018.

Testing for the presence of hypothesized phenomena is a common task in various branches of science
including the biological, social, and physical sciences. The general approach therein is to impose a
hard constraint on the probability of false alarm (claiming existence of the phenomenon when there
is none; also called Type-I error) to some predefined threshold called significance level typically set
as 0.05 or 0.01. The test would then aim to maximize the probability of detecting the phenomenon
when it is actually present, while not violating the aforementioned hard constraint. The present paper
also follows this general approach, for the specific setting of testing for biases using single versus
double blind reviewing.

Contributions. In this paper, we study the problem of detecting bias in peer review (in the setting as
considered in Tomkins et al. [33]). In this context, we present two sets of results.

Negative results (Section 3) We first analyze the testing procedure used by Tomkins et al., and show
that under plausible conditions the statistical test employed therein does not control for false alarm
probability. In other words, we show that under reasonable conditions, the test used by Tomkins et
al. [33] can, with probability as large as 0.5 or higher, declare the presence of a bias when the bias
is in fact absent (even when the test is tuned to have a false alarm error rate below 0.05). Specifically,
we show that in presence of correlations that are reasonable to expect, any of the following factors
breaks their false alarm probability guarantees: (a) measurement error caused by noise or subjectivity
of reviewers, (b) model mismatch caused by violation of strong parametric assumptions on reviewers’
behavior and (c) reviewer’s calibration if she/he reviews more than one paper. Figures 1a and 1b
illustrate the effect of measurement error on the false alarm probability and probability of detection
of the test used by Tomkins et al. The issues we identify suggest that their test is at risk of committing
Type-I error in declaring biases in their analysis.

Moving beyond the specific test used in Tomkins et al. [33], we also study the effect of their
experimental design, which is simply the standard peer-review procedure with an additional random
partition of reviewers into single and double blind groups. We show that two factors – (d) asymmetrical
bidding procedure and (e) non-random assignment of papers to referees – as is common in peer-review
procedures today may introduce spurious correlations in the data, breaking some key independence
assumptions and thereby violating the requisite guarantees on testing.

Positive results (Sections 4 and 5) We propose a general framework for the design of statistical tests to
detect biases in this problem setting, that overcomes the aforementioned limitations. Specifically, our
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framework does not assume objectivity of reviewers and does not make any parametric assumptions
on reviewers’ behaviour. Conceptually, we propose to think of this problem as an instance of a
two-sample testing problem where single-blind and double-blind reviews form two samples and the
test operates on these samples. (In contrast, Tomkins et al. [33] study the problem under one-sample
testing paradigm, operating on reviews of single-blind reviewers and using double-blind reviews to
estimate some parameters in their parametric model).

We then design a computationally-efficient hypothesis test with a provable control over the false alarm
probability under various conditions, including aforementioned conditions (a) - (c). Our test also has
non-trivial power in that it has considerably higher probability of detection in hard cases where the
test used by Tomkins et al. fails, and also has not too much loss in power when the assumptions made
in Tomkins et al. [33] are exactly met, and there is no correlation or noise. The performance of this
test is illustrated in Figure 1.

It is important to note that in this work, we do not aim to prove or disprove the existence of biases
declared in the experiment by Tomkins et al. [33]. Instead, our focus is on the theoretical validity
of the statistical procedures used to conduct such experiments and more generally on principled
statistical approach towards designing such experiments. Finally, we note that the results and tests we
discuss in this work are also applicable beyond peer review, and can be used to test for biases in other
domains such as admissions and hiring.

Related work. The problem of identifying biases in human decisions is commonly studied in social
science and there are many works that design and conduct randomized field experiments in various
settings, including resume screening [5], hiring in academia [22], and peer review [6, 23]. However,
the conference peer review setup we consider in this work does not comprise a fully randomized
control trial (i.e., the reviewers are not assigned to submissions at random) and past approaches fail
due to idiosyncrasies of the peer-review process. For example, a popular approach [5, 22] is to assign
author identities to (fabricated) documents (resumes, application packages or papers) uniformly
at random and compare the outcomes for different categories of authors. In our setup, random
assignment of author identities to real (i.e., non-fabricated) submissions is problematic due to various
logistical and ethical issues such as reviewers guessing actual authors thereby causing biases, and
requrements of getting authors to agree to have their paper/name modified. Another approach [23]
is to submit the same paper to multiple reviewers in both single-blind and double-blind conditions
and test for the difference in the acceptance rates between conditions. However, such an approach
necessitates a considerable additional reviewing load. Other approaches include observational studies,
and we refer the interested readers to [33] for a more in-depth literature review.

