
Under review as a conference paper at ICLR 2019

SYNTHNET: LEARNING SYNTHESIZERS END-TO-END

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning synthesizers and generating music in the raw audio domain is a challeng-
ing task. We investigate the learned representations of convolutional autoregressive
generative models. Consequently, we show that mappings between musical notes
and the harmonic style (instrument timbre) can be learned based on the raw audio
music recording and the musical score (in binary piano roll format). Our proposed
architecture, SynthNet uses minimal training data (9 minutes), is substantially
better in quality and converges 6 times faster than the baselines. The quality of the
generated waveforms (generation accuracy) is sufficiently high that they are almost
identical to the ground truth. Therefore, we are able to directly measure generation
error during training, based on the RMSE of the Constant-Q transform. Mean
opinion scores are also provided. We validate our work using 7 distinct harmonic
styles and also provide visualizations and links to all generated audio.

1 INTRODUCTION

WaveNets (Van Den Oord et al., 2016) have revolutionized text to speech by producing realistic
human voices. Even though the generated speech sounds natural, upon a closer inspection the
waveforms are different to genuine recordings. As a natural progression, we propose a WaveNet
derrivative called SynthNet which can learn and render (in a controlled way) the complex harmonics
in the audio training data, to a high level of fidelity. While vision is well established, there is little
understanding over what audio generative models are learning. Towards enabling similar progress,
we give a few insights into the learned representations of WaveNets, upon which we build our model.

WaveNets were trained using raw audio waveforms aligned with linguistic features. We take a similar
approach to learning music synthesizers and train our model based on the raw audio waveforms of
entire songs and their symbolic representation of the melody. This is more challenging than speech
due to the following differences: 1) in musical compositions multiple notes can be played at the same
time, while words are spoken one at a time; 2) the timbre of a musical instrument is arguably more
complex than speech; 3) semantically, utterances in music can span over a longer time.

Van Den Oord et al. (2016) showed that WaveNets can generate new piano compositions based
on raw audio. Recently, this work was extended by Dieleman et al. (2018), delivering a higher
consistency in compositional styling. Closer to our work, Engel et al. (2017) describe a method for
learning synthesizers based on individually labelled note-waveforms. This is a labourius task and is
impractical for creating synthesizers from real instruments. Our method bypassses this problem since
it can directly use audio recodings of an artist playing a given song, on the target instrument.

SynthNet can learn representations of the timbre of a musical instrument more accurately and
efficiently via the dilated blocks through depthwise separable convolutions. We show that it is enough
to condition only the first input layer, where a joint embedding between notes and the corresponding
fundamental frequencies is learned. We remove the skip connections and instead add an additional
loss for the conditioning signal. We also use an embedding layer for the audio input and use SeLU
(Klambauer et al., 2017) activations in the final block.

The benchmarks against the WaveNet (Van Den Oord et al., 2016) and DeepVoice (Arik et al., 2017)
architectures show that our method trains faster and produces high quality audio. After training,
SynthNet can generate new audio waveforms in the target harmonic style, based on a given song
which was not seen at training time. While we focus on music, SynthNet can be applied to other
domains as well.

1

Under review as a conference paper at ICLR 2019

Our contributions are as follows: 1) We show that musical instrument synthesizers can be learned
end-to-end based on raw audio and a binary note representation, with minimal training data. Multiple
instruments can be learned by a single model. 2) We give insights into the representations learned by
dilated causal convolutional blocks and consequently propose SynthNet, which provides substantial
improvements in quality and training time compared to previous work. Indeed, we demonstrate
(Figure 4) that the generated audio is practically identical to the ground truth. 3) The benchmarks
against existing architectures contains an extensive set of experiments spanning over three sets of
hyperparameters, where we control for receptive field size. We show that the RMSE of the Constant-Q
Transform (RMSE-CQT) is highly correlated with the mean opinion score (MOS). 4) We find that
reducing quantization error via dithering is a critical preprocessing step towards generating the correct
melody and learning the correct pitch to fundamental frequency mapping.

