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ABSTRACT

Like humans, deep networks learn better when samples are organized and intro-
duced in a meaningful order or curriculum (Weinshall et al., 2018). While con-
ventional approaches to curriculum learning emphasize the difficulty of samples
as the core incremental strategy, it forces networks to learn from small subsets
of data while introducing pre-computation overheads. In this work, we propose
Learning with Incremental Labels and Adaptive Compensation (LILAC), which
takes a novel approach to curriculum learning. LILAC emphasizes incrementally
learning labels instead of incrementally learning difficult samples. It works in two
distinct phases: first, in the incremental label introduction phase, we recursively
reveal ground-truth labels in small installments while using a fake label for the
remaining data. In the adaptive compensation phase, we compensate for failed
predictions by adaptively altering the target vector to a smoother distribution. We
evaluate LILAC against the closest comparable methods in batch and curriculum
learning and label smoothing, across three standard image benchmarks, CIFAR-
10, CIFAR-100, and STL-10. We show that our method outperforms batch learn-
ing with higher mean recognition accuracy as well as lower standard deviation
in performance consistently across all benchmarks. We further extend LILAC to
show the highest performance on CIFAR-10 for methods using simple data aug-
mentation while exhibiting label-order invariance among other properties.

1 INTRODUCTION

Deep networks have seen rich applications in high-dimensional problems characterized by a large
number of labels and a high volume of samples. However, successfully training deep networks to
solve problems under such conditions is mystifyingly hard (Erhan et al.| (2009); |[Larochelle et al.
(2007)). The go-to solution in most cases is Stochastic Gradient Descent with mini-batches (simple
batch learning) and its derivatives. While offering a standardized solution, simple batch learning
often fails to find solutions that are simultaneously stable, highly generalizable and scalable to large
systems (Das et al.| (2016); Keskar et al.| (2016); |Goyal et al.| (2017); [You et al.|(2017)). This is a
by-product of how mini-batches are constructed. For example, the uniform prior assumption over
datasets emphasizes equal contributions from each data point regardless of the underlying distribu-
tion; small batch sizes help achieve more generalizable solutions, but do not scale as well to vast
computational resources as large mini-batches. It is hard to construct a solution that is a perfect
compromise between all cases.

Two lines of work, curriculum learning and label smoothing, offer alternative strategies to improve
learning in deep networks. Curriculum learning, inspired by strategies used for humans (Skinner
(1958)); |Avrahami et al.| (1997))), works by gradually increasing the conceptual difficulty of samples
used to train deep networks (Bengio et al.|(2009)); Florensa et al.| (2017); |Graves et al.|(2017)). This
has been shown to improve performance on corrupted (Jiang et al.[(2017)) and small datasets (Fan
et al.[(2018))). More recently, deep networks have been used to categorize samples (Weinshall et al.
(2018)) and variations on the pace with which these samples were shown to deep networks were
analyzed in-depth (Hacohen & Weinshall| (2019)). To the best of our knowledge, previous works
assumed that samples cover a broad spectrum of difficulty and hence need to be categorized and
presented in a specific order. This introduces computational overheads e.g. pre-computing the
relative difficulty of samples, and also reduces the effective amount of data from which a model can
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learn in early epochs. Further, curriculum learning approaches have not been shown to compete with
simple training strategies at the top end of performance in image benchmarks.

A complementary approach to obtaining generalizable solutions is to avoid over-fitting or getting
stuck in local minima. In this regard, label smoothing offers an important solution that is invariant to
the underlying architecture. Early works like [Xie et al.|(2016) replace ground-truth labels with noise
while|Reed et al.[(2014) uses other models’ outputs to prevent over-fitting. This idea was extended in
Bagherinezhad et al.|(2018) to an iterative method which uses logits obtained from previously trained
versions of the same deep network. While [Miyato et al.| (2015)) use local distributional smoothness,
based on the robustness of a model’s distribution around a data point, to regularize outcomes, Pereyra
et al.| (2017) penalized highly confident outputs directly. Closest in spirit to our work is the label
smoothing method defined in |Szegedy et al. (2016)), which offers an alternative target distribution
for all training samples with no extra data augmentation. In general, label smoothing is applied to
all examples regardless of how it affects the network’s understanding of them. Further, in methods
which use other models to provide logits/labels, often the parent network used to provide those
labels is trained using an alternate objective function or needs to be fully re-trained on the current
dataset, both of which introduce additional computation.

