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ABSTRACT

With the ever increasing demand and the resultant reduced quality of services, the
focus has shifted towards easing network congestion to enable more efficient flow
in systems like traffic, supply chains and electrical grids. A step in this direction is
to re-imagine the traditional heuristics based training of systems as this approach
is incapable of modelling the involved dynamics. While one can apply Multi-
Agent Reinforcement Learning (MARL) to such problems by considering each
vertex in the network as an agent, most MARL-based models assume the agents
to be independent. In many real-world tasks, agents need to behave as a group,
rather than as a collection of individuals. In this paper, we propose a framework
that induces cooperation and coordination amongst agents, connected via an un-
derlying network, using emergent communication in a MARL-based setup. We
formulate the problem in a general network setting and demonstrate the utility of
communication in networks with the help of a case study on traffic systems. Fur-
thermore, we study the emergent communication protocol and show the formation
of distinct communities with grounded vocabulary. To the best of our knowledge,
this is the only work that studies emergent language in a networked MARL setting.

1 INTRODUCTION

Co-existing intelligent agents affect each other in non-trivial ways. Consider for example, two agents
playing a modified variant of archery in two dimensions. Agent A controls the speed at which the
arrow is released but it can only shoot along y-axis. Agent B controls wind speed along x-axis.
The arrow drifts along the direction of wind with a magnitude proportional to wind speed. A target
is specified by (x, y) coordinates and the agents must act cooperatively to shoot the target. In this
setup, the optimal action for agent A depends on the current policy of agent B and vice versa. Any
change in one agent’s policy modifies the other agent’s perception about the environment dynamics.
Formally, this issue is referred to as non-stationarity of environment in a multi-agent setup. This
non-stationarity makes the learning problem hard and approaches that try to independently learn
optimal behavior for agents do not perform well in practice (Tan, 1993). Thus, it is important to
develop models that have been tailored towards training multiple agents simultaneously.

In this paper, we focus on a specific multi-agent setup where the agents are connected to each other
via an underlying fixed network topology. We cast the problem in the multi-agent reinforcement
learning (MARL) framework and assume that agents are rewarded by the environment based on
their actions and their goal is to cooperatively maximize their rewards. We further assume that the
agents have been endowed with the ability to communicate with one another along the network
edges to achieve cooperation. However, the communication protocol is not fixed and the agents
must learn a protocol to communicate with each other in order to maximize their rewards.

Communication is essential in a multi-agent setup. In many practical scenarios, agents may only ob-
serve a small portion of the global environment state and they must take actions based on their local
observations. As discussed above, agents affect each other in non-trivial ways through their actions.
Thus, for achieving long term cooperation, it is essential for agents to be able to share their intents
to complement the information provided by the local observation of each agent. Communication
provides the ability to do so to the agents.

Many real world problems can be cast in this framework and we provide a number of concrete
examples after formally defining the problem setup in Section 2. For clarity of exposition and
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to be more concrete, in this paper, we focus on a particular real world problem as a case study, the
problem of intelligently managing traffic. We present the traffic management problem as a particular
instantiation of the abstract multi-agent reinforcement learning problem that we have informally
defined above (see Section 2 for a formal definition). In this context, the agents correspond to
traffic lights and the underlying network is the network of roads. Agents receive rewards from the
environment based on factors like queue length at the traffic junction and must communicate with
each other to cooperatively maximize their rewards, thereby ensuring a smooth flow of traffic.

We propose a MARL-based traffic system that allows coordination between traffic signals (agents)
via: (i) inter-agent communication; and (ii) a cooperative reward structure. At each time-step, the
agents communicate with their immediate neighbours in the underlying network by broadcasting
a message in the form of a discrete symbol (each message corresponds to a word, represented by
a binary vector in our experiments). Over time, the agents are trained to exploit this broadcasted
message to coordinate with each other and maximize their rewards. As the agents are trained,
a language emerges between pairs of agents. Since the agents learn the communication protocol
themselves, our approach is different from methods that use a fixed protocol for communication,
like smart-grids.