2 RELATED WORK

In music, style can be defined as the holistic combination of the melodic, rhythmic and harmonic
components of a particular piece. The delay and sustain variation between notes determines the rhyth-
mic style. The latter can vary over genres (e.g. Jazz vs Classical) or composers. Timbre or harmonic
style can be defined as the short term (attack) and steady state (sustained frequency distribution)
acoustical properties of a musical instrument (Sethares, 2005). Our focus is on learning the harmonic
style, while controlling the (given) melodic content and avoiding any rhythmic variations.

The research on content creation is plentiful. For an in depth survey of deep learning methods for
music generation we point the reader to the work of Briot et al. (2017). Generative autoregressive
models were used in (Van Den Oord et al., 2016; Mehri et al., 2016) to generate new random content
with similar harmonics and stylistic variations in melody and rhythm. Recently, the work of Van
Den Oord et al. (2016) was extended by Dieleman et al. (2018) where the quality is improved and
the artificial piano compositions are more realistic. We have found piano to be one of the easier
instruments to learn. Donahue et al. (2018) introduce WaveGANs for generating music with rhythmic
and melodic variations.

Closer to our work, Engel et al. (2017) propose WaveNet Autoencoders for learning and merging the
harmonic properties of instrument synthesizers. The major difference with our work is that we are
able to learn harmonic styles from entire songs (a mapped sequence of notes to the corresponding
waveform), while their method requires individually labelled notes (NSynth dataset). With our
method the overhead of learning a new instrument is greatly reduced. Moreover, SynthNet requires
minimal data and does not use note velocity information.

Based on the architecture proposed by Engel et al. (2017), and taking a domain adaptation approach,
Mor et al. (2018) condition the generation process based on raw audio. An encoder is used to learn
note mappings from a source audio timbre to a target audio timbre. The approach can be more error
prone than ours, since it implies the intermediary step of correctly decoding the right notes from
raw audio. This can significantly decrease the generation quality. Interestingly, Mor et al. (2018)
play symphonic orchestras from a single instrument audio. However, there is no control over which
instrument plays what. Conversely, we use individual scores for each instrument, which gives the
user more control. This is how artists usually compose music.

3 END-TO-END SYNTHESIZER LEARNING

Van Den Oord et al. (2016) and Arik et al. (2017) have shown that generative convolutional networks
are effective at learning human voice from raw audio. This has advanced the state of the art in text to
speech (TTS). Here, we further explore the possibilities of these architectures by benchmarking them
in the creative domain – learning music synthesizers. There are considerable differences between the
human voice and musical instruments. Firstly, the harmonic complexity of musical instruments is
higher than the human voice. Second, even for single instrument music, multiple notes can be played
at the same time. This is not true for speech, where only one sound utterance is produced at a time.
Lastly, the melodic and rhythmic components in a musical piece span a larger temporal context than
a series of phonemes as part of speech. Therefore, the music domain is much more challenging.

2

Under review as a conference paper at ICLR 2019

3.1 BASELINE ARCHITECTURES

The starting point is the model proposed by Van Den Oord et al. (2016) with the subsequent
refinements in (Arik et al., 2017). We refer the reader to the these articles for further details. Our
data consists of triplets {(x1,y1, z1), . . . , (xN ,yN , zS)} over N songs and S styles, where xi is the
256-valued encoded waveform, yi is the 128-valued binary encoded MIDI and zs ∈ {1, 2, . . . , S}
is the one-hot encoded style label. Each audio sample xt is conditioned on the audio samples at all
previous timesteps x<t = {xt−1, xt−2, . . . , x1}, all previous binary MIDI samples and the global
conditioning vector. The joint probability of a waveform x = {x1, . . . , xT } is factorized as follows:

p(x|y, z) =

T∏
t=1

p(x|x<t,y<t, z). (1)

The hidden state before the residual connection in dilation block ` is

h` = τ
(
W `

f ∗ x`−1 + V `
f ∗ y`−1 + U `

f · z
)
� σ

(
W `

g ∗ x`−1 + V `
g ∗ y`−1 + U `

g · z
)
, (2)

while the output of every dilation block, after the residual connection is

x` = x`−1 + W `
r · h`, (3)

where τ and σ are respectively the tanh and sigmoid activation functions, ` is the layer index, f
indicates the filter weights, g the gate weights, r the residual weights and W , V and U are the
learned parameters for the main, local conditioning and global conditioning signals respectively.
The f and g convolutions are computed in parallel as a single operation (Arik et al., 2017). All
convolutions have a filter width of F . The convolutions with W ` and V ` are dilated.

