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ABSTRACT

We introduce dynamic instance hardness (DIH) to facilitate the training of machine
learning models. DIH is a property of each training sample and is computed as
the running mean of the sample’s instantaneous hardness as measured over the
training history. We use DIH to evaluate how well a model retains knowledge about
each training sample over time. We find that for deep neural nets (DNNs), the
DIH of a sample in relatively early training stages reflects its DIH in later stages
and as a result, DIH can be effectively used to reduce the set of training samples
in future epochs. Specifically, during each epoch, only samples with high DIH
are trained (since they are historically hard) while samples with low DIH can be
safely ignored. DIH is updated each epoch only for the selected samples, so it
does not require additional computation. Hence, using DIH during training leads
to an appreciable speedup. Also, since the model is focused on the historically
more challenging samples, resultant models are more accurate. The above, when
formulated as an algorithm, can be seen as a form of curriculum learning, so
we call our framework DIH curriculum learning (or DIHCL). The advantages
of DIHCL, compared to other curriculum learning approaches, are: (1) DIHCL
does not require additional inference steps over the data not selected by DIHCL
in each epoch, (2) the dynamic instance hardness, compared to static instance
hardness (e.g., instantaneous loss), is more stable as it integrates information over
the entire training history up to the present time. Making certain mathematical
assumptions, we formulate the problem of DIHCL as finding a curriculum that
maximizes an unknown multi-set function f(·) from its partial observations, and
derive an approximation bound for a DIH-produced curriculum relative to the
optimal curriculum. Empirically, DIHCL-trained DNNs significantly outperform
random mini-batch SGD and other recently developed curriculum learning methods
in terms of efficiency, early-stage convergence, and final performance, and this is
shown in training several state-of-the-art DNNs on 11 modern datasets.

1 INTRODUCTION

We study the dynamics of training a machine learning model, and in particular, the difficulty a model
has over time (i.e., training epochs) in learning each sample from a training set. To this end, we
introduce the concept of “dynamic instance hardness” (DIH) and propose several metrics to measure
DIH, all of which share the same form as a running mean over different instantaneous sample hardness
measures. Let at(i) be a measure of instantaneous (i.e., at time t) hardness of a sample, where i
is a sample index and t is a time iteration index (typically a count of mini-batches that have been
processed). In previous work, at(i) has been called the “instance hardness” (Smith et al., 2014)
corresponding to 1−pw(yi|xi), i.e., the complement of the posterior probability of label yi given input
xi for the ith sample under model w. We introduce three different notions of instantaneous instance
hardness in this work: (A) the loss `(yi, F (xi;wt)), where `(·, ·) is the loss function and F (·;w) is
the model with parameters w, (B) the loss change |`(yi, F (xi;wt))− `(yi, F (xi;wt−1))| between
two consecutive time steps, and (C) the prediction flip 1[ŷti = ŷt−1i ], where ŷti is the prediction
of sample i in step t, e.g., argmaxj F (xi;wt)[j] for classification. Our (A) corresponds closely to
the “instance hardness” of Smith et al. (2014). However, our (B) and (C) require information from
previous time steps. Nevertheless, we consider (A), (B), and (C) all variations of instantaneous
instance hardness since they use information from only a very local time window around training
iteration t. Dynamics is achieved when we compute a running average over instantaneous instance
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hardness, computed recursively as follows:

rt+1(i) =

{
γ × at(i) + (1− γ)× rt(i) if i ∈ St
rt(i) else ,

(1)

where γ ∈ [0, 1] is a discount factor, St ⊆ V , and V = [n] is the set of all n training sample indices.
St is the set of sample selected for training at time t by some method (e.g., a DIH-based curriculum
learning (DIHCL) algorithm we introduce and study below) or simply a random batch. In general,
St should be large early during training, but as rt(i) decreases to small values for many samples,
choosing significantly smaller St is possible to result in faster training and more accurate models.

We find that rt(i) can vary dramatically between different samples since very early stage (with small
t). One can think of this as some samples being more memorable and are retained more easily, while
other samples are harder to learn and retain. In addition, the predictions of the hard samples are less
stable under changes in optimization parameters (such as the learning rate).

More importantly, once a sample’s rt(i) is established (i.e., once t is sufficiently but not unreasonably
large) each sample tends to maintain its DIH properties. That is, a sample’s DIH value converges
relatively quickly to its final relative position amongst all of the samples DIH values. For example, if
a sample’s DIH becomes small (i.e., meaning the sample is easily learned), it stays small relative to
the other samples, or if it becomes large DIH (i.e., the sample is difficult to learn), it stays there. I.e.,
once rt(i) for a sample has converged, its DIH status is retained throughout the remainder training.
We can therefore accurately identify categories of sample hardness relatively early in the course
of training. This suggests a natural curriculum learning strategy where St corresponds mostly to
those samples that are hard according to rt−1(i). In other words, the model concentrates on that
which it finds difficult. This is similar to strategies that improve human learning, such as the Leitner
system for spaced repetition (Leitner, 1970). This is also analogous to boosting (Schapire, 1990) —
in boosting, however, we average the instantaneous sample performance of multiple weak learners at
the current time, while in DIHCL we average the instantaneous sample performance of one strong
learner over the training history.

As mentioned above, instance hardness has been studied before (Smith et al., 2014; Prudencio et al.,
2015; Smith & Martinez, 2016) where it corresponds to the complement posterior probability. More
recently, instance hardness has also been studied as an average over training steps in Toneva et al.
(2019) where the mean of prediction flips over the entire training history is computed. We note that
Toneva et al. (2019) is a special case of DIH in Eq. (1) with γ = 1/t+1 and t = T , where T is the
total number of training steps. Our study generalizes Toneva et al. (2019) to the running dynamics
computed during training. This therefore leads to a novel curriculum learning strategy and also steps
towards a better theoretical understanding of curriculum learning. Also, in Toneva et al. (2019),
a small neural net is trained beforehand to determine the hard samples, and this is then used to
train large neural nets. In our approach, we take the average over time of at(i), which requires no
additional model or inference steps and hence is computationally trivial.

Another observation we find is that rt(i), for any sample, tends to monotonically decrease with t for
any i. This means, not surprisingly, that during training samples become easier in terms of small
DIH (i.e., they are better learned). This also means that easy samples stay easy throughout training,
and hard samples also become easier the more we train on them. If we also make (admittedly) a
mathematical leap, and assume that rt(i) is generated by the marginal gain of an unknown diminishing
returns function f(·) that measures the quality of any curriculum, we can formulate DIHCL as an
online learning problem that maximizes the unknown f(·) by observing its partial observation rt(i)
over time for each i. Here, f is defined over an integer lattice and has a diminishing returns property,
although the function is accessible only via the gains of every element. This formulation provides a
setting where the quality of the learnt curriculum is provably approximately good.