In this work, we propose LILAC, Learning with Incremental Labels and Adaptive Compensation,
which emphasizes a label-based curriculum and adaptive compensation, to improve upon previous
methods and obtain highly accurate and stable solutions. LILAC is conceived as a method to learn
strong embeddings by using the recursive training strategy of incremental learning alongside the
use of unlabelled/wrongly-labelled data as hard negative examples. It works in two key phases, 1)
incremental label introduction and 2) adaptive compensation.

In the first phase, we incrementally introduce groups of labels in the training process. Data, corre-
sponding to labels not yet introduced to the model, use a single fake label selected from within the
dataset. Once a network has been trained for a fixed number of epochs with this setup, an additional
set of ground-truth labels is introduced to the network and the training process continues. In recur-
sively revealing labels, LILAC allows the model sufficient time to develop a strong understanding
of each class by contrasting against a large and diverse set of negative examples.

Once all ground-truth labels are revealed the adaptive compensation phase of training is initiated.
This phase mirrors conventional batch learning, except we adaptively replace the target one-hot vec-
tor of incorrectly classified samples with a softer distribution. Thus, we avoid adjusting labels across
the entire dataset, like previous methods, while elevating the stability and average performance of
the model. Further, instead of being pre-computed by an alternative model, these softer distributions
are generated on-the-fly from the outputs of the model being trained. We apply LILAC to three
standard image benchmarks and compare its performance to the strongest known baselines.

While incremental and continual learning work on evolving data distributions with the addition of
memory constraints ((Rebuffi et al., |2017; |Castro et al., [2018]) and derivative works), knowledge
distillation ((Schwarz et al.l |2018; |[Rolnick et al., 2018)) and similar works) or other requirements,
this work is a departure into using negative mining and focused training to improve learning on a
fully available dataset. In incremental/continual learning works, often the amount of data used to
retrain the network is small compared to the original dataset while in LILAC we fully use the entire
dataset, distinguished by Seen and Unseen labels. Thus, it avoids data deficient learning. Further,
works like Bucher et al.| (2016); [L1 et al.| (2013); Wang & Gupta (2015) emphasize the importance
of hard negative mining, both in size and diversity, in improving learning. Although the original
formulation of negative mining was based on imbalanced data, recent object detection works have
highlighted its importance in contrasting and improving learning in neural networks.

To summarize, our main contributions in LILAC are as follows,

e we introduce a new take on curriculum learning by incrementally learning labels as op-
posed to samples,

e our method adaptively compensates incorrectly labelled samples by softening their target
distribution which improves performance and removes external computational overheads,

e we improve average recognition accuracy and decrease the standard deviation of perfor-
mance across several image classification benchmarks compared to batch learning, a prop-
erty not shared by other curriculum learning and label smoothing methods.
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2 LILAC

In LILAC, our main focus is to induce better learning in deep networks. Instead of the conventional
curriculum learning approach of ranking samples, we consider all samples equally beneficial. Early
on, we focus on learning labels in fixed increments (Section @ Once the network has had a chance
to learn all the labels, we shift to regularizing the network to prevent over-fitting by providing a softer
distribution as the target vector for previously misclassified samples (Section [2.2). An overview of
the entire algorithm discussed is available in the appendix as Algorithm 1.