To locally condition the audio signal, Van Den Oord et al. (2016) first upsample the y time series
to the same resolution as the audio signal (obtaining y`) using a transposed convolutional network,
while Arik et al. (2017) use a bidirectional RNN. In our case, the binary midi vector already has the
same resolution.

We use an initial causal convolution layer (Equation 4) that only projects the dimensionality of
the signal from 128 channels to the number of residual channels. The first input layers are causal
convolutions with parameters W 0 and V 0 for the waveform and respectively the piano roll:

y` = V 0 ∗ y, ∀` (4)

x0 = W 0 ∗ x. (5)
All other architecture details are kept identical to the ones presented in (Van Den Oord et al., 2016)
and (Arik et al., 2017) as best as we could determine. The differences between the two architectures
and SynthNet are summarized in Table 1. We compare the performance and quality of these two
baselines against SynthNet initially in Table 3 over three sets of hyperparmeters (Table 2). For the
best resulting models we perform MOS listening tests, shown in Table 5. Preliminary results for
global conditioning experiments are also provided in Table 4.

Table 1: Differences between the two baseline architectures and SynthNet.
Input Dilated conv Skip Final block

Channels Type Activation Separable Connection 1x1 Conv Activation

WaveNet 1 Scalar Conv None No Yes No ReLU
DeepVoice 256 1-hot Conv Tanh No Yes Yes ReLU

SynthNet 1 Scalar Embed Tanh Yes No No SeLU

3.2 GRAM MATRIX PROJECTIONS

We perform a set of initial experiments to gain more insight towards the learned representations.
We use Gram matrices to extract statistics since these have been previously used for artistic style
transfer (Gatys et al., 2015). After training, the validation data is fed through five locally conditioned
networks, each trained with a distinct harmonic style. The data has identical melodic content but has
different harmonic content (i.e. same song, different instruments). The Gram matrices are extracted
from the outputs of each dilated block (Equation 3) for each network - timbre.

3

Under review as a conference paper at ICLR 2019

L01
L02
L03
L04
L05
L06
L07
L08
L09
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26

■ Guitar ◆ Trumpet+�Piano ✖ G l o c k e n s p i el● Cello

Figure 1: Gram matrix projection from Eq. 3
Layers in color, shapes are styles (timbre).

These are flattened and projected onto 2D, simultane-
ously over all layers and styles via T-SNE (Maaten
& Hinton, 2008). The results presented in Figure 1
show that the extracted statistics separate further as the
layer index increases. A broad interpretation is that
the initial layers extract low-level generic audio fea-
tures, these being common to all waveforms. However,
since this is a controlled experiment, we can be more
specific. The timbre of a musical instrument is char-
acterized by a specific set of resonating frequencies
on top of the fundamental frequency (pure sine wave).
Typically one identifies individual notes based on their
fundamental, or lowest prominent frequency. These
depend on the physics of the musical instrument and
effects generated, for example, by the environment.
Since the sequence of notes is identical and the har-
monic styles differ, we conjectured that Figure 1 could
imply a frequency-layer correspondence. While the latter statement might be loose, the lower layers’
statistics are nevertheless much closer due the increased similarity with the fundamental frequency.

3.3 SYNTHNET ARCHITECTURE

tanh+

c1x1seluc1x1selu

c1x1c1x1

tanhtanh

convembd

x y

x ̂

sigmoid

softmax

c1x1

dilated conv

tanh sigm×

+

y ̂

Figure 2: SynthNet (also see Table 1) with a
multi-label cross-entropy loss for binary midi.