As will be shown below, DIHCL performs optimization in a greedy manner. At each time step t,
DIHCL selects a subset St of samples using rt(i) where the hard samples have higher probabilities
of being selected relative to the easy samples. The model is then updated based only on the selected
subset St rather than V , which requires performing inference (e.g., a forward pass of a DNN) only
on St. This therefore leads to a speedup to the extent that |St| � |V |. The inference produces
new instantaneous instance hardness at(i) that is then used to update rt+1(i) as in Equation 1. To
encourage exploration, improve stability, and get an initial estimate of rt(i) for all i ∈ V , during
the first few epochs, DIHCL sweeps through the entire training set. We provide several options for
DIH-weighted subset sampling, which introduces different types of randomness in the selection since
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randomness is essential in optimizing non-convex problems. Under certain additional mathematical
assumptions, we also give theoretical bounds on the curriculum achieved by DIHCL compared
to the optimal curriculum. We empirically evaluate several variants of DIHCL and compare them
against random mini-batch SGD as well as against recent curriculum learning algorithms, and test
on 11 datasets including CIFAR10, CIFAR100, STL10, SVHN, Fashion-MNIST, Kuzushiji-MNIST,
Food-101, Birdsnap, FGVC Aircraft, Stanford Cars and ImageNet. DIHCL shows an advantage
over other baselines in terms both of time/sample efficiency and test set accuracy.

1.1 RELATED WORK

Early curriculum learning (CL) (Khan et al., 2011; Basu & Christensen, 2013; Spitkovsky et al.,
2009) work shows that feeding an optimized sequence of training sets (i.e., a curriculum), that can be
designed by a human expert (Bengio et al., 2009), into the training algorithms can improve the models’
performance. Self-paced learning (SPL) (Kumar et al., 2010; Tang et al., 2012a; Supancic III &
Ramanan, 2013; Tang et al., 2012b) chooses the curriculum adaptive to some instance hardness (e.g.,
per-sample loss) during training. SPL selects samples with smaller losses, and gradually increases the
subset size over time to cover all the training data. Self-paced curriculum learning (Jiang et al., 2015)
combines the human expert in CL and loss-adaptation in SPL. SPL with diversity (SPLD) (Jiang et al.,
2014) adds a negative group sparse regularization term to SPL and increases its weight to increase
selection diversity. Machine teaching (Khan et al., 2011; Zhu, 2015; Patil et al., 2014) aims to find
the optimal and smallest training subset leading to similar performance as training on all the data.
Minimax curriculum learning (MCL) (Zhou & Bilmes, 2018) argues that the diversity of samples is
more critical in early learning since it encourages exploration, while difficulty becomes more useful
later. It also uses a form of instantaneous instance hardness (the loss) but is not dynamic like DIH,
and formulates optimization as a minimax problem. Compared to the above methods, DIHCL has the
following advantages: (1) DIHCL improves the efficiency of CL since extra inference on the entire
training set per step is not required; and (2) DIHCL uses DIH as the metric for hardness which is a
more stable measure than instantaneous hardness.

Our paper is also related to Zhang et al. (2017), which refers to overfitting in noisy data. Our observa-
tions suggest that the learning of simple patterns (Arpit et al., 2017) happen mainly amongst the easy
memorable early during in training (additional discussion is given in the Appendix and Figure 5). Our
paper is also distinct from catastrophic forgetting (Kirkpatrick et al., 2017), which considers sequential
learning of multiple tasks, where later learned tasks make the model forget what has been learned from
earlier tasks. In our work, we consider single task learning and show that easy samples remain easy.

If we make certain additional mathematical assumptions (as we do in our theoretical discussion
below), our work is related to online submodular function optimization. Specific forms have been
studied including maximization (Streeter & Golovin, 2009; Chen & Krause, 2013), maximization
in the bandit setting with noisy feedback (Chen et al., 2017), and continuous submodular function
maximization (Chen et al., 2018b;a).

The work most related to ours, perhaps, is the work on instance hardness (Smith et al., 2014; Prudencio
et al., 2015; Smith & Martinez, 2016), where the hardness of a sample corresponds to the complement
posterior probability, as discussed above. Also, a special case of DIH was studied in Toneva et al.
(2019): they compute DIH after training completes, and show that removing the easy samples (those
having the smallest DIH over training set) leads to less degradation on generalization performance than
removing random samples. By contrast, our study of DIH focuses on its dynamics during training.

2 DYNAMIC INSTANCE HARDNESS

We start out by conducting an empirical study of DIH in DNN training. We train a WideResNet with
depth of 28 and width factor 10 on CIFAR10 dataset, and apply a modified cosine annealing learning
rate schedule (Loshchilov & Hutter, 2017) for multiple episodes of increasing length (300 epochs
in total) and target learning rate decaying. We contend that a cyclic learning rate suits our study
because: (1) it includes the most commonly used monotone decreasing schedule since the learning
rate in each cycle is decreasing; (2) compared to monotone decreasing schedule, it can uncover the
properties of DIH in more scenarios such as increasing learning rate and different decaying speeds of
the learning rate. In the study, we test two type of instantaneous instance hardness, where at(i) is
either prediction flips or loss (i.e., cases (A) and (C) in the previous section). We visualize rt(i) for
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Figure 1: LEFT: Averaged prediction-flip and RIGHT: losses (mean and std.) of the three groups of samples
partitioned by a DIH metric (i.e.,running mean of prediction-flip) computed at epoch 10,40 and 210 during
training WideResNet-28-10 on CIFAR10. DIH in early stage (Epoch 40) can predict the forgettable and
memorable samples for later stages. The failed partition based on Epoch 10 DIH implies the importance of
sufficient exploration to accurately measure hardness over time.

all i ∈ [50000] training samples, but divide [50000] them into three groups according to rt(i) (with
at(i) as prediction flips), and we do this at epoch either 10, 40, or 210. For example, at epoch 40, the
10,000 samples with the largest r40(i) comprise the first group, the 10,000 samples ones with the
smallest r40(i) comprise the next group, and the remaining 30,000 samples comprise the final group.
In Figure 1, we plot the dynamics for the average prediction flips over each group (left plot) and the
mean/standard deviation of loss in each group (right plot).

10 samples with large DIH at Epoch 40
10 samples with small DIH at Epoch 40

10 samples with large DIH at Epoch 40
10 samples with small DIH at Epoch 40

10 samples with large DIH at Epoch 40
10 samples with small DIH at Epoch 40

Figure 2: The three strategies (A), (B), and (C) for DIH
on ten hard and ten easy samples, each that have been
randomly sampled from the top 10k samples with the
largest/smallest DIH at Epoch 40.