2.1 INCREMENTAL LABEL INTRODUCTION PHASE

In the incremental phase, we initially replace the ground-truth labels of several class using a constant
held-out label. Gradually, over the course of several fixed intervals of training we reveal the true
label. Within a fixed interval of training, we keep constant two sets of data, ”’Seen”, whose ground-
truth labels are known and “Unseen”, whose labels are replaced by a fake value. When training,
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Figure 1: (Top) In LILAC, data is virtually partitioned into either S : Seen or U : Unseen. Data
under S use their ground-truth labels while data in U use a designated fixed unseen label. (Bottom)
[lustration of the evolution of data partitions in the incremental label introduction phase for a four
label dataset. In the first incremental step, only one label is used for training while the remaining
data use label 4. A short period of training is performed with this fixed setup, where data from
U is uniformly sampled to match the number of samples from S, in every mini-batch. The final
incremental step depicted is equivalent to batch learning since all the labels are available to the
network. Once all the ground-truth labels are revealed we begin the adaptive compensation phase
described in Sec.
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mini-batches are uniformly sampled from the entire training set, but the instances from “Unseen”
classes use the held-out label. By the end of the final interval, we reveal all ground-truth labels.

We now describe the incremental phase in more detail. At the beginning of the incremental label
introduction phase, we virtually partition data into two mutually exclusive sets, S : Seen and U :
Unseen, as shown in Fig. [} Data samples in S use their ground-truth labels as target values while
those in U use a designated unseen label, which is held constant throughout the entire training
process. LILAC assumes a random ordering of labels, Or(M ), where M denotes the total number
of labels in the dataset. Within this ordering, the number of labels and corresponding data initially
placed in S is defined by the variable b. The remaining labels, M — b, are initially placed in U and
incrementally revealed in intervals of m labels, a hyper-parameter defined by the user.

Training in the incremental phase happens at fixed intervals of E epochs each. Within a fixed inter-
val, the virtual data partition is held constant. Every mini-batch of data is sampled uniformly from
the entire original dataset and within each mini-batch, labels are obtained based on their placement
in S or U. Then the number of samples from U is reduced or augmented, using a uniform prior, to
match the number of samples from S. This is done to ensure no unfair skew in predictions towards U
since all data points use the same designated label. Finally, the curated mini-batches of data are used
to train the neural network. At the end of each fixed interval, we reveal another set of m ground-
truth labels and move samples of those classes from U to S after which the entire data curation and
training process is repeated for the next interval.

2.2 ADAPTIVE COMPENSATION

Once all the ground-truth labels are available to the deep network, we begin the adaptive compen-
sation phase of training. The main idea behind adaptive compensation is, if the network is unable to
correctly predict a sample’s label even after allowing sufficient training time, then we alter the target
vector to a less peaked distribution. Compared to learning one-hot vectors, this softer distribution
can more easily be learned by the network. Unlike prior methods we adaptively modify the target
vector only for incorrectly classified samples on-the-fly.

In this phase, the network is trained for a small number of epochs using standard batch learning.
Let T be the total number of training epochs in the incremental phase and batch learning. During
the adaptive compensation phase, we start at epoch e, where e > T'. For a mini-batch of samples in
epoch e, predictions from the model at e — 1 are used to determine the final target vector used in the
objective function; specifically, we soften the target vector for an instance iff it was misclassified by
the model at the end of epoch e — 1. The final target vector for the ith instance at epoch e, t. ;, is
computed based on the model ¢._; using Equation|[I]

. {(ﬁ‘f—f)am + (475)1, argmax(de—1 (i) # '

1
Oy, s otherwise &

Here, (x;,y;) denote a training sample and its corresponding ground-truth label for sample index 4
while 6, represents the corresponding one-hot vector. 1 is a vector of M dimensions with all entries
as 1 and € is a scaling hyper-parameter.

3 EXPERIMENTS

Datasets We use three datasets, CIFAR-10, CIFAR-100 (Krizhevsky et al| (2009)) and STL-
10 (Coates et al.[(2011)), to evaluate our method and validate our claims. CIFAR-10 and CIFAR-100
are 10 and 100 class variants of the popular image benchmark CIFAR. Each of these contains 50,000
images in the training set and 10,000 images in the testing set. STL-10 is a 10 class subset of Ima-
geNet with 500 and 800 samples per class for training and testing subsets, respectively.