Figure 1 provides indicative results from many ex-
periments. Additional Gram matrix projections are
provided in Appendix B. We hypothesize that the
skip connections are superfluous and the condition-
ing of the first input layer should suffice to drive
the melodic component. We also hypothesize that
the first audio input layer learns an embedding cor-
responding to the fundamental pitches. Then, we
aim to learn mapping from the symbolic represen-
tation (binary midi code) to the pitch embeddings
(Equation 8). Therefore, in SynthNet there are no
parameters learned in each dilation block for local
conditioning and the hidden activation with global
conditioning (omitted in Figure 2) becomes

h` = τ
(
W `

f∗x`−1+U `
f ·z
)
�σ
(
W `

g∗x`−1+U `
g ·z
)
.

(6)

The input to the dilated blocks is the sum of the em-
bedding codes and the autoencoder latent codes:

yh = τ(V 0 · y) (7)

x0 = τ(W 0 · x) + τ(V h · yh) (8)

ŷ = V out · τ(V h · yh). (9)

As it can be seen in Figure 2 there are no skip connections and Equation 4 no longer applies. We also
found that using SeLU activations (Klambauer et al., 2017) in the last layers improves generation
stability and quality. Other normalization strategies could have been used, we found SeLU to work
well. In addition, we further increase sparsity by changing the dilated convolution in Equation 6 with
a dilated depthwise separable convolution. Separable convolutions perform a channel-wise spatial
convolution that is followed by a 1 × 1 convolution. In our case each input channel is convolved
with its own set of filters. Depthwise separable convolutions have been successfully used in mobile
and embedded applications (Howard et al., 2017) and in the Xception architecture (Chollet, 2017).
As we show in Table 4 and Table 5, the parsimonious approach works very well since it reduces the
complexity of the architecture and speeds up training.

In training, SynthNet models the midi data y in an auto-regressive fashion which is similar to the
way audio data is modeled, but with a simplified architecture (see Figure 2). In principle, this allows

4

Under review as a conference paper at ICLR 2019

the model to jointly generate both audio and midi. In practice, the midi part of the model is too
simple to generate interesting results in this way. Nonetheless, we found it beneficial to retain the
midi loss term during training, which it turns out, tends to act as a useful regularizer — we conjecture
by forcing basic midi features to be extracted. In summary, in contrast with Equation 1 we optimize
the joint log p(x,y|z), so that

L = − 1

N

N∑
i=1

|x|=256∑
j=1

xij log x̂ij +

|y|=128∑
j=1

(
yij log ŷij + (1− yij) log(1− ŷij)

) .
4 EXPERIMENTS

We compare exact replicas of the architectures described in Van Den Oord et al. (2016); Arik et al.
(2017) with our proposed architecture SynthNet. We train the networks to learn the harmonic audio
style (here instrument timbre) using raw audio waveforms. The network is conditioned locally with
a 128 binary vector indicating note on-off, extracted from the midi files. The latter describes the
melodic content. For the purpose of validating our hypothesis, we decided to eliminate extra possible
sources of error and manually upsampled the midi files using linear interpolation. For the results in
Table 4 the network is also conditioned globally with a one-hot vector which designates the style
(instrument) identity. Hence, multiple instrument synthesizers are learned in a single model. For
the hyperparameter search experiments (Table 3) and the final MOS results (Table 5) we train one
network for each style, since it is faster.

We use the Adam Kingma & Ba (2014) optimization algorithm with a batch size of 1, a learning rate
of 10−3, β1 = 0.9, β2 = 0.999 and ε = 10−8 with a weight decay of 10−5. We find that for most
instruments 100-150 epochs is enough for generating high quality audio, however we keep training
up to 200 epochs to observe any unexpected behaviour or overfitting. All networks are trained on
Tesla P100-SXM2 GPUs with 16GB of memory.

4.1 SYNTHETIC REGISTERED AUDIO

We generate the dataset using the freely available Timidity++1 software synthesizer. For training we
selected parts 2 to 6 from Bach’s Cello Suite No. 1 in G major (BWV 1007). We found that this
was enough to learn the mapping from midi to audio and to capture the harmonic properties of the
musical instruments. From this suite, the Prelude (since it is most commonly known) is not seen
during training and is used for measuring the validation loss and for conditioning the generated audio.