This paper also falls in the line of several recent works in computer science on the peer-review process
which includes both empirical [15, 13] and theoretical [30, 34, 17] studies.

2 Preliminaries

The general peer-review setup we study for testing biases using single and double blind review is
as considered in Tomkins et al. [33]. We study a conference peer-review setup where n papers are
submitted at once and m independent reviewers are available to review submissions. With a goal
to test whether single-blind reviewing induces a bias against or in favor of some groups of authors,
we consider some pre-defined set of k binary mutually non-exclusive properties pertaining to the
author(s) of any paper to be tested for bias. For example, a property could be “the first author is
female” or “majority of authors are from the USA”. Each paper j 2 [n] is then associated with k

indicator variables w
(1)
j , . . . , w

(k)
j , where w

(`)
j = 1 if paper j satisfies property ` and w

(`)
j = �1

otherwise. For each ` 2 [k] we let J` denote the set of papers that satisfy property ` and J ` = [n]\J`

denote its complement.1

The peer review process is conducted as follows. Each reviewer is uniformly at random allocated
to one of the two conditions: (i) Double-Blind condition (DB) in which reviewers do not observe
identities of papers’ authors; and (ii) Single-Blind condition (SB) in which reviewers observe identities
of papers’ authors. Next, each paper is assigned to � reviewers from the SB group and � reviewers
from the DB group such that each reviewer reviews at most µ submissions, where � and µ are
predefined constants. In both conditions, if any reviewer i 2 [m] is assigned to any paper j 2 [n],

1Here, we adopt the standard notation [⌫] = {1, 2, . . . , ⌫} for any positive integer ⌫.
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then she/he returns a binary accept/reject recommendation and possibly a numeric score that estimates
a quality of the paper as perceived by the reviewer, accompanied by a textual review.

For each property ` 2 [k], we are interested in whether single-blind peer review setup induces a bias
against or in favor of papers that satisfy this property. For example, if we consider property “the first
author is female”, then we aim at testing for the bias against or in favor of papers with female first
author. Note that with respect to the properties, the study is observational in that we cannot assign
author identities to papers at random. Hence, the effect of confounding is unavoidable and utmost
care must be taken to address presence of confounding factors.

For brevity, in this paper we consider the case of a single property of interest (k = 1) which captures
the complexity of our problem. For ease of notation, we drop index ` from w

(`) and J`. For the
discussion of the general case of multiple properties of interest (k > 1) we refer the reader to the
extended version of this paper [29].

Let us now give details of the testing procedure used by Tomkins et al. [33].

Model and test used by Tomkins et al. We begin by introducing an idealized version of their model.
They assume a parametric, logistic model for the binary decisions made by SB reviewers. Specifically,
for each paper j 2 [n], let Y1j , . . . , Y�j denote the binary accept/reject decisions given by the �

reviewers assigned to paper j in the SB setup. It is assumed that {Yrj}r2[�] are independent draws
from a Bernoulli random variable with an expectation ⇡j satisfying

log
⇡j

1� ⇡j
= �0 + �1q

⇤
j + �2wj , (1)

where q
⇤
j is a “true” underlying score of paper j, wj is an indicator of property satisfaction and

{�0,�1,�2} are unknown coefficients. In words, the model says that if there is a positive (negative)
bias with respect to a property of interest, then the fact that paper satisfies the property increases
(decreases) the log-odds of the probability of recommending acceptance by 2�2 as compared to the
case if the same paper does not satisfy the property. The main difficulty with this model in the peer
review setting lies in the fact that true scores {q⇤j , j 2 [n]} are unknown and hence standard tests for
logistic regression model are not readily applicable.

In order to overcome the unavailability of true scores {q⇤j , j 2 [n]} in the model (1), Tomkins et
al. [33] use a plug-in estimate: they replace q

⇤
j with the mean eqj of scores given by the DB reviewers

to paper j, for every j 2 [n]. Under this approximation and using eq1, . . . , eqn, they obtain maximum
likelihood estimates of coefficients {b�0,

b�1,
b�2} and then use the standard Wald test [36] to test for

significance of the coefficient �2. A bias is declared present if the coefficient �2 is found significant;
the direction of the bias is determined as the sign of b�2.

