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Abstract

In many machine learning problems, data is naturally expressed as a time series.1

Here, we introduce a deep neural network architecture for reconstructing a high-2

resolution time series signal from low-resolution measurements, a task that we3

call time series super resolution. Central to our architecture is a novel temporal4

adaptive normalization layer that combines the strength of convolutional and5

recurrent approaches. We apply our model to diverse super resolution problems:6

audio super-resolution and the enhancement of functional genomics assays. In7

each case, our method significantly outperforms strong baselines, demonstrating8

its ability to solve practical problems in a wide range of domains.9

1 Introduction10

Deep neural networks have recently achieved remarkable successes on difficult problems in signal11

processing such as compression [17], super-resolution [1], compressed sensing [6], and many others.12

In many of these tasks, signals are naturally represented using time series. In this paper, we define a13

signal processing problem that often arises in practical applications called time series super resolution,14

and we propose a new deep neural network model for solving this problem. At a high level, time series15

super-resolution consists in reconstructing a high-resolution signal from low-resolution measurements,16

both of which are sequences sampled over a period of time.17

This paper focuses on two time series super resolution problems. The first task is audio super-18

resolution, which involves reconstructing high-quality audio from a low-quality input containing only19

a fraction (15-50%) of the original time-domain samples. The second task is the reconstruction of high-20

quality measurements from experimental assays in genomics using lower-quality measurements; this21

process can significantly drive down the cost of genomics experiments. In this context, measurements22

at different positions along the genome correspond to different points in time.23

We propose to solve these problems using a deep neural network architecture that combines convolu-24

tional and recurrent layers in a novel way. Central to our architecture is a new layer called temporal25

adaptive normalization, in which convolutional filters are adaptively modified (either turned on or off)26

based on long-range information captured by a recurrent network. More specifically, we parametrize27

the rescaling parameters of a batch normalization layer as in earlier work on image stylization [2, 7]28

and visual question answering [14]; in our paper, the parametrization is handled by a recurrent neural29

network. This allows us to combine the speed of convolutional models with the ability of recurrent30

models to handle long-range dependencies within the input time series.31

Empirically, our method outperforms strong baselines on each time series super-resolution task,32

demonstrating its usefulness in a wide range of domains. Interestingly, the model is domain-agnostic,33

yet outperforms more specialized approaches that make use of domain-specific features.34

Submitted to 32nd Conference on Neural Information Processing Systems (NIPS 2018). Do not distribute.



Figure 1: Top left: We propose a deep neural network architecture for time series super-resolution that
consists of K downsampling convolutional blocks followed by a bottleneck layer and K upsampling
blocks; features are reused via symmetric residual skip connections. Bottom left: Internal structure of
each type of convolutional block. Right: Our new temporal adaptive normalization layer combines
the strengths of convolutional and recurrent neural networks.

2 Time Series Super Resolution35

We take a more general view of resolution than prior work on image super-resolution [1, 10]; its36

definition can vary across different application domains and can be very general. Specifically, we37

focus on two specific time series problems and use them as running examples throughout the paper.38

Audio Super Resolution. Audio super resolution (also known as bandwidth extension; [3]) in-39

volves predicting a high-quality audio signal from a small fraction (15-50%) of its time-domain40

samples.Formally, given a low resolution signal x = (x1/R1
, ..., xR1T/R1

) sampled at a rate41

R1/T (e.g. low-quality telephone call), our goal is to reconstruct a high-resolution version42

y = (y1/R2
, ..., yR2T/R2

) of x that has a sampling rate R2 > R1. We use r = R2/R1 to denote the43

upsampling ratio of the two signals. We thus expect that yrt/R2
≈ xt/R1

for t = 1, 2, ..., TR1.44

Super Resolution of Genomics Experiments. Many genomics experiments can be seen as taking45

a real-valued measurement at every position of the genome; experimental results can therefore be46

represented by a time series. Measurements are generally obtained using a large set of probes (e.g.,47

sequencing reads) that each randomly examine a different position in the genome; the genomic time48

series is an aggregate of the measurements taken by these probes. In this setting, super-resolution49

corresponds to reconstructing high-quality experimental measurements taken using a large set of50

probes from noisy measurements taken a small set of probes. This process can significantly reduce51

the cost of scientific experiments. In this paper, we focus on a particular genomic experiment called52

chromatin immunoprecipitation sequencing (ChIP-seq)[15].53

3 A Deep Architecture Based on Temporal Adaptive Normalization54

Super resolution naturally exhibits spatial invariance: the ideal reconstruction of a given subsequence55

does not depend of when it occurs in time. This naturally suggests a convolutional architecture for56

the problem. However, convolutions have a limited receptive field such that a subsequence of y57

depends on only a finite subsequence of x. On the other hand, recurrent neural networks (RNNs)58

have potentially infinite receptive fields, but can be slow and difficult to train on very long time series59

such as audio.60

3.1 Temporal Adaptive Normalization61

To address these limitations, we propose a new layer called Temporal Adaptive Normalization (TAN)62

that combines the strengths of convolutional and recurrent approaches. Our layer is based earlier63

work on adaptive batch normalization [14], in which the parameters γ, β of the affine normalization64