After synthesizing the audio, we have approximately 12 minutes of audio for each harmonic style, out
of which 9 minutes (75%) training data and 3 minutes (25%) of validation data. We experiment with
S = 7 harmonic styles which were selected to be as different as possible. Each style corresponds to a
specific preset from the ‘Fluid-R3-GM’ sound font. These are (preset number - instrument): S01 -
Bright Yamaha Grand, S09 - Glockenspiel, S24 - Nylon String Guitar, S42 - Cello, S56 - Trumpet,
S75 - Pan Flute and S80 - Square Lead.

For training, the single channel waveforms are sampled at 16kHz and the bit-depth is reduced to 8
bit via mu-law encoding. Before reducing the audio bit depth, the waveforms are dithered using a
triangular noise distribution with limits (−0.009, 0.009) and mode 0, which reduces perceptual noise
but more importantly keeps the quantization noise out of the signal frequencies. We have found this
critical for the learning process.

Without dithering there are melodic discontinuities and clipping errors in the generated waveforms.
The latter errors are most likely due to notes getting mapped to the wrong set of frequencies (artifacts
appear due to the quantization error). From all harmonic styles, the added white noise due to dithering
is most noticeable for Glockenspiel, Cello and Pan Flute. The midi is upsampled to 16kHz to match
the audio sampling rate via linear interpolation. Each frame contains a 128 valued vector which
designates note on-off times for each note (piano roll).

1http://timidity.sourceforge.net/

5

Under review as a conference paper at ICLR 2019

4.2 MEASURING AUDIO GENERATION QUALITY

Quantifying the performance of generative models is not a trivial task. Similarly to Van Den Oord
et al. (2016); Arik et al. (2017) we have found that once the training and validation losses go beyond
a certain lower threshold, the quality improves. However, the losses are only informative towards
convergence and overfitting (Figure 3) - they are not sensitive enough to accurately quantify the
quality of the generated audio. This is critical for ablation studies where precision is important. Theis
et al. (2015) argue that generative models should be evaluated directly. Then, the first option is the
mean opinion score (MOS) via direct listening tests. This can be impractical, slowing down the
hyperparameter selection procedure. MOS ratings for the best found models are given in Table 5.

0 50 100 150 200
Epoch

1

1.5

2

2.5

3

3.5

4

4.5

C
ro

ss
-e

nt
ro

py

Training

Piano
Glockenspiel
Guitar
Cello
Trumpet
Flute
Square

0 50 100 150 200
Epoch

1

1.5

2

2.5

3

3.5

4

4.5

C
ro

ss
-e

nt
ro

py

Validation

SynthNet
DeepVoice

0 20 40 60 80 100 120 140 160 180 200
Epoch

0

5

10

15

20

25

R
M

S
E

-C
Q

T

DeepVoice: Generation error @ epoch

20 40 60 80 100 120 140 160 180 200
Epoch

0

5

10

15

20

25
R

M
S

E
-C

Q
T

SynthNet: Generation error @ epoch

Piano
Glockenspiel
Guitar
Cello
Trumpet
Flute
Square

Figure 3: Seven networks are trained, each with a different harmonic style. Top, losses: training (left)
validation (right). Bottom, RMSE-CQT: DeepVoice (left [Tbl. 3, col. 6]) and SynthNet (right [Tbl. 3,
col. 8]). DeepVoice overfits for Glockenspiel (top right, dotted line). Convergence rate is measured
via the RMSE-CQT, not the losses. The capacity of DeepVoice is larger, so the losses are steeper.

Instead, we propose to measure the root mean squared error (RMSE) of the Constant-Q Transform
(RMSE-CQT) between the generated audio and the ground truth waveform (Figure 3, lower plots).
Similarly to the Fourier transform, the CQT (Brown, 1991) is built on a bank of filters, however
unlike the former it has geometrically spaced center frequencies that correspond to musical notes.