3 Negative results

In this section we identify several issues that should be taken into account when testing for biases in
the setup we consider. Noting that the issues themselves are general, we motivate and discuss them in
context of the prior work by Tomkins et al. [33] and investigate possible consequences of these issues
through synthetic simulations.

Recall that with respect to the property of interest the experiment is observational and hence we
cannot assume that variable w that encodes property satisfaction is independent of true score q

⇤. For
example, consider a property “paper has author from top univeristy”. For this property a non-trivial
correlation between true scores and indicators of property satisfaction is natural to expect. While
correlation itself does not cause issues, we identify five conditions that coupled with correlation can
be significantly harmful.

In the simulations to follow, we juxtapose the algorithm by Tomkins et al. [33] to our DISAGREEMENT
test introduced later in the paper. Complete details of all simulations are given in Appendix A.

(a) Measurement error. Tomkins et al. [33] report low interreviewer agreement between DB
reviewers which means that the estimates eq1, . . . , eqn of the true scores by the DB reviewers are
noisy. It is known [28, 7] that noisy covariate measurement coupled with correlation between some
covariates may inflate Type-I error rate of the Wald test for logistic regression. We now investigate the
impact of measurement error on the Type-I error rate of the Tomkins et al. test through simulations.
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Figure 2: Type-I error of the test from previous work (Tomkins et al. [33]) blows up under five
different setups: bias is absent in all simulations and the tests are designed to limit the Type-I error to
at most 0.05. In contrast, our DISAGREEMENT test is robust to violations of modelling assumptions
(a)-(c). Note that non-blind bidding by SB reviewers and non-randomness of the assignment (left
bars in subfigures d and e), which pertain to the experimental setup rather than the modelling, break
guarantees of both tests. Error bars are too small to be visible.

We consider absence of any bias, and assume that model (1) with �2 = 0 is correct for both DB and
SB reviewers. We consider DB reviewers to report noisy estimates of true scores q⇤j , and vary the
correlation between q

⇤ and w. We plot the Type-I error rates in Figure 2a for the test in Tomkins et
al. [33] and our proposed test; both tests are designed to restrict the Type-I error rate to 0.05. Given
that interreviewer agreement in the actual experiment of Tomkins et al. [33] was low (level of noise
is high), the fact that some properties they consider may lead to correlations between q

⇤ and w is
concerning, because it could potentially undermine the validity of their findings.

The simulations in Section 1 follow the setup presented here: Figures 1a and 1b consider measurement
error with correlation fixed at 0.4 and 0.6 respectively. Notice that issues exacerbate as sample size
grows; Figure 1c has zero correlation and no measurement errors.

(b) Model mismatch. Model (1) assumes a specific parametric relationship, which is unlikely to
hold in practice. In order to check the effect of model mismatches, we consider a violation of the
model (1) and suppose that the correct model is log ⇡j

1�⇡j
= �0 + �1

�
q
⇤
j

�3
+ �2wj . We consider

an absence of any bias, that is, set �2 = 0 for both SB and DB reviewers. We perform simulations
similar to those in item (a) with the exception that true scores q⇤j , j 2 [n], are known exactly to the
test of Tomkins et al. Figure 2b shows results of simulations.

(c) Reviewer calibration. Model (1) assumes that reviews given by the same reviewer are inde-
pendent. In practice this assumption may be violated due to correlations introduced by reviewer’s
calibration [34]. While some easy calibrations such as harshness/leniency can be captured by simple
parametric extensions of model (1), more subtle patterns are beyond the scope of this model. Suppose
for example that the strength of reviewers’ input depends on paper’s clarity – the better the paper
written, the lower the contribution due to reviewers’ calibration. Assume also that we are given
a set of papers such that true score of each paper is proportional to the clarity of the paper (we
formalize construction in Appendix A.1.3). Coupled with the correlation between q

⇤ and w, this
pattern is sufficient to break Type-I error guarantees of Tomkins et al. test. Figure 2c shows a result
of simulations in which we vary the number of papers per reviewer, keeping correlation between q

⇤
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and w fixed at 0.75 and the total number of papers fixed at n = 1000. We simulate a wide range
of reviewer load µ including small to medium loads of 5-15 papers typical in machine learning
conferences like NeurIPS and larger loads of 40 or higher found in other smaller conferences.