Metrics The common metric used to evaluate the performance of all the learning algorithms is
average recognition accuracy(%) and standard deviation across 5 trials. We also report consis-
tency, which is a binary metric that indicates whether the training strategy results in higher average
performance and lower standard deviation compared to standard batch learning across all datasets.
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Table 1: Performance comparison across all comparable methods and datasets. Under similar se-
tups, without any extra overheads in computation, LILAC consistently achieves higher accuracy
and lower std. dev. than batch learning across all compared datasets, which is not the case for any
other baseline. The highlighted performances represent the best case scenario which indicate higher
average performance combined with lower standard deviation compared to batch learning.

Performance (%)

Training CIFAR10  CIFAR 100 STL10  Comsistency
Batch Learning 90528 £ 0.141 7851 £0.145 73.68+0.764  N/A
Fixed Curriculum 9532+ 0.099 7736+0412 72.13 £ 0953 X
Label Smoothing 9539 £ 0.050 79.05+0.216 7226 + 0.638 X
Dynamic Batch Size (DBS) ~ 95.32 % 0.022 78.98 + 0206 73.20 = 0.656 X
Random Augmentation (RA) 95.22 = 0.060 72.49 + 0.467 73.63 + 0.387 X
LILAC w/o AC (ours) 9526 +£0.110 7844 0227 73.53 + 0.331 X

LS + LILAC (ours) 9539+ 0.088 79.07+0.171 73.80 = 0.714 X
LILAC (ours) 9535+ 0.098 7873 +0.127 74.35 + 0.568 v

Experimental Setup For CIFAR-10/100, we use ResNet18 (He et al.[(2016)) as the architectural

b

ackbone for all methods; for STL-10, we use ResNet34. In each interval of LILAC’s incremental

phase, we train the model for 10 epochs each for CIFAR-10/100, and 5 epochs each for STL-10.
During these incremental steps, we use a learning rate of 0.1, 0.01 and 0.1 for CIFAR-10, CIFAR-

1

00, and STL-10 respectively. The standard batch learning settings used across all datasets are

listed in the appendix. These settings reflect the setup used in LILAC once the incremental portion
of training is complete and the algorithm moves into the adaptive compensation phase. Within this
phase epochs 175, 525 and 120 are used as thresholds (epoch T") for CIFAR-10, 100 and STL-10
respectively.

Baselines

3.

Stochastic gradient descent with mini-batches is the baseline against which all methods are com-
pared.

Curriculum learning (Bengio et al., 2009) forms a family of related works which aim to help
models learn faster and optimize to a better minimum. Following the methodology proposed
in this work we artificially create a subset of the dataset called “Simple”, by selecting data that
is within a value of 1.1 as predicted by a linear one-vs-all SVR model trained to regress to the
ground-truth label. The deep network is trained on the “Simple” dataset for a fixed period of time
that mirrors the total number of epochs of the incremental phase of LILAC after which the entire
dataset is used to train the network.

Label Smoothing (Szegedy et al., [2016) is the closest relevant work to use label smoothing as a
form of regularization without extra data augmentation. This non-invasive baseline is used as a
measure of the importance of regularization and for its ability to boost performance.

Dynamic Batch Size (DBS) is a custom baseline used to highlight the importance of variable
batch size in training neural networks. DBS randomly copies data available within a mini-batch
to mimic variable batch size. Further, all ground-truth labels are available to this model throughout
the training process.

Random Augmentation (RA) is a custom baseline used to highlight the importance of virtual
data partitions in LILAC. Its implementation closely follows LILAC but excludes the adaptive
compensation phase. The main difference between LILAC and RA is that RA uses data from a
one randomly chosen class, in U, within a mini-batch while data from all classes in U is used in
LILAC to equalize the number of samples from S and U.

1 STANDARDIZED COMPARISON RESULTS

Table |1| clearly illustrates improvements in average recognition accuracy, decrease in standard de-
viation and consistency when compared to batch learning. While certain setups have the highest
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Table 2: Comparison of LILAC’s performance against top performing algorithms on CIFAR-10
with standard pre-processing (random crop + flip). Our method easily outperforms both the base
shake-drop network (Yamada et al.[(2018)) as well as previous methods.