SynthNet: Constant-Q Power

SynthNet: RMSE-CQT 8.11

DeepVoice: Constant-Q Power

DeepVoice: RMSE-CQT 15.92

Ground Truth: Constant-Q Power

Ground Truth: Harmonic (blue) Percussive (red)

Figure 4: Left: 1 second of ground truth audio of Bach’s BWV1007 Prelude, played with FluidSynth
preset 56 Trumpet. Center: SynthNet high quality generated. Right: DeepVoice low quality generated
showing delay. Further comparisons over other instrument presets are provided in Appendix A. We
encourage the readers to listen to the samples here: http://bit.ly/synthnet_appendix_a

Other metrics were evaluated as well however only the RMSE-CQT was correlated with the quality
of the generated audio. This (subjective) observation was initially made by listening to the audio
samples and by comparing the plots of the audio waveforms (Figure 4). Roughly speaking, as we

6

http://www.fluidsynth.org/
http://bit.ly/synthnet_appendix_a

Under review as a conference paper at ICLR 2019

also show in Figure 4 (top captions) and Figure 3 (lower plots), we find that a RMSE-CQT value
below 10 corresponds to a generated sample of reasonable quality. The RMSE-CQT also penalizes
temporal delays (Figure 4 - right) and is also correlated with the MOS (Table 3 and Table 5).

We generate every 20 epochs during training and compute the RMSE-CQT to check generation
quality. Indeed, Figure 3 shows that the generated signals match the target audio better as the training
progresses, while the losses flatten. However, occasionally the generated signals are shifted or the
melody is slightly inaccurate - the wrong note is played (Figure 4 - right). This is not necessarily
only a function of the network weight state since the generation process is stochastic. We set a fixed
random seed at generation time, thus we only observe changes in the generated signal due to weight
changes. To quantify error for one model, the RMSE-CQT is averaged over all epochs.

4.3 HYPERPARAMETER SELECTION

There are many possible configurations when it comes to the filter width F , the number of blocks
B, and the maximum dilation rate R. The dilation rates per each block are: {20, 21, . . . , 2R−1}. In
addition there is the choice of the number of residual and skip channels. For speech Arik et al. (2017)
use 64 residual channels and 256 skip channels, Engel et al. (2017) use 512 residual channels and 256
skip channels, while Mor et al. (2018) use 512 for both. These methods have receptive field ∆ < 1.
Since the latter two works are also focused on music, we use 512 channels for both the residual and
skip convolutions and set the final two convolutions to 512 and 384 channels respectively.

We hypothesize that it is better to maximize the receptive field ∆ while minimizing the number of
layers. Therefore, in our first experiments (Table 3) we limit the receptive field to 1 second and vary
the other parameters according to Table 2. We have observed that the networks train faster and the
quality is better when the length of the audio slice is maximized within GPU memory constraints.

Table 2: Three setups for filter, dilation and number of blocks resulting in a similar receptive field.
Filter width F Num blocks B Max dilation R Receptive field ∆

L24 3 2 12 1.0239 sec
L26 2 2 13 1.0240 sec
L48 2 4 12 1.0238 sec

Table 3: Mean RMSE-CQT and 95% confidence intervals (CIs). Two baselines are benchmarked for
three sets of model hyperparameter settings (Table 2), all other parameters identical. One second
of audio is generated every 20 epochs (over 200 epochs) and the error versus the target audio is
measured and averaged over the epochs, per instrument. Total number of parameters and training time
are also given. All waveforms and plots available here: http://bit.ly/synthnet_table3

WaveNet DeepVoice SynthNet
L24 L26 L48 L24 L26 L48 L24 L26 L48

S01 16.56±4.67 14.83±5.39 18.15±2.88 10.80±1.66 9.32±1.97 17.28±2.19 6.30±1.01 5.96±1.10 5.51±0.85
S09 24.01±5.38 22.20±4.56 25.47±3.96 22.65±5.25 17.54±3.86 27.48±2.55 11.58±1.50 12.53±2.37 10.91±1.40
S24 17.68±3.05 18.95±4.13 19.30±1.26 18.03±1.58 16.33±1.79 19.19±1.25 8.00±1.71 8.53±1.51 7.82±1.32
S42 15.83±3.91 17.20±3.53 16.29±3.38 11.92±0.94 13.77±2.06 13.89±1.73 8.61±1.12 8.84±0.96 8.33±0.74
S56 18.50±2.23 17.25±2.98 22.89±1.73 17.04±0.34 17.16±1.05 21.45±1.37 8.90±0.95 10.37±1.41 8.97±1.42
S75 20.89±6.90 20.03±6.73 19.78±5.15 11.93±1.30 12.75±1.93 11.30±0.64 9.68±1.22 9.83±1.10 10.20±1.60
S80 27.73±2.29 26.74±3.92 26.96±4.71 20.41±1.80 20.09±2.91 20.95±2.77 5.14±1.46 7.66±2.31 7.91±2.41