We observe that samples with small rt(i) are
learned quickly in the early epochs and their
losses remain small and predictions almost un-
changed thereafter, indicating they are easy over
time. By contrast, the samples with large rt(i)
have large variance, i.e., their losses oscillate
rapidly between small and large values, and their
predictions frequently change, indicating diffi-
culty. The quickly identified easy samples are
never unlearnt, and do not suffer from any large
loss later in the training. The hard samples are
also quickly identified, and remain difficult to
learn even after training for many epochs. On
average, the dynamics on the hard samples is
more consistent with the learning rate schedule,
which implies that doing well on these samples
can only be achieved at a shared sharp local min-
ima. This suggests that the model generalizes better in the regions containing the easy samples than
those containing the hard ones. Similar to human learning, a natural resolution is to learn the hard
samples more frequently and reduce the learning on the easy, already learnt, ones. That is, based on
rt(i) (even during the early stages when t is not large), it is prudent to apply additional training effort
on hard samples and begin to ignore already learnt easy samples. Further empirical verification can
be found in experiments and Figure 4 in the Appendix.

2.1 PROBLEM FORMULATION

Figure 2 shows that all three types (base on (A), (B), and (C)) of DIH metrics decrease during training
for both easy and hard samples. This indicates that as learning continues, samples become less
informative as more training takes place. If we make additional mathematical assumptions, we can
model the curriculum learning procedure as a scheme that maximizes an unknown diminishing return
function f(·) via only observing its marginal gains rt(i).

A curriculum is a sequence of selected subsets, where each subset is a mini-batch of data points,
i.e. (S1, S2, . . . , ST ). We define a function f : ZV≥0 → R≥0 on the non-negative integer lattice
ZV>0. Each point z ∈ ZV≥0 is an non-negative integer valued vector of length |V | where z(i) counts
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how many times sample i has been selected in the T training data subsets. Any subset S ⊆ V has
a characteristic vector eS where eS(i) = 1 if i ∈ S and otherwise sS(i) = 0 if i /∈ S. We also
define S1:t ,

∑t
`=1 eSt as a multi-set input to function f and S1:t ∈ ZV≥0. Ideally, our goal becomes

finding the best curriculum (S1, S2, . . . , ST ), i.e., one that maximizes f(S1:T ), as in:
max

S1:T :∀t∈[T ],St⊆V,|St|≤kt
f(S1:T ), (2)

where kt is a limit on the size of the set of samples selected at time t. However, f(·) can be an
arbitrary unknown function in practice. It is also intractable to estimate since it measures the utility
of all possible training sequences (in exponential number), so it is inaccessible for optimization. As a
surrogate, information about f(·) might be available at each step in the form of the DIH values rt(i).
That is, if we make the mathematical assumption that there is some function f such that rt(i) =
f(i|S1:t−1) , f(ei + S1:t−1)− f(S1:t−1), then rt(i) may be used in f ’s stead and we can optimize
the unknown f(·) only based on its partial observation rt(i). In such case, DIHCL can be seen as
a form of online optimization problem whose goal is to find a curriculum that maximizes f : at every
step t, we select a subset of samples (e.g., a mini-batch) St ⊆ V of size |St| = kt to train the model,
observing only marginal gains rt(i) of f(·) for each i. We can therefore define the following objective:

max
S1:T :∀t∈[T ],St⊆V,|St|≤kt

g(S1:T ) ,
∑
t=1:T

∑
i∈St

f(i|S1:t−1) (3)

For simplicity, we slightly overload the notation of S1:T for function g(·) so that we retain
information about the subset selected at every time step (i.e., we can extract St for 1 ≤ t ≤ T from
S1:T ). In practice, we update rt(i) only for samples in St since it is a byproduct of training (i.e., the
information needed to update rt(i) requires no more computation than what needed to train the model
on St). Hence, for i /∈ St, rt(i) = rt−1(i). Although our solution is an approximate solution to the
ideal but intractable optimization in Eq. (2), we give its approximation bound in Corollary 1 to the
global optimal solution of Eq. (2), and the bound is tight (the best we can get) up to a constant factor.

3 DIH CURRICULUM LEARNING

We arrive at a curriculum learning strategy that increases the probability learning on hard samples, and
reduces learning on easy ones. However, directly solving Eq. (3) requires costly inference over all the
n training samples before selecting every subset St, as most previous curriculum learning methods do.

3.1 A “FREE” CURRICULUM

Algorithm 1 DIH Curriculum Learning (DIHCL-Greedy)
1: input: {(xi, yi)}ni=1, π(·; η), η1:T , `(·, ·), F (·;w);

T, T0; γ, γk ∈ [0, 1]
2: initialize: w, η1, k1 = n, r0(i) = 1 ∀i ∈ [n]
3: for t ∈ {1, · · · , T} do
4: if t ≤ T0 then
5: St ← [n];
6: else
7: Let St = argmaxS:|S|=kt

∑
i∈S rt−1(i);

8: end if
9: Apply optimization π(·; η) and record F (xi;wt−1) for i ∈ St;

wt ← wt−1 + π

(
∇wt−1

∑
i∈St

`(yi, F (xi;wt−1)); ηt

)
10: Compute normalized at(i) for i ∈ St using Eq. (4);
11: Update dynamic instance hardness rt+1(i) using Eq. (1);
12: kt+1 ← γk × kt;
13: end for

Most optimization algo-
rithms require inference on
the training samples be-
fore updating the model pa-
rameters, which generates
the predictions and losses
for the samples used for
training. In step t, after
the model gets trained on
St, the feedback at(i) for
i ∈ St is already available.
However, for i /∈ St, extra
inference is inevitable if the
curriculum design requires
instantaneous instance hard-
ness on the remaining sam-
ples to select next subset
St+1. By contrast, DIHCL
relies on rt(i) which is a
running mean of at(i), and
it only updates rt(i) for i ∈ St and keeps rt(i) for i /∈ St unchanged, thereby saves extra computation.

At step t of DIHCL, we select subset St ⊆ [n] with large rt−1(i) and then update the model by
training on St. We then update rt(i) via Equation (1). Since the learning rate can change over different
steps, and large learning rates means greater model change, we normalize at(i) by the learning rate
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ηt−1
1. Specifically, we use one of the following depending on if we’re in case (A), (B), or (C):

at(i)← `(yi, F (xi;wt−1))/ηt
at(i)← |`(yi, F (xi;wt−1))− `(yi, F (xi;wτt(i)−1))|/

∑t
t′=τt(i)

ηt′

at(i)← 1[ŷt−1i = ŷ
τt(i)−1
i ]/

∑t
t′=τt(i)

ηt′
(4)

DIHCL is given in Algorithm 1, where {(xi, yi)}ni=1 is the training data, π(·; η) is an optimization
method such as SGD, η1:T are the learning rates of steps 1 to T and γk is the reduction factor for
subset sizes kt. DIHCL trains on more samples early on to produce an initial more accurate estimate
of rt(i). This is indicated by T0, the number of warm start epochs over the whole training set at
the start. After this, we start by selecting larger subsets each step and gradually reduce kt down
to the most difficult samples as training proceeds.