(d) Non-blind bidding. The issues discussed above pertain to the testing procedure and modelling
assumptions made by Tomkins et al. [33], and can be avoided by designing a principled statistical
approach to the testing problem as we do in Sections 4 and 5. We now issue a commentary regarding
the experimental setup considered in their work and show that the setup itself may create problems in
controlling the Type-I error. In the experiment of Tomkins et al., papers are allocated to reviewers
based on “bids” representing their preferences. Importantly, the reviewers in the SB setup also get to
see author identities in the bidding stage, which may act as a confounding factor in tests for bias in
the acceptance/rejection of papers. Indeed, authorship information available to SB reviewers may
introduce a difference in bidding behaviour between conditions and this difference may result in
structurally different evaluations even when reviewers are unbiased, leading to a blow-up of the
Type-I error rate of any reasonable test as illustrated by Figure 2d (formal setup is in Appendix A.1.4).
This issue is indeed pointed out as a caveat by Tomkins et al. in their paper.

(e) Reviewer assignment. Previous issue is indeed pointed out as a caveat by Tomkins et al. in
their paper. One might imagine that a natural solution to the aforementioned problem would be
to conduct the bidding in a double blind fashion for both groups. However, perhaps surprisingly,
we show that even if both groups bid in a double blind fashion (or even if the bidding process is
eliminated entirely), and even if the reviewers are assigned to DB or SB groups uniformly at random,
the non-random assignment using algorithms such as TPMS [9] can still swell the Type-I error rate.
Figure 2e contrasts Type-I errors under random assignment of reviewers to papers, and an assignment
computed by the TPMS algorithm [9] operating on a similarity matrix constructed in Appendix A.1.5,
where reviewer decisions are correlated with the similarity (e.g., reviewers being more lenient on
papers closer to their own area). Notably, even the DISAGREEMENT test which is robust to various
issues discussed above is unable to control the Type-I error under the TPMS assignment. Due to
measurement errors that arise in our construction, the test of Tomkins et al. [33] fails even under
random assignment, and the non-randomness exacerbates the effect.

4 Novel framework to test for biases

In Section 3 we identified five key limitations of the approach taken by Tomkins et al. [33]. Three of
these limitations pertain to the testing procedure and the other two limitations regarding the bidding
and assignment procedures relate to the design of experiment itself. In the next two sections we aim at
improving the test used by Tomkins et al. [33]. Hence, in the theoretical arguments below we assume
that reviewers’ evaluations are independent of bids and similarities (alternatively, the assignment
of papers to referees is selected uniformly at random from the set of all feasible assignments). In
the extended version of this paper [29] we relax the random assignment assumption by introducing
a novel experimental procedure that allows to use any assignment algorithm without running into
issues (d) and (e) discussed above.

One approach to address the aforementioned issues with the testing procedure is to design methods
for logistic regression model that are robust to various factors such as noise, misspecification,
etc. [20, 18, 28, 24, 7]. However, in this work we consider the problem more generally, because the
logistic model (1) itself could be highly inaccurate. Specifically, we aim at designing a test that does
not rely on strong modelling assumptions and also holds when reviewers decisions are subjective.

At a high level, our approach to testing for biases is different from those proposed by Tomkins
et al. [33] in two ways. First, we relax two strict modelling assumptions: (i) instead of assuming
existence of true qualities of submissions, we allow subjectivity in reviewer evaluations [16, 11, 3, 21,
19], and (ii) we do not assume any specific form of the relationship between a paper and its probability
of acceptance by a reviewer. Instead, we allow these probabilities to be completely arbitrary and
define bias in terms of these probabilities. Second, we treat this problem conceptually differently
from the work of Tomkins et al. [33]. The test therein treats the problem as that of one-sample testing
and uses DB scores as a plugin estimate of true scores in SB model. In contrast, we approach this
problem through the lenses of two-sample testing, where SB and DB reviews form the two samples,
and the goal is to test whether they belong to the same distribution. This perspective helps us to avoid
a number of issues discussed in Section 3.
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Formally, let ⇧db 2 [0, 1]m⇥n be a matrix whose (i, j)th entry, denoted as ⇡
(db)
ij , represents a

probability that reviewer i would recommend acceptance of paper j if that paper is assigned to that
reviewer in DB setup. Similarly, let matrix ⇧sb 2 [0, 1]m⇥n be an analogous matrix in SB setup, and
denote its (i, j)th entry as ⇡(sb)

ij .