All 20.02±1.79 19.60±1.73 21.35±1.48 16.18±1.30 15.31±1.10 18.57±1.36 8.32±0.63 9.10±0.70 8.52±0.62

Params 8.23e+7 6.18e+7 1.14e+8 8.90e+7 6.89e+7 1.27e+8 7.35e+6 7.80e+6 1.36e+7
Time 4d2h 4d2h 8+ days 4d10h 3d9h 8+ days 16 hours 16 hours 1d5h

It can be seen in Table 3 that SynthNet outperforms both baselines. Some instruments are more
difficult to learn than others (also see Figure 3). This is also observable from listening to and
visualizing the generated data (available here http://bit.ly/synthnet_table3).

The lowest errors for the first four instruments are observed for SynthNet L48 while the last three
are lowest for SynthNet L24 (Table 3 slanted). This could be due to either an increased granularity
over the frequency spectrum, provided by the extra layers of the L48 model or a better overlap. The

7

http://bit.ly/synthnet_table3
http://bit.ly/synthnet_table3

Under review as a conference paper at ICLR 2019

best overall configuration is SynthNet L24. For DeepVoice and WaveNet, both L24 and L48 have
more parameters (Table 3, second last row) and are slower to train, even though all setups have the
same number of hidden channels (512) over both baseline architectures. This is because of the skip
connections and associated convolutions.

Global conditioning We benchmark only DeepVoice L26 against SynthNet L24, with the difference
that one model is trained to learn all 7 harmonic styles simultaneously (Table 4). This slows down
training considerably. The errors are higher as opposed to learning one model per instrument, however
SynthNet has the lowest error. We believe that increasing the number of residual channels would
have resulted in lower error for both algorithms. We plan to explore this in future work.

Table 4: RMSE-CQT Mean and 95% CIs. All networks learn 7 harmonic styles simultaneously.
Experiment Piano Glockenspiel Guitar Cello Trumpet Flute Square All Time

DeepVoice L26 14.01±1.41 19.68±3.29 16.10±1.60 13.80±2.11 18.68±2.04 15.40±3.22 15.64±1.76 16.19±0.91 12d3h
SynthNet L26 9.37±0.71 15.12±3.39 11.88±0.95 11.66±2.35 13.98±1.70 12.01±1.36 10.90±1.17 12.13±0.74 5d23h

4.4 MOS LISTENING TESTS

Given the results from Table 3, we benchmark the best performing setups: WaveNet L26, DeepVoice
L26 and SynthNet L24. For these experiments, we generate samples from multiple songs using the
converged models from all instruments. We generate 5 seconds of audio from Bach’s Cello suites not
seen during training, namely Part 1 of Suite No. 1 in G major (BWV 1007), Part 1 of Suite No. 2 in
D minor (BWV 1008) and Part 1 of Suite No. 3 in C major (BWV 1009) which cover a broad range
of notes and rhythm variations.

Table 5 shows that the samples generated by SynthNet are rated to be almost twice as better than the
baselines, over all harmonic styles. By listening to the samples (http://bit.ly/synthnet_
mostest), one can observe that Piano is the best overall learned model, while the basline algorithms
have trouble playing the correct melody over longer timespans for other styles. We would also like to
remind the reader that all networks have been trained with only 9 minutes of data.