2



Algorithm 1 Temporal Adaptive Normalization Layer.
Input: Tensor of activations F ∈ RN×L×C from a 1D convolutional layer, where N,L,C are, respectively,
the minibatch size, the spatial dimension, and the number of channels. Block length B. Output: Adaptively
normalized tensor of activations F ′ ∈ RN×L×C .

1. Reshape F into a block tensor F blk ∈ RN×B×L/B×C , defined as F blk
n,b,`,c = Fn,b×`,c.

2. Compute sequence of normalizers γb, βb ∈ RC for b = 1, 2, ..., B using an RNN: (γb, βb), hb =
RNN(F blk

·,b,·,·;hb−1) for b = 1, 2, ..., B starting with h0 = 0.

3. Compute normalized block tensor F norm ∈ RN×B×L/B×C as F norm
n,b,`,c = γb,c · F block

n,b,`,c + βb,c.

4. Reshape F norm into output F ′ ∈ RN×L×C as F ′n,`,c = F norm
n,b`/Bc,` mod B,c.

in a batch norm layer are a function of an auxiliary input. In our case, the γ, β are conditioned on65

long range sequence information via an RNN.66

Specifically, a TAN layer takes as input a tensor of activations F ∈ RN×L×C from a 1D convolutional
layer – where N,L,C are, respectively, the minibatch size, the 1D spatial dimension, and the number
of channels – and applies a series of transformations. First, F is split along the time axis into blocks
of length B to produce F blk ∈ RN×B×L/B×C . Intuitively, blocks correspond to regions along the
spatial dimension in which the activations are closely correlated; for example, when processing audio,
blocks could be chosen to correspond to audio samples that define the same phoneme. Next, we
compute for each block b affine transformers γb, βb using an RNN:

(γb, βb), hb = RNN(F blk
·,b,·,·;hb−1) for b = 1, 2, ..., B starting with h0 = 0,

where hb denotes the hidden state and F blk
·,b,·,· is a 3D tensor obtained by fixing the second dimension67

to b ∈ {1, 2, ..., B}. In all our experiments, we use a convolutional LSTM.68

Finally, activations in each block b are normalized by γb, βb to produce a tensor F norm defined as69

F norm
n,b,`,c = γb,c · F block

n,b,`,c + βb,c. Notice that each γb, βb is a function of both the current and all the70

past blocks; hence they modulate activations using long-range signal from the RNN. In the audio71

example, the super resolution of a phoneme could depend on previous phonemes beyond the receptive72

field of the convolution; the RNN enables us to use this long-range information.73

3.2 A Deep Neural Network Architecture for Time Series Super Resolution74

The temporal adaptive normalization layer is a key part of our deep neural network architecture75

shown in Figure 1. The core of the model is formed by K successive downsampling and upsampling76

layer blocks.At a downsampling step, we halve the spatial dimension and double the filter size; during77

upsampling, this is reversed.We also add additional skip connections which stack the tensor of k-th78

downsampling features with the (K−k+1)-th tensor of upsampling features. In order to increase the79

time dimension during upscaling, we have implemented a one-dimensional version of the Subpixel80

layer of [16], which has been shown to be less prone to produce artifacts [13].81

4 Experiments82

4.1 Audio Super-Resolution83

Setup. We use the VCTK dataset [18] — which contains 44 hours of data from 108 different84

speakers — and a Piano dataset (10 hours of Beethoven sonatas [12]). We generate low-resolution85

audio signal from the 16 KHz originals by applying an order 8 Chebyshev type I low-pass filter before86

subsampling the signal by the desired scaling ratio. The SINGLESPEAKER task trains the model on87

the first 223 recordings of VCTK Speaker 1 (about 30 mins) and tests on the last 8 recordings. In the88

MULTISPEAKER task, we train on the first 99 VCTK speakers and test on the 8 remaining ones.89