We empirically demonstrate the utility of communication in this setup and also investigate a coop-
erative reward structure over the network of traffic junctions. Our model uses a query-based soft
attention mechanism to help the agents come up with more complex cooperative strategies. We
perform extensive experimental evaluation to demonstrate that (i) our method outperforms baseline
approaches; (ii) communication is useful, (iii) communication is grounded in actions taken by the
agents, and (iv) the cooperative reward structure promotes communication and hence coordination.

2 PROBLEM SETUP

2.1 NOTATION AND PRELIMINARIES

Markov games generalize the notion of a Markov decision process (MDP). A Markov game is used
to model an environment where N intelligent agents co-exist. Let S ⊆ Rds be the set of all possible
environment states (i.e., state-space) and denote by Oi ⊆ Rdoi the observation space of agent i. At
each step, agent i chooses an action from its action spaceAi and in response to the actions chosen by
all agents, the environment state is updated using the transition function T : S ×A1 × · · · ×AN →
∆(S) where ∆(S) is the set of all probability distributions defined over set S. The environment
provides a reward to each agent at each time-step using a reward function ri: S × Ai → R. For
i = 1, 2, . . . , N , the goal of ith agent is to find a policy πθi : Oi → ∆(Ai) that chooses optimal
actions so as to maximize the long term reward, Ri =

∑
t γ

trti where rti is the reward received by
agent i at time-step t and γ ∈ (0, 1] is the discount factor.

Figure 1: Traffic networks used in our experiments. Network 1 : On the left is a 10-agent network
(denoted by {0, . . . , 9}) interconnected by bidirectional lanes. Network 2 : On the right is a 28-
agent network with 14 agents in each of the sub-networks (A & B) connected by one-way lanes.

2.2 PROBLEM DEFINITION

We model the problem as a Markov game with two additional assumptions: (i) let V = {1, 2, . . . , N}
be the set of all agents, we assume that the agents are connected to each other via an underlying net-
work whose edge set is given by E ; and (ii) agents can communicate with their immediate neighbors
in the underlying network. To communicate, at each step, agents broadcast a message. This mes-
sage is received by the neighbors at the next time-step. The observation space of each agent is
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augmented to consider the messages received from all of its neighbors in addition to considering the
local observation made by that agent.

The agents act in a cooperative setting as follows: first, the environment provides a reward rti to all
agents. Then, each agent i, augments this reward to include the information about rewards received
by its neighbors, i.e., r̄ti = βrti + (1 − β) 1

|U(i)|
∑
j∈U(i) r

t
j . Here, β assigns relative importance to

agent’s own rewards and the rewards of its neighbors (β ∈ (0, 1]) and U(i) is the set of neighbors
of agent i. The agents are trained to maximize long term rewards R̄i =

∑
t γ

tr̄ti . As agents also
benefit from the rewards obtained by their neighbors, they act cooperatively.

Such a setup can for instance be used to model an intelligent electrical distribution network. In this
application, agents represent power stations and the underlying network corresponds to the electrical
grid. Each agent has a production capacity and it may choose to share the power generated by it
with a neighboring agent (action space). All agents have to meet the local demand which changes
stochastically and they observe various attributes like power requirements, consumer demand and
so on (observation space). Rewards ri are provided based on how successful an agent is in meeting
the demand. The agents must learn to communicate with each other to effectively share the power
generated by them to maximize their cooperative long term rewards R̄i.

As another application, consider a supply chain where interconnected warehouses (agents) have
to manage their inventory to meet the local demand. As before, agents can choose to ship goods
that they have in their inventory, to their neighbors (action space). The warehouses have to meet
stochastically changing consumer demands and must learn to communicate effectively in order to
share goods so that an appropriate level of inventory is maintained at each warehouse. As in the case
of electrical distribution network, rewards received by agents depend on their ability to effectively
meet the local demand.