Table 5: Listening MOS and 95% CIs. 5 seconds of audio are generated from 3 musical pieces (Bach‘s
BWV 1007, 1008 and 1009), over 7 instruments for the best found models. Subjects are asked to
listen to the ground truth reference, then rate samples from all 3 algorithms simultaneously. 20 ratings
are collected for each file. Audio and plots here: http://bit.ly/synthnet_mostest

Experiment Piano Glockenspiel Guitar Cello Trumpet Flute Square All

WaveNet L26 2.22±0.25 2.48±0.23 2.18±0.25 2.37±0.28 2.18±0.29 2.37±0.22 2.30±0.09 2.30±0.10
DeepVoice L26 2.55±0.32 1.85±0.23 2.30±0.39 2.62±0.27 2.28±0.32 2.20±0.25 1.87±0.03 2.24±0.11

SynthNet L24 4.75±0.14 4.45±0.17 4.30±0.19 4.50±0.15 4.25±0.18 4.15±0.21 4.10±0.16 4.36±0.07

5 DISCUSSION

In the current work we gave some insights into the learned representations of generative convolutional
models. We tested the hypothesis that the first causal layer learns fundamental frequencies. We
validated this empirically, arriving at the SynthNet architecture which converges faster and produces
higher quality audio.

Our method is able to simultaneously learn the characteristic harmonics of a musical instrument
(timbre) and a joint embedding between notes and the corresponding fundamental frequencies. While
we focus on music, we believe that SynthNet can also be successfully used for other time series
problems. We plan to investigate this in future work.

REFERENCES

Sercan O Arik, Mike Chrzanowski, Adam Coates, Gregory Diamos, Andrew Gibiansky, Yongguo
Kang, Xian Li, John Miller, Andrew Ng, Jonathan Raiman, et al. Deep voice: Real-time neural

8

http://bit.ly/synthnet_mostest
http://bit.ly/synthnet_mostest
http://bit.ly/synthnet_mostest

Under review as a conference paper at ICLR 2019

text-to-speech. arXiv preprint arXiv:1702.07825, 2017.

Jean-Pierre Briot, Gaëtan Hadjeres, and François Pachet. Deep learning techniques for music
generation-a survey. arXiv preprint arXiv:1709.01620, 2017.

Judith C Brown. Calculation of a constant q spectral transform. The Journal of the Acoustical Society
of America, 89(1):425–434, 1991.

François Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv preprint,
pp. 1610–02357, 2017.

Sander Dieleman, Aäron van den Oord, and Karen Simonyan. The challenge of realistic music
generation: modelling raw audio at scale. arXiv preprint arXiv:1806.10474, 2018.

Chris Donahue, Julian McAuley, and Miller Puckette. Synthesizing audio with generative adversarial
networks. arXiv preprint arXiv:1802.04208, 2018.

Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and
Mohammad Norouzi. Neural audio synthesis of musical notes with wavenet autoencoders. arXiv
preprint arXiv:1704.01279, 2017.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of artistic style. arXiv
preprint arXiv:1508.06576, 2015.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. In Advances in Neural Information Processing Systems, pp. 971–980, 2017.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain, Jose Sotelo, Aaron
Courville, and Yoshua Bengio. Samplernn: An unconditional end-to-end neural audio generation
model. arXiv preprint arXiv:1612.07837, 2016.

Noam Mor, Lior Wolf, Adam Polyak, and Yaniv Taigman. A universal music translation network.
arXiv preprint arXiv:1805.07848, 2018.

William A Sethares. Tuning, timbre, spectrum, scale. Springer Science & Business Media, 2005.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. arXiv preprint arXiv:1511.01844, 2015.

Aäron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw
audio. CoRR abs/1609.03499, 2016.

9

Under review as a conference paper at ICLR 2019

A GENERATED WAVEFORMS VS. GROUND TRUTH

Audio samples and visualizations here: http://bit.ly/synthnet_appendix_a
Ground Truth SynthNet DeepVoice

10

http://bit.ly/synthnet_appendix_a

Under review as a conference paper at ICLR 2019

B GRAM MATRIX PROJECTIONS

Figure 5: Gram matrices extracted during training, every 20 epochs. Top left: extracted from
Equation 3. Top right: extracted from Equation 2. Bottom left: extracted from the filter part of
Equation 2. Bottom right: extracted from the gate part of Equation 2.

11

	Introduction
	Related work
	End-to-end synthesizer learning
	Baseline architectures
	Gram matrix projections
	SynthNet architecture

	Experiments
	Synthetic registered audio
	Measuring audio generation quality
	Hyperparameter selection
	Global conditioning
	MOS listening tests

	Discussion
	Generated waveforms vs. ground truth
	Gram matrix projections