We compare our method relative to two baselines: a cubic B-spline — which corresponds to the90

bicubic upsampling baseline used in image super-resolution — and a dense neural network (DNN)91

based on the technique of Li et. al., 2015 [11], We instantiate our model with K = 4 blocks and train92

it for 400 epochs on patches of length 8192 (in the high-resolution space) using the ADAM optimizer93

with a learning rate of 3× 10−4. To ensure source/target series are of the same length, the source94

input is pre-processed with cubic upscaling. We adjust the TAN block length B so that L/B (the95

number of blocks) is always 32.96
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SingleSpeaker MultiSpeaker Piano

Ratio Obj. Spline DNN Conv Full Spline DNN Conv Full Spline DNN Conv Full

r = 2 SNR 20.0 19.5 19.4 19.3 18.1 19.9 19.6 19.5 24.7 24.3 25.3 25.7
LSD 3.5 3.7 3.2 2.7 4.4 3.6 3.1 1.8 3.5 3.4 2.0 1.5

r = 4 SNR 15.6 15.9 16.3 17.2 13.0 12.7 13.1 14.9 18.6 18.6 19.1 19.3
LSD 5.6 4.9 3.6 3.7 8.0 5.8 3.5 2.4 5.8 5.2 2.2 2.2

Table 1: Accuracy evaluation of audio-super resolution methods (in dB) on each of the three super-
resolution tasks at upscaling ratios r = 2, 4 and 8.

Metrics Given a reference signal y and an approximation x, the signal to noise ra-97

tio (SNR) is defined as SNR(x, y) = 10 log
||y||22
||x−y||22

. The log-spectral distance (LSD) [5]98

measures the reconstruction quality of individual frequencies as follows: LSD(x, y) =99

1
L

∑L
`=1

√
1
K

∑K
k=1

(
X(`, k)− X̂(`, k)

)2
, where X and X̂ are the log-spectral power magnitudes100

of y and x, respectively. These are defined as X = log |S|2, where S is the short-time Fourier101

transform (STFT) of the signal. We use ` and k index frames and frequencies, respectively; in our102

experiments, we used frames of length 2048.103

Evaluation The results of our experiments are summarized in Table 4.1. Our basic convolution104

architecture shows an average improvement of about 0.5 dB over the spline baseline and about 0.3105

dB over the DNN baseline, with the strongest improvements at medium upscaling ratios (i.e., 4).106

Including the TAN layers improves performance by an additional 0.9 dB on average.107

4.2 ChIP-Seq Experiments108

Pearson correlation
Input (noisy) CNN Ours

H3K4me1 0.48 0.79 0.81
H3K4me3 0.66 0.83 0.90
H3K27ac 0.59 0.85 0.89

H3K27me3 0.21 0.65 0.64
H3K36me3 0.44 0.88 0.90

Table 2: Pearson correlation of the model output
and the high-quality ChIP-seq signal derived from
an experiment with high sequencing depth. The
CNN baseline is from (Koh et. al., 2016) [9].

We use histone ChIP-seq data from lymphoblas-109

toid cell lines derived from several individuals110

of diverse ancestry [8], and on the following111

common histone marks: H3K4me1, H3K4me3,112

H3K27ac, H3K27me3, and H3K36me3. This113

dataset contains high-quality ChIP-seq data with114

a high sequencing depth; to obtain low-quality115

versions, we artificially subsample 1M reads for116

each histone mark (out of the full dataset of117

100+M reads per mark).118

Formally, given an input noisy ChIP-seq signal X ∈ Rk×T , where k is the number of distinct histone119

marks, and T is the length of the genome, we aim to reconstruct a high-quality ChIP-seq signal120

Y ∈ RT . We use the k low-quality signals as input and train a separate model for each high quality121

target mark. We use B = 2 and training windows of length 1000; all other hyper-parameters are as in122

the audio-super resolution task.123

To evaluate our results, we measure Pearson correlation between our model output and the true,124

high-quality ChIP-seq signal [4]. Across all of the histone marks, the model output from an input125

of 1M sequencing reads was equivalent in quality to signal derived from 10-20M reads, which is a126

significant efficiency gain.127

5 Conclusion128

In summary, our work defined time series super resolution, a task in which we reconstruct a high-129

resolution time series from low-quality samples. We introduce a neural architecture for this problem130

that is based on a new temporal adaptive normalization layer. We demonstrate our model’s effec-131

tiveness in three diverse domains; our results have applications in text-to-speech generation, and132

can be used to reduce the cost of genomics experiments. We hope our model will be applied to new133

problems in science and engineering.134
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