While many applications are possible, in this paper, we focus on the problem of traffic management
as a concrete instantiation of the proposed abstract problem. Each traffic junction corresponds to an
agent which are connected to each other via the underlying network of roads. Agents can control
the flow of traffic in the system by modulating the traffic lights (action space). They take actions
based on their local observations, which in our case, is a image containing snapshot of the immediate
surroundings of the agent. Agents are rewarded based on predefined attributes like queue length at
the traffic junction, average waiting time of vehicles at the junction and so on. We again train the
agents to maximize the long term cooperative rewards. Clearly, in order to ensure a smooth flow of
traffic, the agents must communicate with each other to share their intent. We use the SUMO traffic
simulator (Krajzewicz et al., 2012) to simulate the traffic for the experiments.

Figure 2: Visualizing an exchange of messages be-
tween agent i (enclosed by dotted lines) and its neigh-
bours Ui for a traffic network.

In our setup, we use binary messages with
d = 8. As such, agents are limited to a vo-
cabulary of 256 words. Communication is
one-hop, i.e. we only allow agents to com-
municate with its immediate neighbours.
At each time-step, the agents broadcast 8-
bit messages to its respective neighbours.
Agents rely on their local observations and
received messages to modulate the traf-
fic signals and to decide the next mes-
sage to be broadcasted. We opted for dis-
crete communication rather than contin-
uous since it is more interpretable. For
the real world applications that we have
mentioned above, transparency in decision
making is important and using discrete
communication is a step in this direction.
Towards this end, we demonstrate that the
emergent language is grounded, i.e. mes-

sages correspond to actions in Section 5. By forcing agents to communicate with the help of discrete
symbols, we ensure that humans can inspect and interpret the conversation logs.
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3 RELATED WORK

The simplest and one of the most widely used approaches to tackle the traffic management prob-
lem is the Fixed-time Control (Miller, 1963; Webster, 1958), which uses a predefined cycle for
planning. Network level control like the Max-Pressure Controller (Varaiya, 2013) differ from the
conventional approaches in respect to greedily switching phases based on demand (queue length
in adjoining lanes). Similarly, Self-Organizing Traffic Light Control (SOTL) (Cools et al., 2008)
method switches the traffic lights based on when the number of vehicles in the lanes crosses a pre-
defined threshold. These methods are locally adapted to the traffic conditions which in turn is used
to achieve global synchronization. Optimization methods like TUC (Diakaki et al., 2000) assume
uniform traffic flow in a certain time period to minimize the vehicle travel time.

We argue that conventional traffic control methods base their problem setup on assumptions which
do not hold while modelling the dynamics of traffic. In the recent past, people have resorted to the
use of Reinforcement Learning methods to dynamically adapt to the traffic conditions (Prabuchan-
dran K.J. et al., 2014; Li et al., 2016; Wei et al., 2018), wherein, each junction is treated as an agent
and the changes in traffic lights are actions. The agents try to maximize their long term reward
by mapping a predefined observation space (representation of the traffic conditions at its junction)
to the action space. However, these Deep-Q Learning (DQN) based approaches often consider the
agents to be independent of one another, thus rendering the environment non-stationary, and raising
convergence and stability issues.

A straightforward way to address the above problems is to make the agents coordinate amongst
themselves by including the information from the neighbouring agents in its state space (Dresner &
Stone, 2006; El-Tantawy et al., 2013; Du, 2019), assuming total observability. Another way would
be to use centralized training (Lowe et al., 2017) to address stationary related issues. However,
centralized training poses scalabilty problems (especially in a traffic-management system where the
complexity increases linearly with the junctions) and cannot be used to learn policies in real time.
Scalable multi-agent approaches like Van der Pol & Oliehoek (2016) propose to train a smaller
source problem involving fewer agents (2 agents) and transfer it to a larger target problem using
transfer-learning.