Method CIFAR-10
Wide Residual Networks (Zagoruyko & Komodakis, 2016) 96.11
Multilevel Residual Networks (Zhang et al., 2017) 96.23
Fractional Max-pooling (Graham), |2014) 96.53
Densely Connected Convolutional Networks (Huang et al., 2017) 96.54
Drop-Activation (Liang et al., 2018)) 96.55
Shake-Drop (Yamada et al., [2018]) 96.59
Shake-Drop + LILAC (ours) 96.79

Table 3: Impact of different phases on the final performance of LILAC. Rows 1 and 2 compare
batch learning to LILAC without adaptive compensation while rows 3 and 4 highlight the impact
of adding adaptive compensation. While incremental label introduction on its own is not a stand-
out performer, adding adaptive compensation to it improves performance beyond standard batch
learning. The highlighted values indicate higher average performance combined with lower standard
deviation compared to batch learning.

Performance (%)

Training CIFAR 10 CIFAR 100 STL 10

Batch 9528 4+ 0.141 78.51 4+ 0.145 73.68 & 0.764
LILAC w/o AC (ours) 95.26 4+ 0.110 78.44 + 0.227 73.53 + 0.331
Batch + AC 95.38 + 0.136 78.54 +0.175 73.32 + 0.581
LILAC (ours) 95.35 + 0.098 78.73 + 0.127 74.35 + 0.568

performance on specific datasets (e.g., Label Smoothing on CIFAR-10/100), they are not consistent
across all datasets and do not find more stable solutions than LILAC (std. of 0.216 compared to
0.127 from LILAC) LILAC is able to achieve superior performance without unnecessary overheads
such as computing sample difficulty or irreversibly altering the ground-truth distribution across all
samples.

A key takeaway from DBS is the relative drop in standard deviation combined with higher average
performance when compared to baselines like fixed curriculum and label smoothing. RA serves
to highlight the importance of harvesting data from all classes in U simultaneously, for “negative”
samples. The variety of data to learn from provides a boost in performance and standard deviation
across the board in LILAC w/o AC as opposed to RA. DBS and RA underline the importance of
variable batch size and data partitioning in the makeup of LILAC.

We further extend LILAC to train the base pyramidnet with shake-drop regularization (p = 1.0) (Ya-
mada et al|(2018)). From Table 2] we clearly see that LILAC can be extended to provide the highest
performance on CIFAR-10 given a standard preprocessing setup. To provide a fair comparison we
highlight top performing methods with standard preprocessing setups that avoid partial inputs (at
the node or image level) since LILAC was developed with fully available inputs in mind. Across all
these learning schemes, LILAC is the only one to consistently increase classification accuracy and
decrease the standard deviation across all datasets compared to batch learning.

3.2 ABLATION: BREAKDOWN OF LILAC’S PHASES

Fig. ] illustrates the evolution of the embedding across the span of the incremental phase. This
space has more degrees of separation when compared to an equivalent epoch of training with batch
learning where all the labels are available. Table [3|provides a breakdown of the contribution of each
phase of LILAC and how they combine to elevate the final performance. Here, in LILAC w/o AC
we replace the entire AC phase with simple batch learning while in Batch + AC we include adaptive
compensation with adjusted thresholds. The first half of this table compares the impact of incre-
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CIFAR-10

(a) Evolution of representation space after 1/4, 1/2, 3/4 and full span of incremental phase (b) An epoch of batch learning

Figure 2: Side-by-side comparison between the representation spaces learned by LILAC and batch
learning. Through the entire incremental label introduction phase, the representation space evolves
to being more well spaced. Images in column 4 and 5 show comparable points in training space
when all labels are available to the deep network being trained. These images support our claim that
the deep network starts at a better initialization than standard batch learning, whose effect is carried
throughout the training process.

mentally introducing labels to a deep network against standard batch learning. We clearly observe
that performances across Rows 1 and 2 fall within the indicated standard deviation of each other.
However, from Fig. [2] we know that LILAC start from a qualitatively better solution. Combining
these results, we conclude that the emphasis on a lengthy secondary batch learning phase erodes
overall performance.