Let RSB be the set of reviewers allocated to the SB condition. Moreover, for each i 2 RSB, let PSB(i)
denote the set of papers assigned to reviewer i and let Yij 2 {0, 1} denote the accept/reject decision
given by reviewer i for paper j 2 PSB(i). We similarly define the set of DB reviewers RDB and
their decisions {Xij : i 2 RDB, j 2 PDB(i)} . We are interested in testing for biases with respect to
a property of interest. Recalling our notation J ✓ [n] for the set of papers that satisfy a property of
interest, and J as its complement, we now define the bias testing problem.
Problem 1 (Bias testing problem). Given significance level ↵ 2 (0, 1), and decisions of SB and DB
reviewers, the goal is to test the following hypotheses:

H0 : 8i 2 [m] 8j 2 [n] ⇡
(sb)
ij = ⇡

(db)
ij

H1 : 8i 2 [m] 8j 2 [n]

(
⇡
(sb)
ij �⇡

(db)
ij if j 2 J

⇡
(sb)
ij ⇡

(db)
ij if j 2 J ,

(2)

where at least one inequality in the alternative hypothesis (2) is strict.2

In words, under the null hypothesis the knowledge of authors’ identities does not induce any difference
in reviewers’ behaviour. On the other hand, under the alternative there is a bias in favor of papers that
satisfy the property of interest. Note that one can define an alternative that represents a bias against
papers from J simply by exchanging the sets J and J in (2).

Our goal is to design a testing procedure that both controls for the Type-I error and has non-trivial
power for any pair of matrices ⇧sb

,⇧db that fall under the definition of Problem 1.

Non-trivial power. Informally, we say that the test has non-trivial power if for choices of ⇧sb and
⇧db for which the presence of bias is “obvious”, the test is able to detect the bias with probability
that goes to 1 as number of papers in both J and J grows to infinity. Formally, we say that matrices
⇧sb and ⇧db satisfy the alternative hypothesis (2) with margin �, if all inequalities in equation (2) are
satisfied with margin � > 0, that is, |⇡(sb)

ij � ⇡
(db)
ij | > � 8 (i, j) 2 [m]⇥ [n]. Then we say that the

testing procedure has non-trivial power if for any " > 0 and for any � > 0 there exists n0 = n0(", �)
such that if min{|J |, |J |} > n0, then for any ⇧sb and ⇧db that satisfy alternative hypothesis (2) with
margin �, the power of testing procedure is at least 1� ".

For instance, if the logistic model (1) is correct for both SB and DB reviewers with �
(sb)
0 = �

(db)
0 = �0,

�
(sb)
1 = �

(db)
1 = �1, �(db)

2 = 0 and |�(sb)
2 | > 0, then the requirement of non-trivial power ensures that

for any choice of true scores bounded in absolute value by a universal constant and any choice of
property satisfaction indicators, the test has power growing to 1 as min{|J |, |J |} goes to infinity.

5 Positive results

In this section we present a test for Problem 1 and discuss some generalizations.

5.1 Disagreement-based test

Let us now introduce a statistical test for bias testing problem (Problem 1) and show that it satisfies
requirements of control over Type-I error and has non-trivial power. The test is built on two key ideas.

• First, consider a pair of SB and DB reviewers who disagree in their decisions for some paper.
Under the null hypothesis, the events “SB accepts and DB rejects” and “SB rejects and DB accepts”
are equiprobable. In contrast, under the alternative, SB reviewer is more (or less) likely to vote for
acceptance than her/his DB counterpart, depending on the value of wj and the direction of the bias.