Prior work on extending MARL setup to networks using a fully decentralized training has been
proposed by Zhang et al. (2018), wherein the authors propose to share the local parameters of the
agents through communication. Drawing motivation from the recent advancements in emergent
communication (Havrylov & Titov, 2017; Mordatch & Abbeel, 2017), we try to induce coordination
amongst agents with partial observability. We argue that with a cooperative reward structure, agents
can be made to pass on relevant information to their neighbours, which the independent agents
were previously incapable of modelling using their own observation space. Concurrent to our work,
Sukhbaatar et al. (2016) proposed a similar idea of using communication in traffic networks. Their
approach differs from ours in the following ways: (i) They consider cars as agents, whereas we
formulate this as a network problems with nodes, which are fixed, as agents; (ii) They use continuous
communication, whereas we use discrete communication in our setup for better interpretability;
(iii) In their setup, every agent can communicate with the other agents, whereas we restrict the
communication to its immediate neighbours with a priority assigned to each message.

4 PROPOSED METHOD

Figure 3: Permitted actions for 4-way and 3-way junctions. [Left-hand traffic]

Image Encoder: As shown in Fig. 1, we use a 10-agent traffic network (Network 1) which com-
prises both, 3-way as well as 4-way junctions. The observation space of the agents in the traffic
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network comprises the image representation of the junction. This amorphous representation of the
observation space propels the agent to extract necessary information from the image, like length of
the queue in the adjoining lanes or the current phase at the junction. One can always add these in-
formation to the state directly and, in general, adding more information to the state space often leads
to better results (Havrylov & Titov, 2017), nonetheless, such systems carry redundant information
and are impractical to deploy. For instance, consider lining the lanes with sensors to calculate the
number of vehicles. A Convolution Neural Network (CNN) (Lecun et al., 1998) is used to process
the input image and extract specific features required for optimizing traffic.

Accumulator: The agents, then, use this information to take actions. Since, it is unreasonable to
change the traffic lights every second, we constrain the agents to take an action once in every t time-
steps (t = 5s in our setup). The Accumulator is a Recurrent Neural Network (RNN) (Hochreiter &
Schmidhuber, 1997) which keeps track of the observations for t time-steps before an action is taken.
Let the encoded image information of agent i at time-step k be oki , given as, oki = fCNNi(o

k
i ),

wherein, oi ∈ Oi; o ∈ Rdo (do is the output dimension of the encoder CNN). The Accumulator
uses this encoded vector to update its memory by hAcc

k
i = fAcci(o

k
i ,hAcc

k−1
i ). Here hAcc

k
i ∈ Rdh ,

where dh is the hidden dimension of the Accumulator.

Communicator: In order to establish complex cooperative strategies, the agents must learn to
prioritize messages received from its neighbours. In that context, we incorporate a query-based soft-
attention mechanism in our communication setup. At each time-step, an agent generates a query (q)
which is used to assign weights to the received messages in the previous time-step. Intuitively, an
agent enquires about the unaccounted information (which it cannot model) inOi and the weights (α)
are a way to understand the contributions of its neighbours in the state information. Let us assume
that the messages broadcasted are denoted by m, where m ∈ M (M is set of all messages). For
agent i at kth time-step with neighbours belonging to the set Ui,

qki = WihAcc
k
i

αki = softmax

[
qki
T

mk−1
1 , . . . , qki

T
mk−1
|Ui|

]
pooledki =

∑
j∈|Ui|

αkijm
k−1
j

(1)

Here W ∈ Rd×dh , q ∈ Rd and α ∈ Rd are the attention parameters. At each time-step, the pooled
message is fed to the Communicator RNN and is processed as hcom

k
i = fcomi(pooledki ,hcom

k−1
i ).