The second half of Table [3] shows the impact of adding adaptive compensation on batch learning
and LILAC. When added to standard batch learning there isn’t a clear and conclusive indicator of
improvement across all benchmarks in both average performance and standard deviation. However,
in combination with the incremental label introduction phase of LILAC, adaptive compensation im-
proves average performance as well as decreases standard deviation, indicating an improved stability
and consistency. Given the similarity in learning between the batch setup and LILAC, when all la-
bels have been introduced, we show that the embedding space learned by incrementally introducing
labels (Fig. [2) is distinct from standard batch learning and is more amenable to AC.

3.3 PROPERTIES OF LILAC

Through previous experiments we have established the general applicability of LILAC while con-
trasting its contributions to that of standard batch learning. In this section we dive deeper to reveal
some characteristics of LILAC that further supplement the claim of general applicability. Specifi-
cally, we characterize the impact of label ordering, smoothness of alternate target vector distribution
and injection of larger groups of labels in the incremental phase.

Ordering of Labels Throughout the standard experiments, we assume labels are used in the as-
cending order of value. When this is modified to a random ordering or in ascending order of diffi-
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Table 4: (Top) This table illustrates the impact of using random label order vs. ascending vs. as-
cending difficulty on LILAC w/o AC). LILAC doesn’t provide any explicit pattern in the outcomes.
(Middle) Varying the smoothness of the alternate target vector causes slight variations in perfor-
mance. (Bottom) Introducing multiple labels per incremental learning interval hurts performance.
The learned embedding space is different, which leads to diverging performances. The introduction
of a lower number of label allows for thorough learning and improved final performance in LILAC.
Highlighted numbers are peak average performance values.

Performance (%)

Property Training CIFAR-10 CIFAR-100 STL-10

Label Order: Rnd. 95.26 4+ 0.065 7827 4+ 0.122 73.74 + 0.846
Label Order: Asc. LILACWIo AC 56 1 0,110 78.44 + 0227 73.53 + 0.331
Label Order: Asc. Difficulty 95.42 4 0.089 7823 4+ 0.084 7331+ 1.117
e=1.0 95254 0.111 78334 0.178 73.68 + 0.815
=09 9531 +0.073 7846 + 0211 73.26 + 1.285
e=0.8 95.25 + 0.088 78.58 + 0.364 73.47 + 0.734
e=0.7 LILAC 95254 0.129 78.71 + 0.256  73.27 + 0.179
¢=0.6 95.33 +0.073 78.38 +0.257 73.71 + 0.421
=05 95.35 + 0.098 78.73 +0.127 74.35 + 0.568
=04 9530 4+ 0.127 78.62 4+ 0.208 73.38 & 1.296
Label Group (m): 1 9535 4+ 0.098 78.73 4+ 0.127 74.35 + 0.568
Label Group (m): 2 (5) LILAC 9522 +0.175 78.73 +0.215 72.95 + 0.372
Label Group (m): 3 (10) 9529 4+ 0.189  78.47 + 0275 73.61 + 0.771

culty, results from Table [] suggest that there is no explicit benefit or pattern. Other than the extra
impact of continually fluctuating label orders across trials, there isn’t a large gap in performance.
Thus, we claim LILAC is relatively invariant to the order of label introduction.

Smoothness of Target Vector in Adaptive Compensation During adaptive compensation, € =
0.5 is used in the alternate target vector for samples with failed predictions throughout all exper-
iments in Sections @] and @ When extended to a variety of ¢ values, we observe that most
variations of the peak performance still fall within the standard deviation range for each dataset.
However, the peak average performance values usually occur between 0.7 to 0.5.

Injection of Label Groups While LILAC was designed to allow the introduction of multiple la-
bels in a single incremental step, throughout the experiments in Sections[3.T]and[3.2]only 1 label was
introduced per step to allow thorough learning while eliminating the chance of conflicting decision
boundaries from multiple labels. Revealing multiple labels instead of 1 label per incremental step
has a negative impact on the overall performance of the model. Table [ shows that adding large
groups of labels force lower performance, which is in line with our hypothesis that revealing fewer
labels per incremental step makes the embedding space more amenable to adaptive compensation.