• Second, in order to avoid correlations introduced by reviews given by the same reviewer, the test
uses at most one decision per reviewer. It does so by first matching reviewers into pairs, consisting
of one SB and one DB reviewer who review a common paper, and maximizing the number of such
pairs subject to a constraint that each reviewer appears in at most one pair.
2An equivalent definition of the problem from the perspective of causal inference can be found in Appendix B.
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For a moment, assume that we are given a set of tuples T , where each tuple t 2 T consists of a paper
jt 2 [n], decision of a SB reviewer for this paper Yjt , decision of a DB reviewer for this paper Xjt
and indicator of property satisfaction wjt , with a constraint that each reviewer contributes her/his
decision to at most one tuple. In this setting, we formally describe our DISAGREEMENT test as Test 1.

Test 1 DISAGREEMENT
Input: Significance level ↵ 2 (0, 1).

Set of tuples T , where each t 2 T is of the form (jt, Yjt , Xjt , wjt) for some paper j 2 [n].
1. Initialize U and V to be empty arrays.

2. For each tuple t 2 T , if Yjt 6= Xjt , append Yjt to
⇢
U if wjt = 1
V if wjt = �1

.

3. Run permutation test [12] at the level ↵ to test if entries of U and V are exchangeable random
variables, using the test statistic:

⌧ =
1

|U |
X

r2[|U |]

Ur �
1

|V |
X

r2[|V |]

Vr.

4. Reject the null if and only if the permutation test rejects the null. (If any of the arrays V and U are
empty, the test keeps the null.)

We now discuss construction of the set T for input to Test 1 from the given set of reviews. The goal
of the construction is to ensure that T contains “enough” tuples that correspond to papers from J
and J . We consider two cases.

• If � � µ, then using the Hungarian matching algorithm each paper is matched to 1 SB reviewer
and 1 DB reviewer, in a manner that each reviewer is matched to at most one paper.

• If � < µ, then we use an iterative algorithm which greedily matches one paper from J and one
paper from J to 1 SB and 1 DB reviewer in each iteration, with a constraint that each reviewer is
matched to at most one paper. This algorithm is guaranteed to match a constant fraction of papers
from both J and J .

The matching algorithms for both cases are formally presented in Appendix C due to lack of space.
The following theorem now presents guarantees for our test.
Theorem 1. For any significance level ↵ 2 (0, 1), under the setup of the bias testing problem (Prob-
lem 1), the DISAGREEMENT test coupled with matching algorithms from Appendix C is guaranteed
to control for the Type-I error at the level ↵, and also satisfy the requirement of non-trivial power.
Remark. If the logistic model (1) is correct, then Theorem 1 ensures that the DISAGREEMENT test
provably controls the Type I error and can detect a bias with probability that goes to 1 as sample size
grows, without requiring knowledge (neither exact nor approximate) of true scores q⇤1 , . . . , q⇤n.

We now discuss the issues (a)-(c) discussed in Section 3 in the context of our DISAGREEMENT test.

• Measurement error. Our test does not rely on any estimation of papers’ qualities made by
reviewers. Moreover, we do not even assume that there exists some objective quantity that can be
estimated. Hence, our test does not suffer from issues caused by noisy estimates of scores given by
DB reviewers as illustrated by Figure 2a.

• Model mismatch. The only assumption we make is that under the null hypothesis there is no
difference in behavior of SB and DB reviewers. Hence, Proposition 1 guarantees that our test is
robust to violations of specific parametric model (1) as illustrated by Figure 2b.

• Reviewer calibration. We circumvent the detrimental effect of spurious correlations introduced
by reviewers’ calibration through a matching procedure that ensures that each reviewer contributes
at most one review to the test. See Figure 2c for an illustration. Of course, such robustness comes
at the cost of some power, but we notice that our matching procedures guarantee use of at least a
constant fraction of available data, thereby limiting the reduction in the power.

Effect size. The test statistic ⌧ of the DISAGREEMENT test gives an estimate of the effect size.
Slightly informally, ⌧ measures the difference in acceptance rates of “borderline” papers from J and
J in the SB setup. Indeed, by conditioning on pairs of disagreeing reviewers in Step 2 of Test 1,
the test rules out “clear accept” and “clear reject” papers thus considering only the papers for which
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reviewers disagree (i.e. borderline papers). The absolute value of the test statistic then is a reasonable
estimate of the effect size and is in a similar vein to Cohen’s d [10] and other popular measures.

