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Abstract

In this study, we proposed a segmentation method of major vessels on X-ray coronary
angiography using fully convolutional networks based on U-Net architecture. A novel loss
function pGD was introduced by adding a term for penalizing false negative and false
positive to generalized dice coefficient (GD). DenseNet121 with pGD achieved the highest
average DSC of 91.9±8.7%, precision of 91.3±8.8%, and recall of 92.6±9.6%, respectively
and showed improved segmentation performance compared to GD.

Keywords: Deep learning, X-ray coronary angiography, Major vessel segmentation, Penalty
Loss Function.

1. Introduction

X-ray coronary angiography (CAG) is a primary diagnostic imaging modality for coronary
artery diseases. Quantitative coronary angiography (QCA) provides principle morphological
indices such as diameter stenosis and lesion length to evaluate coronary lesions. However,
QCA analysis shows high inter-observer variability and limited reproducibility with manual
correction (Hermiller et al., 1992) because the vessel segmentation of CAG is hindered by
several causes (Figure 1). For automated CAG segmentation, although conventional image
processing methods (Wan et al., 2018) and deep learning networks (Au et al., 2018; Jo et al.,
2019) have been proposed, the segmentation accuracy was not sufficiently high for clinical
applications. In clinical practice, QCA analysis still takes 5-10 minutes per image set of
a patient for an expert using commercial software with semi-automatic segmentation tool
based on edge-detection method.
In this study, a fast and robust method for segmentation of three major vessels is proposed
using deep networks with introducing a novel loss function based on generalized dice coeffi-
cient (Sudre et al., 2017) to put an additional weight to both false negative and false positive.
Five fully convolutional networks were applied to evaluate the segmentation performance
by combining simple U-Net (Ronneberger et al., 2015), VGG16 (Simonyan and Zisserman,
2014), ResNet (He et al., 2016), DenseNet (Huang et al., 2017), and InceptionResNetv2
(Szegedy et al., 2017) encoders with U-Net decoder.
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Figure 1: Examples of CAG with segmentation label of major vessels (yellow line). Colored
circles show major causes to hinder the automated segmentation of CAG.

2. Methods

Data description. Patients underwent CAG in Asan Medical Center from February 2016
to November 2016 were retrospectively enrolled. Research approval was granted from In-
stitutional Review Board with a waiver of patient consent. Angiographic images of major
vessels for 1980 patients were collected and after excluding the images unable to recognize
the coronary structures like total chronic occlusion, a dataset of 5572 images was built. For
image labeling, lumen area of major vessel was annotated by two experts using commercial
software CAAS workstation 7.5 (Pie Medical Imaging, Netherlands). The ratio of training,
validation and test sets was 3 : 1 : 1.
Network architecture. The raw 512×512 size of CAG images were resized and stacked to
3 channels (224×224×3), and the input images were normalized according to 2-dimensional
min-max normalization technique. In this work, the network architecture motivated from
the U-Net was consisted of deep convolution layers of backbone and five 2 × 2 up-sample
layers concatenated with skip connection at same level (Appendix A). We used five back-
bones with initial weights of ImageNet (Russakovsky et al., 2015) for transfer learning.
Penalty Loss Function. For binary segmentation, a novel penalty loss function inspired
by generalized dice coefficient (GD) was introduced. GD is defined as 2(

∑c
l=1wl

∑p
nGlnPln)

/(
∑c

l=1wl
∑p

n(Gln + Pln)), where c is the number of classes, p is a total number of pixels,
Gln is ground truth and Pln is prediction result. wl = 1/(

∑p
n(Gln/c)

2 + ε) is set as a weight
to provide invariance to different label properties, where ε = 10−6. By adding a penalty
proportional to loss, 1 −GD, pGD is defined as

pGD =
GD

1 + k(1 −GD)
(1)

where k is a penalty coefficient. When k = 0, pGD is equivalent to GD, while pGD gives
additional weights to false positive and false negative for k > 0 (Appendix B).
Training setup. Mini-batch size was 16 and models were trained for 200 epochs. The data
augmentation was performed with rotation (−20◦ ∼ 20◦), width and height shift (0 ∼ 0.1),
and zoom (0 ∼ 0.1). For training, Adam optimizer (Kingma and Ba, 2014) was used, and
the learning rate which was initially set as 10−3 was reduced by half up to 10−6 when the
validation loss stayed saturated for 5 epochs on plateau.

3. Results

Segmentation performance of deep learning networks was evaluated with dice similarity co-
efficient (DSC), precision, and recall. In our experiments, DenseNet121 achieved the highest
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Figure 2: Comparison of ground truth (yellow line) and predicted lumen area (red line)
with (a) GD and (b) pGD, respectively. (c) DSC comparison with previous reports. (d)
Distribution of DSC in test set.

average DSC of 91.9± 8.7% (Table 1). With all the tested networks, pGD showed a higher
DSC than GD and the k maximizing DSC was within 2.2 − 2.6. For DenseNet121, pGD
considerably improved the false prediction in the cases of severe vessel overlap or catheter
interference (Figure 2). The deep learning required about 0.04 seconds per image.

Table 1: Performance of Proposed Networks (%).

Networks k DSC Precision Recall

Simple U-Net 2.3 89.8 ± 9.4 89.8 ± 9.1 90.3 ± 10.8
VGG16 2.2 89.3 ± 10.5 89.4 ± 10.0 90.0 ± 12.5

ResNet101 2.5 90.3 ± 9.8 89.5 ± 10.1 91.5 ± 10.5
DenseNet121 2.5 91.9± 8.7 91.3± 8.8 92.6± 9.6

InceptionResNetv2 2.6 91.7 ± 9.3 91.0 ± 9.6 92.7 ± 10.1

Table 2: Parameter Search of k (%).

k DSC Precision Recall

0 91.1 ± 9.7 90.5 ± 9.9 92.0 ± 10.7
1.0 90.7 ± 10.3 90.1 ± 10.5 91.8 ± 11.2
2.0 91.6 ± 8.2 90.9 ± 8.9 92.6 ± 9.1
2.5 91.9± 8.7 91.3± 8.8 92.6± 9.6
3.0 91.7 ± 8.6 91.4 ± 8.5 92.3 ± 9.8

4. Discussion

In lumen segmentation of CAG, the present study showed a higher DSC than the previous
reports (Au et al., 2018; Jo et al., 2019). The improved predictability was mainly responsible
for application of the latest deep learning networks with the large data set augmented with
normal vessel images. We further enhanced the segmentation performance with introducing
the novel loss function pGD. In the lumen prediction with deep learning, over 80% of
images in the test set had DSC > 90% and most predictive errors appeared at the proximal
or distal part of major vessels, which is little relevant to calculate the quantitative measures
of coronary geometry (Figure 3). Deep learning may not only provide a feasible way to be
relieved from the QCA analysis that requires labor-intensive manual corrections but also
allow an automated real-time diagnostics beyond eye estimation in the clinical practice.

Figure 3: Representative examples of Densenet121 prediction (red) versus ground truth
(yellow).
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Appendix A. Proposed U-Net Architecture with Backbone Encoder.

Appendix B. Proof of Theorem 1

The
∑p

n(1 −Gln)Pln term is summation of false negative and the
∑p

nGln(1 − Pln) term is
summation of false positive.
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