4 CONCLUSION

In this work, we proposed LILAC which rethinks curriculum learning based on incrementally learn-
ing labels instead of samples. This approach helps kick-start the learning process from a substan-
tially better starting point while making the learned embedding space amenable to adaptive negative
logit compensation. Both these techniques combine well in LILAC to show the highest performance
on CIFAR-10 for simple data augmentations while easily outperforming batch and curriculum learn-
ing and label smoothing on comparable network architectures. The next step in unlocking the full
potential of this setup is to extend this setup to include a confidence measure on the predictions of
network so that it can handle the effects of dropout or partial inputs. In further expanding LILAC’s
ability to handle partial inputs, we aim to explore its effect on standard incremental learning (mem-
ory constrained) while also extending it applicability to more complex neural network architectures.
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A LILAC: ALGORITHM

Algorithm 1: Training strategy inspired by incremental learning

initialization;

Input: (X,Y) whereY € ¢1, ¢, .., Cars

M = Total number of labels in the dataset;

m = Number of labels to introduce in 1 incremental step;
n = Total number of samples;

b = Starting incremental batch;

C= {Cl7 C2,y ey C]\[};

for inc_batch=b to () do

for fixed epochs e do

C={a,-, C(mc,batchx%er)};

ng = number of samples with labels in C H
S = {(zi,yi)lyi € O1Ss

U ={(z;,y;)ly; € C/C}Y,Z}'%;

s.it. |S| = |F'| 5
if inc_batch = % and e > 6 then
| F'=update target vectors using Eqn. ;
end
Train Model with data (S U F)

end

end

F' CU:F' ={(zj,y;)|ly; € C/CN’}?:@1 selected at random;

B HYPER-PARAMETER SETUPS

Table 5: List of hyper-parameters used to in batch learning. Note: All experiments used the SGD

optimizer.
Parameters | CIFAR10/100 | STL10
Epochs 300 450
Batch Size 128 128
Learning Rate 0.1 0.1
Lr Milestones [90 180 260] [300 400]
Weight Decay 0.0005 0.0005
Nesterov Momentum | Yes Yes
Gamma 0.2 0.1
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Table 6: List of hyper-parameters used in tSNE.

Parameters | Value

# Components 2
Perplexity 30.0
Early Exaggeration 12.0

Lr 200.0
Iterations 1000
Iterations w/o Progress | 300

Min. Grad. Norm le-07
Metric Euclidean
Method Barnes-Hut
Angle 0.5

C APPLICABILITY TO VIDEOS

Table 7: We extend LILAC to a 3D convolutional architecture and the HMDB51 (video) dataset.
We clearly observe an improvement in over performance when compared to batch learning.

Model Training HMDBS51 Performance (%)
Batch 45.52
GD [ ILAC wioNL 45.29
Batch + N_L 46.14
CD jiac 46.17

D PROPERTY: VARIATION OF FIXED INTERVAL SIZE IN INCREMENTAL

LABEL INTRODUCTION

Table 8: The table captures the effect of varying the number of epochs used for the fixed training
intervals in the incremental label introduction phase. Across CIFAR-10 there is an obvious peak
after which the mean value decreases. However, in STL-10 there seems to be a consistent increase,
with the assumption of minor noise. Finally, in CIFAR-100 there isn’t a clear pattern.

Property  Training

Performance (%)

CIFAR-10 CIFAR-100 STL-10
E=1 95.20 £ 0.042 78.39 £0.221 73.02 £ 0.949
E=3 95.19 £0.138  78.59 £0.147 73.26 £ 1.180
E=5 LILAC w/o AC 9533 £0.195 78.30+0.274 73.53 £ 0.331
E=7 95.37 £0.167 78.51 £0.209 73.23 £ 0.864
E=10 95.26 £0.110 78.44 £0.227 73.89 + 0.603

From the results in Table 8] we observe that the choice of E is dependent on the dataset. There isn’t
an explicit pattern that can be used to select the value of E without trial runs. Further, the available
run-time is an important constraint when select E from a range of values since both m and E affect

1t.
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