It should be noted that we reinitialize the hidden state of the RNN as soon as the action is taken (i.e.
after every t time-steps). A weighted mixture of the output of the RNN along with the output of the
image encoder (oki ) is passed through a setup which emits discrete symbols with the help of Straight-
Through Gumbel-Softmax (G) (Jang et al., 2016), i.e. mk+1

i = G(Wcomhcom
k
i + WCNNoki ). This

renders the model differentiable even with discrete symbols. The output message is then broadcasted
to all its neighbours (Ui). Refer Appendix A.2 for more details.

Action Selector: A 4-way junction can have 216 combinations of actions (29 for a 3-way junction),
however, most of them are either highly dangerous for traffic or don’t contribute to a smoother flow.
Adopting conventional approaches (Linkenheld et al., 1992), we fix the action space to 4 actions
for a 4-way junction and 3 for a 3-way junction (Fig. 3). The actions are determined such that the
vehicles can move smoothly without conflicts. The action values are a function of Accumulator-
RNN and Communicator-RNN hidden states i.e. factioni(hAcc

k
i ,hcom

k
i ). At every tth time-step, the

action values are generated and the traffic lights are switched to the action with the maximum value.

Reward Structure: The reward at a junction i is a combination of the following factors: (i) Queue
Length: Total number of waiting vehicles (with speed< 0.1m/s) on the adjoining lanes; (ii) Waiting
Time: Sum of waiting time of all vehicles in the adjoining lanes, wherein, a vehicle is considered
to be waiting if it travels at a speed < 0.1m/s; (iii) Delay: For lane l, delay is calculated as Dl

i =

1 − avg speedl
i

max speedl
i

. Here avg speed and max speed denotes the average speed of vehicles and the
maximum allowable speed, respectively, on lane l; (iv) Emergency Deceleration: The number of
times, a vehicle undergoes emergency braking during switching of phases.
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Communication What gives the agents the incentive to communicate? An agent might turn out to
be selfish and focus on solving its own problems even while it broadcasts unstructured messages to
its neighbours. Even if the agents are forced to communicate, what makes us believe that the agents
will pay any heed to the messages that they receive, considering the individual reward structure? In
view of this, we highlight two important aspects of communication: (i) Cooperation: Meaningful
information exchange will arise only if there is a dearth of knowledge in the local observations of the
agents. In other words, there are factors that the agent is uncertain of and cannot model in the current
setup. To see why, let us consider a scenario where there are two interconnected independent agents
(say A and B) trying to model the traffic. The arrival rate of agent A is modelled using Poisson, with
rate λ, which is a function of the environment. As agent B takes an action, the environment is no
longer stationary and λ varies in a way that agent A is incapable of modelling (let us assume λ now
becomes (λ − δλ)). Hence, the agent learns to ignore these variables altogether. In order to make
sense of the unaccounted changes in its observation space, agent B has to communicate the differ-
ence in λ to agent A which can be assumed to be Poisson distributed with rate δλ (superposition of
independent Poisson processes results in a new Poisson process whose rate is the sum of the rates
of the independent Poisson processes); (ii) Coordination: Even while groups of agents implicitly
come up with a common communication protocol, there should be a higher level harmony amongst
all agents, i.e. the groups of agents in a network must systematically synchronize or coordinate to
realize the same goal. In order to drive the agents to work for the greater good, they must arrive at a
common protocol which can be used universally. This leads to the development of a common lan-
guage with overlapping vocabularies from different communities of agents. Additionally, if an agent
in the sub-network fails, the other agents in that group can still communicate with other groups.

5 EXPERIMENTS

Comparison with baselines: We compare our model with the following baselines:

(i) Fixed-time Control: We use our action space and periodically switch from one action to the other
in a round-robin fashion after fixed time intervals of duration t = 5 steps.

(ii) Self Organizing Traffic Light control (SOTL): SOTL (Cools et al., 2008) switches from one
phase to other when the queue length at any of the adjoining lanes exceed a predefined threshold. In
our implementation, we fix this threshold to 5 while retaining our action space.

(iii) Deep-Q Learning (DQN): We also implement the standard DQN framework with the same
observation and action space as ours where each agent is trained independently.