A simple method to further reduce training time in the earlier stages is to extract a small subset of St
by encouraging the diversity of the selected samples. We gradually reduce the diversity preference as
training switching to the exploitation stage (reduce λt by 0 ≤ γλ ≤ 1 for every step t). Inspired by
MCL (Zhou & Bilmes, 2018), after line 7, we reduce St to a subset of size k′t = γk′kt (0 < γk′ ≤ 1)
by (approximately) solving the following submodular maximization.

max
S⊆St,|S|≤k′t

∑
i∈S

rt(i) + λtG(S) (5)

The function G : 2St → R+ is may be any submodular function (Fujishige, 2005), and hence we can
exploit fast greedy algorithms (Nemhauser et al., 1978; Minoux, 1978; Mirzasoleiman et al., 2015) to
solve Eq. (5) with an approximation guarantee.

3.2 APPROXIMATION BOUND UNDER FURTHER MATHEMATICAL ASSUMPTIONS

If in addition to the assumption that there exists some function f : ZV≥0 → R≥0 such that rt(i) =
f(i|S1:t−1) , f(ei + S1:t−1) − f(S1:t−1), we also assume that f has certain properties, then an
approximation bound is achievable. The diminishing return (DR) property for f can be defined if,
∀0 ≤ x ≤ y:

f(x+ ei)− f(x) ≥ f(y + ei)− f(y). (6)
Recall that ei is a one-hot vector with all zeros except for a single one at the ith position. We also
assume f is normalized and monotone, i.e., f(0) = 0 and f(x) ≤ f(y), ∀ 0 ≤ x ≤ y. W.l.o.g. we
assume the max singleton gain is bounded by 1 (maxi f(ei) ≤ 1). With such an assumption, we see
that rt(i) is monotonically decreasing with increasing t. That is, rt(i) monotonically decreasing is a
necessary, but not sufficient, condition for the DR property on f to hold. Empirically we observe, in
Figure 2 that rt(i) is indeed decreasing, meaning this evidence does not rule out there being a DR
function governing rt(i)’s behavior. On the other hand, this of course does not guarantee the DR
property. Nevertheless, if it is the case that rt(i) is produced as above from some DR function, it
enables the following analysis to proceed.

Under the above assumptions, we may derive bounds of DIHCL-Greedy(Alg. 1) when kt = k
∀t ∈ [T ]. For simplicity, assume n mod k = 0 and let m , n

k . We first show the bound on function
g of observed gains, and then connect it to the unknown function f .

Theorem 1. For f : ZV≥0 → R≥0 on ground set V with DR property, compared to any solution S∗1:T ,
S1:T , the solution of DIHCL-Greedy, achieves

g(S1:T ) + Cf,m ≥ max

{
1− e−1

k
,
k

2n

}
g(S∗1:T ), (7)

Where Cf,m , mminA1:m
g(A1:m) such that

⋃m
i=1Ai = V, and |Ai| = k.

Corollary 1. f(S1:T ) +
1
kCf,m ≥

1
k max

{
1−e−1

k , k2n

}
f(S∗1:T )

The proofs are given the Appendix. The Cf,m term in the bound reflects our loss during the warm
start phase, where we cannot estimate the gain of each sample unless we select each sample at least
once, which is independent of T and vanishes in the long run. The 1 − e−1 comes from the DR
property and our greedy procedure. For the 1/k factor and the k/n factor of the bound on g, we
give hard cases in the Appendix so our bound is tight to constant factors. These factors result from

1We use ηt−1 instead of ηt because at(i) is computed based on wt−1 before the weight update in step t.
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our assumption about the function f , which may have arbitrary interactions among data points. In
practice, similar data points tend to have similar DIH, and we can incorporate such information by
adding an additional term of submodular function G to the DIH value to model data point interactions.

3.3 PRACTICAL METHODS FOR DIH-WEIGHTED SAMPLING IN DIHCL

In line 7 of Alg. 1, we select St with the highest rt−1(i) values. In practice, we find adding
randomness to the selection procedure gives better performance as (1) exploration on samples
with small rt(i) is necessary for accurate estimate to rt(i), and (2) randomness of training
samples is essential to achieve a good quality solution w for non-convex models such as DNNs.
Instead of choosing greedily the top kt samples, we perform random sampling with probability
pt,i ∝ h(rt−1(i)), where h(·) is a monotone non-decreasing function, and we still prefer data points
with high DIH. An ideal choice of h(·) should balance between the exploration of data with poorly
estimated DIH and exploitation of data with well estimated DIH. We propose the following three
sampling methods to replace line 7 of Alg. 1, and give extensive evaluations in the experiment section.

DIHCL-Rand: Let h(rt(i)) = rt(i). We sample data points weighted by their DIH values.

DIHCL-Exp: We trade-off exploration and exploitation similarly to Exp3 (Auer et al., 2003), which
samples based on the softmax value and reweigh the observation by the selection probability to
encourage exploration:

h(rt(i)) = exp
[√

2 logn/n× rt(i)
]
, at(i)← at(i)/pt,i ∀i ∈ St. (8)

DIHCL-Beta: We utilize the idea of Thompson sampling (Thompson, 1933) and use a Beta
distribution prior to balance exploration and exploitation, i.e., h(rt(i)) ∼ Beta(rt(i), c − rt(i)),
where c is a sufficiently large constant that c ≥ rt(i), e.g., c = 1 when at(i) is prediction flip. The
Beta distribution encourages exploration when the difference between rt(i) and c− rt(i) is small.

Table 1: The final test accuracy (%) achieved by different methods training DNNs on 11 datasets (without
pre-training). We use “Loss, dLoss, Flip” to respectively denote the 3 choices of DIH metrics based on (A), (B),
and (C) respectively. In all DIHCL variants, we apply lazier-than-lazy-greedy (Mirzasoleiman et al., 2015) for
Eq. (5) on all datasets except Food-101, Birdsnap, Aircraft (FGVC Aircraft), Cars (Stanford Cars), and ImageNet.