5.2 Generalization

We now consider a generalization of Problem 1 which accommodates an additional confounding factor
— a bias in the reviewer simply due to her/his assignment in the SB or the DB group (and independent
of the paper or its characteristics). For example, reviewers may not have any bias with respect to
the property of interest, but just being placed in the SB condition may induce more harsh opinions
from the reviewers in DB. Formally, recall the null hypothesis ⇡(sb)

ij = ⇡
(db)
ij 8(i, j) 2 [m]⇥ [n] in

Problem 1. Instead, under the null, we now allow ⇡
(sb)
ij = f0(⇡

(db)
ij ), for some monotonic function

f0 : [0, 1] ! [0, 1]. As in Problem 1, the bias is then defined as a violation of the null hypothesis
where direction of the violation is determined by the indicator wj .

Of course, one may not know the function f0 and the goal of this general problem is to design
a test that is guaranteed to control over the Type-I error and has non-trivial power uniformly for
all functions f0 that belong to some set of functions F⇤. The definition of non-trivial power from
Section 4 transfers to this problem with the exception that all ⇡(db)

ij are substituted by f0(⇡
(db)
ij ) for

f0 2 F⇤. In the extended version of this paper [29] we present a negative result showing that this
goal is impossible to achieve for general F⇤. However, in what follows we show that one can achieve
this goal under some specific choices of class F⇤, including a generalization of logistic model (1).

Generalized logistic model. For every paper j 2 [n], let qj 2 R be some unknown representation of
paper j. The generalized logistic model assumes that for every (i, j) 2 [m]⇥ [n] we have

DB: log
⇡
(db)
ij

1� ⇡
(db)
ij

= �
(db)
0 + �

(db)
1 qj , SB: log

⇡
(sb)
ij

1� ⇡
(sb)
ij

= �
(sb)
0 + �

(sb)
1 qj + �

(sb)
2 wj , (3)

where qj , j 2 [n], and coefficients are bounded in absolute value by constant B. The goal under this
model is to test whether �(sb)

2 = 0. The model is called “generalized”, because it does not assume
that qj has a known meaning or that it can be measured. For instance, it may be that qj = q

⇤
j , or that

qj = (q⇤j )
3, or qj may be a complex function of the content of the paper. The generalized logistic

model (3) falls in the framework of Problem 1 if �(db)
0 = �

(sb)
0 and �

(db)
1 = �

(sb)
1 . Having defined

necessary terminology, we are now ready to formulate the main result of this section.
Theorem 2. For any significance level ↵ 2 (0, 1), suppose that the generalized logistic model (3)
is correct. If �(sb)

1 = �
(db)
1 , then the DISAGREEMENT test is guaranteed to keep the Type-I error

below ↵, and also satisfy the requirement of non-trivial power irrespective of whether �(db)
0 = �

(sb)
0 or

�
(db)
0 6= �

(sb)
0 . Conversely, if we allow both �

(sb)
0 6= �

(db)
0 and �

(sb)
1 6= �

(db)
1 , then no test that operates

on decisions of SB and DB reviewers can control for the Type-I error and simultaneously satisfy the
requirement of non-trivial power.

Theorem 2 shows that the generalized bias testing problem is much harder than the original Problem 1
as there exists no algorithm that solves this problem in full generality even under specific model (3).

6 Discussion

In this work we consider the problem of testing for biases in peer review. We show that under various
conditions the approach used by prior work does not control over the Type-I error rate. We underscore
that we do not aim at disproving the presence of biases found in the past work, but our focus is on
validity of testing methods. With this goal in mind, we propose a principled approach towards testing
for biases in peer review and design a test that provably controls for the Type-I error rate and also
satisfy the requirement of non-trivial power under minimal assumptions. As we showed in Section 5.2
(more detailed discussion can be found in the extended version of this paper [29]), in general the
assumptions we make cannot be relaxed without sacrificing the non-trivial power requirement or
control over the Type-I error. On a separate note, we also demonstrate that the experimental setup
of Tomkins et al. [33], which uses standard procedures for (non-random) assignment of papers to
reviewers, can itself break Type-I error guarantees of statistical procedures. In the extended version of
this paper [29] we design a novel experimental procedure which (i) is amenable to standard conference
peer review procedures, and (ii) does not violate Type-I error guarantees of our DISAGREEMENT test.
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