Figure 4: Comparison of convergence of different
baselines with our setup. (Averaged over 5 inde-
pendent runs)

(iv) IntelliLight: IntelliLight (Wei et al., 2018)
uses a more refined state representation which
includes queue length, number of vehicles and
updated waiting time at the adjoining lanes of a
junction, in addition to its image representation.
We replicate their architecture with the same
state representation but with our action space,
since their action space is fraught with danger
in a real life traffic management system.

The results (Fig. 4) reveal that our method out-
performs all baselines in terms of the end re-
sult (final reward at convergence). While DQN
training commences at a high reward (because
of high initial value of ε in the ε-greedy strat-
egy), it converges quickly without much im-
provement. We also wish to point out that pa-
rameter updates in DQN happen every time-
step once the buffer-size exceeds the batch-size,
as opposed to once every episode in our setup.
On an average, the difference between the final
rewards at convergence of the DQN and the our
setup is ≈ 55.
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Figure 5: Comparison of performance (Re-
ward vs. episodes) of blind agents.

Necessity of communication: An important ques-
tion that naturally follows is whether communication
is required at all. It may indeed be possible for the
agents to adapt even while they broadcast random set
of symbols which do not bear any significance. To
test this possibility, we perform two sets of experi-
ments:

(i) We made the agents broadcast 8-bit messages
with all bits set to zero. We found that the train-
ing not only converged slowly, it also stabilized at a
lower reward compared to the original setting. Post
convergence the difference in rewards was ≈ 40.

(ii) We visually impaired one of the agents (we call
it a blind-agent) such that it no longer receives its
local observation while taking an action, although it
can still receive messages from its neighbours and

transmit its state information to them i.e. the agent processes its input observation at each time-step
but the weight WCNN is set to zero. Hence, it cannot backpropagate valuable gradients from its
actions to the image encoder. We noticed that the overall setup still converged to the same result as
the original setup. We attribute it to the fact that the blind-agent receives necessary information from
its neighbours through communication. On repeating the experiment for two neighbouring blind-
agents, the convergence worsens (Fig. 5). Thus, we can safely conclude that communication not
only works but is also necessary. We performed the above experiments on agents 4 & 5 (Network 1
of Fig. 1).

Grounding in communication: In order to verify grounding, we performed experiments using
Pointwise Mutual Information (PMI) (Church & Hanks, 1990). We constructed a matrix for each
pair of agents where the rows correspond to the actions of one agent (say i) and the columns corre-
spond to the message sent by the other agent in the pair. We computed the Singular Value Decom-
position (SVD) of the PMI matrix (pmi ∈ R|Ai|×256) given as pmi = USVT, where U ∈ R|Ai|×k,
S ∈ Rk×k and V ∈ Rk×256 (k ≤ |Ai|). Figure 6 shows the t-SNE (van der Maaten & Hinton, 2008)
plot of the rows of V matrix. The rows of V can be interpreted as word embeddings.

Figure 6: [Best viewed in colour] Word embeddings of neighbour j (j ∈ Ui) corresponding to
actions of agent i for a 3-way junction (indexed by {0, 1, 2}) and for a 4-way junction (indexed by
{0, 1, 2, 3}. The clusters can be interpreted as distinct words used to mean different actions. 3-way
junctions have an action space of size 3 and 4-way junctions have an action space of size 4.