Curriculum CIFAR10 CIFAR100 Food-101 ImageNet STL10 SVHN KMNIST FMNIST Birdsnap Aircraft Cars

Rand mini-batch 96.18 79.64 83.56 75.04 86.06 96.48 98.67 95.22 64.23 74.71 78.73
SPL 93.55 80.25 81.36 73.23 81.33 96.15 97.24 92.09 63.26 68.95 77.61
MCL 96.60 80.99 84.18 75.09 88.57 96.93 99.09 95.07 65.76 75.28 76.98

DIHCL-Rand, Loss 96.76 80.77 83.82 75.41 87.25 96.81 99.10 95.69 65.62 79.00 80.91
DIHCL-Rand, dLoss 96.73 80.65 83.82 75.34 86.93 96.83 99.14 95.64 65.25 79.93 78.70
DIHCL-Exp, Loss 97.03 82.23 84.65 75.10 88.36 96.91 99.20 95.45 66.13 77.68 79.85
DIHCL-Exp, dLoss 96.40 81.42 84.75 75.62 89.41 96.80 99.18 95.50 66.59 79.72 81.48
DIHCL-Beta, Flip 96.51 81.06 84.94 76.33 86.88 97.18 99.05 95.66 65.48 78.49 80.13

4 EMPIRICAL EXPERIMENTAL EVALUATION

We train different DNNs by using variants of DIHCL, and compare them with three baselines, vanilla
random mini-batch SGD, self-paced learning (SPL) (Kumar et al., 2010), and minimax curriculum
learning (MCL) (Zhou & Bilmes, 2018) on 11 image classification datasets (without pre-training), i.e.,
(1) WideResNet-28-10 (Zagoruyko & Komodakis, 2016) on CIFAR10 and CIFAR100 (Krizhevsky
& Hinton, 2009); (2) ResNeXt50-32x4d (Xie et al., 2017) on Food-101 (Bossard et al., 2014), FGVC
Aircraft (Aircraft) (Maji et al., 2013), Stanford Cars (Krause et al., 2013), and Birdsnap (Berg et al.,
2014); (3) ResNet50 He et al. (2016) on ImageNet (Deng et al., 2009); (4) WideResNet-16-8 on
Fashion-MNIST (FMNIST) (Xiao et al., 2017) and Kuzushiji-MNIST (KMNIST) (Clanuwat et al.,
2018); (5) PreActResNet34 He et al. (2016) on STL10 (Coates et al., 2011) and SVHN (Netzer et al.,
2011). We use mini-batch SGD with momentum of 0.9 and cyclic cosine annealing learning rate
schedule (Loshchilov & Hutter, 2017) (multiple episodes with starting/target learning rate decayed
by a multiplicative factor 0.85). We use T0 = 5, γ = 0.95, γk = 0.85 for all DIHCL variants, and
gradually reduce k from n to 0.2n. On each dataset, we apply each method to train the same model for
the same number of epochs, but each method may select different amount of samples per epoch. More
details about the datasets and settings can be found in the Appendix. For DIHCL variants that further
reduce St by solving Eq. (5), we use λ1 = 1.0, γλ = 0.8, γk′ = 0.4 and employ the “facility location”
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submodular function (Cornuéjols et al., 1977) G(S) =
∑
j∈St

maxi∈S ωi,j where ωi,j represents
the similarity between sample xi and xj . We utilize a Gaussian kernel for similarity using neural
net features (e.g., the inputs to the last fully connected layer in our experiments) z(x) for each x, i.e.,
ωi,j = exp

(
−‖z(xi)−z(xj)‖2/2σ2

)
, where σ is the mean value of all the k(k−1)/2 pairwise distances.

Figure 3: Training DNNs by using DIHCL (and its variants), SPL (Kumar et al., 2010), MCL (Zhou & Bilmes,
2018), and random mini-batch SGD on CIFAR10, Food-101, FGVC Aircraft and Birdsnap. We use “Diverse” to
denote DIHCL that further reduces St by applying submodular maximization for Eq. (5). We report how the test
accuracy changes with the number of training batches for each method.

In Figure 3, we show how the test set accuracy changes when increasing the number of training
batches in each curriculum learning method on 3 datasets. The results for other 8 datasets can be found
in the Appendix, together with the wall-clock time for (1) the entire training and (2) the submodular
maximization part in DIHCL with diversity and MCL. The final test accuracy achieved by each
method is reported in Table 1. DIHCL and its variants show significantly faster and smoother gains on
test accuracy than baselines during training especially at earlier stages. They also achieve higher final
accuracy and show improvements in sample efficiency (meaning they reach their best performance
sooner, after less computation has taken place). MCL can reach similar performance as DIHCL on
some datasets but it shows less stability and requires more computation for submodular maximization.
We also observe a similar instability of SPL. The reason is that, compared to the methods that use
DIH, both MCL and SPL deploy instantaneous instance hardness (i.e., current loss) as the score to
select samples, a measure that is more sensitive to randomness and perturbation that occurs during
training. Compared to MCL and DIHCL, SPL and the random mini-batch curriculum method requires
more epochs to reach their best accuracy, since they spend training effort on the easier and memorable
samples but lack sufficient repeated-learning of the forgettable ones. Although every variant of
DIHCL achieves the best accuracy among all the evaluated methods on some datasets, DIHCL-Exp
using loss and DIHCL-Beta using prediction flip, as the instantaneous hardness, exhibit advantages
over the other DIHCL variants. One possible explanation is that the running mean computed on the

8
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loss and prediction flips are more stable along the training trajectory as shown in Figure 2, or perhaps
they are more in line with our assumption in Section 3.2 about the diminishing return property of f(·).
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A PROOFS

f : ZV≥0 → R≥0 on ground set V is defined over an integer lattice. The diminishing return (DR)
property of f is the following inequality 0 ≤ ∀x ≤ y:

f(x+ ei)− f(x) ≥ f(y + ei)− f(y), (9)
Where ei is a one-hot vector with all zeros except for a single one at the ith position. We assume f is
normalized and monotone, i.e., f(0) = 0 and f(x) ≤ f(y), ∀0 ≤ x ≤ y. W.l.o.g. we also assume
the max singleton gain is bounded by 1, i.e., maxi f(ei) ≤ 1. We can think that f takes input as a
multi-set, and the gain of an item diminishes as its counter increases in the multi-set.

In the setting of selecting mini-batches for training machine learning models, suppose the mini-batch
size is k, the training set is V , and at every time step t, we select St ⊆ V with |St| = k, and only
observe the gains on the selected subset (e.g., for neural networks, we update the running mean of
training losses during the forward pass of the chosen mini-batch, or DIH type (A)). At every time step
of selecting a mini-batch, we observe f(i|S1:t−1) ∀i ∈ St. Let n = |V |, m = n

k , and for simplicity
assume n mod k = 0. We define function g to reflect the observed gains from f as we select data
samples at each training step:

g(S1:t) =
∑
t′=1:t

∑
i∈St′

f(i|S1:t′−1) (10)

For simplicity, we slightly overload the notation of S1:T for function g(·) so that we retain information
about the subset selected at every time step (i.e., we can extract St for 1 ≤ t ≤ T from S1:T ). Note
that g is permutation-variant for k > 1, i.e., for different ordering in S1:t, g gives different values.

Theorem 1. For f : ZV≥0 → R≥0 on ground set V with DR property, compared to any solution S∗1:T ,
S1:T , the solution of DIHCL-Greedy, achieves

g(S1:T ) + Cf,m ≥ max

{
1− e−1

k
,
k

2n

}
g(S∗1:T ), (7)

Where Cf,m , mminA1:m g(A1:m) such that
⋃m
i=1Ai = V, and |Ai| = k.

To bridge S1:T with S∗1:T , we first connect S1:T to the greedy solution with singleton gain oracle, but
uses the history of sequence of (S1, S2, . . . , ST−1), which we denote by (Ŝ1, Ŝ2, . . . , ŜT ):

Ŝt = argmax
S⊆V,|S|=k

∑
i∈S

f(i|S1:t−1). (11)

Note we denote any set with subscript 0 (at time step 0) as an empty set, i.e. S0 = ∅, Ŝ0 = ∅, and etc..
We define the observed gain values on the singleton gain oracle with history of (S1, S2, . . . , ST−1)
as:

g(Ŝ1:T |S1:T−1) =
∑
t=1:T

∑
i∈Ŝt

f(i|S1:t−1) (12)

Firstly, we derive a lower bound of g(S1:T ) in terms of g(Ŝ1:T |S1:T−1).

Lemma 1. g(S1:T ) + Cf,m ≥ g(Ŝ1:T |S1:T−1).

Proof. Define ζ(i, A1:t) to return the subsequence of A1:t that starts from A1 and ends at At′
where At′ is the last set in the whole sequence that contains the element i, i.e., ζ(i, A1:t) =
argmaxA1:t′

t′1i∈At′ . When i is not present in the whole sequence A1:t, ζ(i, A1:t) returns ∅.

By definitions of Cf,m and g(Ŝ1:m|S1:m−1), we have Cf,m ≥ mf(V ) ≥ g(Ŝ1:m|S1:m−1) due to
the diminishing return (DR) property.

For T ≤ m, Lemma 1 is true because of the above inequality.

For T ≥ m+ 1, we compare the previous gains of elements in St to the current gains of elements in
Ŝt:

13
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g(S1:T ) + Cf,m ≥ g(S1:T ) + g(Ŝ1:m|S1:m−1) (13)

≥
∑

t=m+1:T

∑
i∈St

f(i|ζ(i, S1:t−1)) + g(Ŝ1:m|S1:m−1) (14)

≥
∑

t=m+1:T

∑
i∈Ŝt

f(i|ζ(i, S1:t−1)) + g(Ŝ1:m|S1:m−1) (15)

≥
∑

t=m+1:T

∑
i∈Ŝt

f(i|S1:t−1) + g(Ŝ1:m|S1:m−1) (16)

= g(Ŝ1:T |S1:T−1) (17)

Eq. 13 and Eq. 16 hold due to the diminishing return property and Eq. 15 is a result of the greedy
step (i.e., St is optimal when conditioning on ζ(i, S1:t−1)). Note that we are guaranteed to find an
element in the sequence history (|ζ(i, S1:t−1)| > 0 in Eq. 14 and Eq. 15) since we sweep the ground
set V in the first m steps of solution S1:m.

Remarks. In the proof, we ignore the gain at the T step, i.e.,
∑
i∈ST

f(i|S1:T−1) as such gain can
potentially be zero. In other words, g(S1:T−1) + Cf,m ≥ g(Ŝ1:T |S1:T−1). For the case that f is
modular, i.e., f(x+ ei) = f(x) + f(ei), and for only k elements in V , the function evaluations are
non-zero, the bound meets in equality: g(S1:T−1) + Cf,m = g(Ŝ1:T |S1:T−1). The idea is that we
have to sweep all elements in the ground set before we identify the non-zero-valued elements.

Next, we find a lower bound of g(Ŝ1:T |S1:T−1) in terms of g(S∗1:T ).

Lemma 2. g(Ŝ1:T |S1:T−1) ≥ 1−e−1

k g(S∗1:T ).

Proof. For T ′ < T , we compare g(S∗1:T ) with g(Ŝ1:T |S1:T−1):
1

k
g(S∗1:T ) =

1

k

∑
t=1:T

∑
i∈S∗t

f(i|S∗1:t−1) (18)

≤ 1

k

∑
t=1:T

k ×max
i∈S∗t

f(i|S∗1:t−1) (19)

≤ 1

k
kf(S∗1:T ) (20)

≤ f(S∗1:T ′ + S1:T ) (21)

≤ f(S1:T ′) +
∑
i∈S∗1:T

f(i|S1:T ′) (22)

≤ f(S1:T ′) + T (
∑

i∈ŜT ′+1

f(i|S1:T ′)) (23)

= f(S1:T ′) + T (g(Ŝ1:T ′+1|S1:T ′)− g(Ŝ1:T ′ |S1:T ′−1)) (24)

≤ g(Ŝ1:T ′ |S1:T ′−1) + T (g(Ŝ1:T ′+1|S1:T ′)− g(Ŝ1:T ′ |S1:T ′−1)) (25)

From Eq. 19 to Eq. 20, we use
∑
t=1:T maxi∈S∗t f(i|S

∗
1:t−1) ≤

∑
t=1:T f(S

∗
t |S∗1:t−1) = f(S∗1:T ).

Eq. 22 is due to DR property and Eq. 23 is a result of greedy selection. Also note that for Eq. 21,
S∗1:T ′ + S1:T =

∑T ′

l=1 eS∗l +
∑T
l=1 eSl

.

By rearranging Eq. 25, we have 1
T (

1
kg(S

∗
1:T ) − g(Ŝ1:T ′ |S1:T ′−1))) ≤ g(g(Ŝ1:T ′+1|S1:T ′) −

g(Ŝ1:T ′ |S1:T ′−1), i.e., every time step, we reduce the gap to 1/k of the of optimal solution by
at least 1

T . Therefore g(Ŝ1:T |S1:T−1) ≥ 1−e−1

k g(S∗1:T ).

14



Under review as a conference paper at ICLR 2020

Remarks. We will show that there is a hard case with 1/k factor. Suppose f is a set cover function
(f(i|A) = 0 if i ∈ A) and |V | = k2. The ground set V is partitioned into k groups V =
V1∪V2∪ . . .∪Vk with k elements in each group, such that f(a) = 1 ∀a ∈ V , f(a|b) = 0 ∀a, b ∈ Vi,
and f({a, b}) = f(a) + f(b) ∀a ∈ Vi, b ∈ Vj , i 6= j. For the first time step, g(Ŝ1|∅) gets a gain of
k which is equal to g(S∗1 ). However, S1 may select one element from each of the group since we
are doing the ground set sweeping exploration, and all the rest gains will be zero conditioned on S1.
The optimal solution, on the other hand, can select all k elements from one group at a time, and get a
value of k2 in the end.