As shown in Fig. 6, we see distinct clusters forming for different actions. In other words, we can
say that neighbouring agents use specific set of words to indicate actions. The words which are
haphazardly placed can be considered as those that haven’t been assigned a specific meaning or the
ones which can be used in many different contexts. Additionally, we plot the the rows of U matrix
(with k = 2) i.e. the action embeddings corresponding to the broadcasted messages of all agents.
For instance, as shown in Fig. 8, we pair the actions of agent 0 with the broadcasted messages from
the rest of the agents. For each such pair, we get a U matrix which we plot using different colors
for different agents. We notice that the points corresponding to the U matrix of the neighbours tend
to overlap as highlighted by the red circles (for agent 0, agents 1 and 3 overlaps). This implies that
neighbours U0 are consistent in the use of messages to agent 0, which in turn bases its actions on the
received messages. See Appendix A.3 for the remaining plots on grounding.
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Figure 7: [Best viewed in colour]. Clustering of agents in the 10-agent network (Network 1) for
different runs [Fig.(a,b)]. The numbers {0, . . . , 1} denote the agents in the network. Fig.(c) on
the right represents the clustering in the 28-agent network (Network 2) with A & B denoting two
14-agent sub-networks. The position of the numbers denote the mean of the clusters.

Effect of network topology: We obtain a tf-idf matrix where rows correspond to agents and
columns correspond to the words spoken by these agents. On plotting a t-SNE plot of the rows
of this matrix for Network 1 (Fig. 1), we noticed that the agents that are broadcasting to the same
neighbour tend to be clustered together. For instance, from Fig. 7 [(a), (b)], one can infer that the
following triads are formed: (i) agents (0 & 4) broadcasting to agent 1; (ii) agents (3 & 7) broadcast-
ing to agent 4; (iii) agents (3 & 5) broadcasting to agent 4. It is also consistent with our findings in
Fig. 8, wherein actions embeddings, corresponding to the neighbours, overlap. These trends reflect
that one agent can dominate the emergent communication protocol among its neighbours. Never-
theless, as is evident from the plots, a common set of vocabulary also comes into usage to make
communication span across all agents.

Figure 8: [Best viewed in colour]. Action embeddings
from matrix U (orthonormal matrix) of agent 0 corre-
sponding to messages from all agents. As highlighted
by the red circles, the action embeddings of agent 0 in
response to messages from neighbours (1, 3) are over-
lapped. The color bar represents different agents.

Experiments on larger networks: Due
to communication, we expect well-defined
communities to emerge (in terms of the
vocabulary usage) if huge networks are
sparsely connected to one another. To test
this hypothesis, we take a pair of networks,
each having 14 agents and connect them
by a single one-way lane (Network 2 in
Fig. 1). We plot the t-SNE embeddings
of the rows of tf-idf matrix (Fig. 7 (c)).
We notice two distinct clusters (denoted
by A and B) with a overlapping region,
which we argue, comprises the common
vocabulary used by agents from both net-
works. To sum it up, we not only find
evidence of cooperation among agents but
also coordination among groups of agents
across networks. On removing the coop-
erative reward structure, the model takes
twice as much time to converge, presum-
ably because the agents have little incen-
tive to communicate.

6 CONCLUSION

In this paper, we proposed an approach to mitigate network congestion with the help of traffic
networks. Though extensive experiments, we demonstrated the benefit of emergent communication
to optimize traffic flow over existing MARL approaches. Additionally, we performed qualitative
studies on the emergent language and showed that it is grounded in actions.
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A APPENDIX

A.1 TABLE OF NOTATIONS

S Agent state configurations
Ai Action of agent i
Oi Observation space of agent i
T Transition function
πθi stochastic policy of agent i
rki reward obtained by agent i at kth time-step
Ri long-term reward of agent i over all time-steps in an episode
γ discount factor
V set of all agents {1, 2, . . . , N}
M set of all possible broadcasted messages (words) (M∈ {0, 1}d)
m m ∈M
q query vectors
d dimension of messages (d = 8)
Ui set of neighbours of agent i
r̄ki cooperative reward (weighted combination of r of {i,Ui})
β relative importance to agent’s own rewards (β ∈ (0, 1])
R̄i cumulative cooperative reward for agent i
fCNN Image Encoder model (CNN)
fAcc Accumulator model (RNN)
fcom Communicator model (RNN)
o o ∈ O
o encoded image (encoded observation)
hAcc hidden state of the Accumulator
do output dimension of the image encoder
dh hidden dimension of the Accumulator RNN
W attention weights for hAcc