Combine Lemma 1 and Lemma 2, we get the first factor 1−e−1

k for the bound in Theorem 1.

Lemma 3. g(Ŝ1:T |S1:T−1) ≥ k
2ng(S

∗
1:T ).

Proof. We will first connect g(Ŝ1:T |S1:T−1) with the solution that selects the entire ground set V at
every step, i.e., g(V1:T ) = g((V, V, . . . , V )).

g(Ŝ1:T |S1:T−1) ≥
k

n
g(V1:T |S1:T−1) (26)

≥ k

n
g(V1:T |V1:T−1) (27)

=
k

n

∑
t=1:T

∑
i∈V

f(i|V1:t−1) (28)

≥ k

n
f(V1:T ) (29)

For Eq. 26, we use the fact that Ŝ1:T achieve the top k gains selected by the greedy process in each
step. Next, we will bound any solution g(S∗1:T ) by g(V1:T |V1:T−1). Firstly, we will need to partition
S∗1:T into two parts: (1) for the first part, we collect all the new elements introduced at every time step
t that do not exist in S∗1:t−1, i.e., S̃∗1:T = (S∗1 \ ∅, S∗2 \ ∪(S∗1:1), S∗3 \ ∪(S∗1:2), . . . , S∗T \ ∪(S∗1:T−1)),
where S̃∗t , S∗t \ ∪(S∗1:t−1) and ∪(S1:t) ,

⋃
i=1:t Si, which is the set union on all elements in the

multiset (you can think it sets all the counters in the multiset with values ≥ 1 to ones), and "\" is the
set minus operation. Therefore, S̃∗1:T contains every element in S∗1:T exactly once, i.e., every element
in S∗1:T only appears once in S̃∗1:T , and at many time steps, S̃∗t might be empty; (2) the other part
contains all the rest elements, i.e., S∗1:T − S̃∗1:T = (S∗1 \ S̃∗1 , S∗2 \ S̃∗2 , . . . , S∗T \ S̃∗T ). We bound the
two parts as follows:

g(S∗1:T ) =
∑
t=1:T

∑
i∈S∗t

f(i|S∗1:t−1) (30)

=
∑
t=1:T

∑
i∈S̃∗t

f(i|S∗1:t−1) +
∑
t=1:T

∑
i∈(S∗t \S̃∗t )

f(i|S∗1:t−1) (31)

≤
∑
i∈V

f(i) +
∑
t=1:T

∑
i∈(S∗t \S̃∗t )

f(i|S∗1:t−1) (32)

≤
∑
i∈V

f(i) + f(S∗1:T ) (33)

≤ g(V1:T |V1:T−1) + f(V1:T ) (34)
From Eq. 31 to Eq. 32, we use the fact

∑
t=1:T

∑
i∈S̃∗t

f(i|S∗1:t−1) ≤
∑
t=1:T

∑
i∈S̃∗t

f(i) ≤∑
i∈V f(i) since S̃∗T contains one instance of every element in S∗1:T and removing the conditioning

part would make the gains larger (guaranteed by diminishing return property). To get Eq. 33,
we reduce the conditioning part of f(i|S∗1:t−1) in Eq. 32 by using the following inequality: for
A1 ⊆ A2 ⊆ V , denote A3 = A2 \ A1 and let A1 = {i1, i2, · · · , i|A1|}, by diminishing return
property of f(·), we have:∑

i∈A1

f(i|A2) ≤ f(i1|A3) + f(i2|{i1} ∪A3) + f(i3|{i1, i2} ∪A3)+

. . .+ f(i|A1||A2 \ {i|A1|}) = f(A2|A3). (35)
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According to the pre-defined partition, we pick out the first occurrence of every element into S̃∗1:T ,
every remaining element i ∈ (S∗t \ S̃∗t ) is guaranteed to find itself in its conditioning history S∗1:t−1
and therefore, we may use the inequality described in Eq. 35 to bound the second term in Eq. 32
by f(S∗1:T ) (letting A1 = S∗t \ S̃∗t and A2 = S∗1:t−1 and applying the inequality from t = 1 to T
sequentially). To make it more concrete, for example, at step t = 2, by using Eq. 35, we have:∑

i∈(S∗2\S̃∗2 )

f(i|S∗1 ) ≤ f(i1) + f(i2|i1) + f(i3|i1, i2)

+ . . .+ f(i|S∗2\S̃∗2 |
|S∗2 \ S̃∗2 \ {i|S∗2\S̃∗2 |}) (36)

= f(S∗2 \ S̃∗2 ); (37)
At time step t = 3, we have:∑

i∈(S∗3\S̃∗3 )

f(i|S∗1:2) ≤ f(i1|S∗2 \ S̃∗2 ) + f(i2|{i1} ∪ (S∗2 \ S̃∗2 )) + f(i3|{i1, i2} ∪ (S∗2 \ S̃∗2 ))

+ . . .+ f(i|S∗3\S̃∗3 |
|(S∗3 \ S̃∗2 \ {i|S∗3\S̃∗3 |}) ∪ (S∗2 \ S̃∗2 )) (38)

= f(S∗3 \ S̃∗3 |S∗2 \ S̃∗2 ). (39)
Hence, we have the inequality between Eq. 32 and Eq. 33.

To get Eq. 34 from Eq. 33, we use the fact
∑
i∈V f(i) ≤ g(V1:T |V1:T−1) because g(V1:T |V1:T−1)

contains
∑
i∈V f(i) at step t = 1, and the second term in Eq. 34 is due to the fact that f(·) is

monotone non-decreasing.

Finally, we combine Eq. 29 and Eq. 34, we get 2g(Ŝ1:T |S1:T−1) ≥ 2k
n f(V1:T ) ≥

k
ng(S

∗
1:T ).

By combining Lemma 1 and Lemma 3, we get the second factor k
2n for the bound in Theorem 1.

Remarks. The first factor 1−e−1

k dominates when k is relatively small compared to n. Recall the
hard case example above on the 1/k factor. We can generalize it to any k < n by (almost) equally
distribute the n elements into the k groups described in the hard case. Then, for n < k2, the optimal
solution gets n in the end while the greedy solution gets k, so the ratio is k

n . For n ≥ k2, the optimal
solution still gets k2 while the greedy solution gets k, so the ratio is 1

k . In both scenarios, our bounds
match the hard example up to constant factors.

Corollary 1. f(S1:T ) +
1
kCf,m ≥

1
k max

{
1−e−1

k , k2n

}
f(S∗1:T )

Proof.

f(S1:T ) +
1

k
Cf,m ≥

1

k
(g(S1:T ) + Cf,m) (40)

≥ 1

k
max{1− e

−1

k
,
k

2n
}g(S∗1:T ) (41)

≥ 1

k
max{1− e

−1

k
,
k

2n
}f(S∗1:T ) (42)

Remarks. We will show there is a hard case with the 1/k2 factor. The same as the hard case
mentioned above for the set cover function, f(Ŝ1) gets a gain of 1 since the selected items can be
totally redundant, and the future gains are all zeros since S1 select one element from each group.
However, the optimal solution can still achieve an evaluation of k2 in the end. Also, note that
Theorem 1 is true for any solution S∗1:T and the optimal solution for g and the optimal solution for f
can be different.