α attention scores (0 ≤ α ≤ 1)
pooled attention output (convex combination of messages from Ui)
Wcom weights for hcom in the weighted mixture
WCNN weights for o in the weighted mixture
G Straight-Through Gumbel Softmax
faction action-value function
pmi PMI matrix (pmi ∈ pmi ∈ R|Ai|×256)
U,S,V SVD output (U ∈ R|Ai|×k, S ∈ Rk×k, V ∈ Rk×256 (k ≤ |Ai|)

A.2 STRAIGHT-THROUGH GUMBEL-SOFTMAX

Human communication is discrete in nature and can, in general, be represented by categorical vari-
ables. Additionally, discrete variables are more interpretable which makes it well suited for real life
problems like traffic management, where one needs transparency. However, the use of discrete latent
variables render the neural network non-differentiable. The Gumbel Softmax gives a differentiable
sample from a discrete distribution by approximating the hard one-hot vector into a soft version.

The Gumbel distribution has two parameters: µ and β. The standard Gumbel distribution where µ
and β are 0,1 respectively has probability density function: G(0, 1) = e−(z+e

−z). Suppose, for a
given agent, our model (Communicator) outputs a Multinomial distribution of message bits with
logits : p = (p1, . . . , pd) where d = 8. These logits are functions of inputs and weights which
need to be trained. A simple way to draw samples from a discrete distribution would be to use the
Gumbel-max trick (Jang et al., 2016) as shown,

m̃i = one hot

(
arg max

i
[zi + log pi]

)
(2)

Here, the noise in form of zi is independently sampled from standard Gumbel distribution and
are obtained as zi = − log(− log(ui)), ui being i.i.d samples from Uniform(0, 1). It turns out
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that mi is distributed according to pi. However, gradients still cannot propagate through arg max,
hence a softmax is used as a differentiable alternative, to generate a d-dimensional sample vector
m̃ = (m̃1, . . . , m̃d), where m̃i is given as,

m̃i =
e(z

i+log pi)/β∑d
j=1 e

(zj+log pj)/β
(3)

β is the temperature parameter, which, in our experiments, is set to 0.5. As β > 0, we obtain well-
defined gradients ∂mi/∂pi with respect to parameters pi. Gumbel-Softmax can produce a 0.9999-
hot vector instead of a hard one-hot vector depending on β. Since we want the communication to be
discrete, we employ the Straight-Through version of the Gumbel-Softmax estimator with a simple
reformulation of the form,

mi = (m̂i − m̃i).detach() + m̃i (4)

Here, m̂i is the one-hot vector of m̃i i.e. such that m̂i = I{arg maxi m̃i = k, k ≤ k
′}. We use

binary 8-bit messages, therefore k
′

= 1 and k is fixed during the training process. Now, detach
prevents the gradients from flowing through that node, hence, ∇pimi = ∇pim̃i. This makes the
communication discrete in the forward pass even as the gradients flow is smooth during the backward
pass. The final output message of agent is given as m = (m1, . . . ,md).

A.3 COMMUNICATION

Figure 9: [Best viewed in colour] Word embeddings of neighbour j (j ∈ Ui) corresponding to
actions of agent i for a 3-way junction (indexed by {0, 1, 2}) and for a 4-way junction (indexed by
{0, 1, 2, 3}. The clusters can be interpreted as distinct words used to mean different actions. 3-way
junctions (Rows 1,3) have an action space of size 3 and 4-way junctions (Row 2) have an action
space of size 4.
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Figure 10: [Best viewed in colour]. Action embeddings from matrix U (orthonormal matrix) of
agent 0 corresponding to messages from all agents. As highlighted by the red circles, the action
embeddings of agent i in response to messages from neighbours Ui (as highlighted in gray at the
centres of the plots) are overlapped. The color bar represents different agents. Here, we plots are for
agents 0, 1, 8, 9. Similar trends are observed for rest of the agents as well.
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