We mentioned a few weighted sampling method to replace the greedy step. Here, we apply a random
sampling procedure similar to the lazier-than-lazy approach Mirzasoleiman et al. (2015): we sample
a subset Rj ⊆ V \ St,j−1 of size n

k log
1
ε , and then choose the top-gain element from Rj and add it

to St,j−1 to from St,j . We denote such sampling based greedy as DIHCL-Greedy-random.
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Theorem 2. For f : ZV≥0 → R≥0 on ground set V with DR property, compared to any solution S∗1:T ,
S1:T , the solution of DIHCL-Greedy-random, achieves

E[g(S1:T )] + Cf,m ≥ (1− (1− 1− ε
k

)k)
1− e−1

k
g(S∗1:T ) (43)

≥ (1− e−1 − ε)(1− e−1)
k

g(S∗1:T ). (44)

Proof. We can think the selection of every St is a greedy process of k steps, with St as the optimal
solution. Suppose up to step j, we select the set St,j . We first bound the probability that the sampled
set has some intersection with the optimal set St.

Pr[Rj ∩ (St \ St,j−1) 6= ∅] ≥ 1− (1− |St \ St,j−1|
|V \ St,j−1|

)|R| (45)

≥ 1− (1− |St \ St,j−1|
n

)|R| (46)

≥ 1− e−
|R|
n |St\St,j−1| (47)

≥ (1− e−
|R|k
n )
|St \ St,j−1|

k
(48)

(49)
In step j, we denote the selected item by vj . We can then get the expected gain given the probability
that there is some intersection:

E[f(vj |ζ(vj , S1:t−1))] ≥ Pr[Rj ∩ (St \ St,j) 6= ∅]
1

|St \ St,j |
∑
i∈St

f(i|ζ(i, S1:t−1)) (50)

=
1− ε
k

∑
i∈St

f(i|ζ(i, S1:t−1)) (51)

Again, we get the argument that we are reducing the gap to the optimal solution by (1 − ε)/k for
every selected item vj on expectation.

∑
j=1:k

E[f(vj |ζ(vj , S1:t−1))] ≥ (1− (1− 1− ε
k

)k)
∑
i∈St

E[f(i|ζ(i, S1:t−1))] (52)

We can then apply Eq. 52 in the Eq. 14 of Lemma 1, and get

E[g(S1:T )] + Cf,m ≥ (1− (1− 1− ε
k

)k)E[g(Ŝ1:T |S1:T−1)] (53)

Combine with Lemma 2 we get the bound in Theorem 2.

Remarks. When n is large and n� k, we can approximate the sample without replacement using
sample with replacement, and we can independently sample k subsets each of size |R| at every time
step to generate Sk. In such a case, the bound becomes E[g(S1:T )] + Cf,m ≥ 1−e−1−ε

k g(S∗1:T ).

Similarly, we can also get the expectation bound on f :

Corollary 2. E[f(S1:T )] +
1
kCf,m ≥ (1− (1− 1−ε

k )k) 1−e
−1

k2 f(S∗1:T )

Proof.

E[f(S1:T )] +
1

k
Cf,m ≥

1

k
(E[g(S1:T )] + Cf,m) (54)

≥ (1− (1− 1− ε
k

)k)
1− e−1

k2
g(S∗1:T ) (55)

≥ (1− (1− 1− ε
k

)k)
1− e−1

k2
f(S∗1:T ) (56)
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We can extend the setting so that we get noisy feedback from the gains of function f : f(i|S1:t−1)+αt,
and the problem becomes a multi-armed bandit problem. Specifically if we assume the noise at form
a martingale difference sequence, i.e. E[αt|α1, α2, . . . , αt−1] = 0 and all αt are bounded αt ≤ σ
and if we make further assumption about the smoothness of the f and g function (assume the gains
of f and g have RKHS-norm bounded by value B with some kernel k), we can utilize the contextual
bandit UCB algorithm proposed in Krause & Ong (2011) to get a

√
T dependent regret. Also,

under the noise setting, the contextual information becomes crucial, as the function has DR-property,
and without an estimate of how much the gain decreases, we cannot have a better estimate of the
upper bound on the noise term. However, we note that utilizing the contextual information involves
calculating large kernel matrices, which is not feasible for our purpose of efficient curriculum learning.
We include the following result for completeness.
Theorem 3. For f : ZV≥0 → R≥0 on ground set V with DR property, suppose the gain of function
g has RKHS-norm bounded by value B with some kernel k), and the noise αt’s from a martingale
difference sequence: E[αt|α1, α2, . . . , αt−1] = 0 and all αt are bounded |αt| ≤ σ. We define the
maximum information gain if we have the perfect information about f , ρT = maxA1:T

H(yA1:T
)−

H(yA1:T
|f), where H is the Shannon entropy, and yA1:T

= {f(i|A1:t−1) + at|i ∈ At, t = 1 : T}
denotes the collection of gain values we get from the sequence of A1:T . We get the following regret
bound:

Pr[
1− e−1

k
g(S∗1:T )− g(S1:T ) ≤

√
CTβT ρT + Cf,m + 2] ≥ 1− δ, (57)

Where, C = 8/ log(1 + σ−2), βT = 2B2 + 300ρT ln3(T/δ).

Proof. The proof directly utilizes the third case of Theorem 1 in Krause & Ong (2011), using the
history sequence (S1, S2, . . . , St) as the context:

Pr[
1− e−1

k
g(S∗1:T )− g(Ŝ1:T |S1:T−1) ≤

√
CTβT ρT + 2] ≥ 1− δ (58)

Combine with Lemma 1, we have:

Pr[
1− e−1

k
g(S∗1:T )− g(S1:T ) ≤

√
CTβT ρT + Cf,m + 2] ≥ 1− δ. (59)

B DYNAMIC INSTANCE HARDNESS (CONT.)

Figure 4: LEFT: Entry Ai,j (i < j) is the percentage of shared samples between the top-10k samples with
the largest DIH computed in epoch 15i and epoch 15j RIGHT: Entry Ai,j (i < j) is the percentage of shared
samples between the top-10k samples with the smallest DIH computed in epoch 15i and epoch 15j. It shows that
both the forgettable and memorable samples in the future are predictable by using the DIH values in early epochs.

Firstly, we present a quantitative verification of the second observation in Section 2, i.e., dy-
namic instance hardness in early stages can predict later dynamics. It tries to predict the samples
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with large/small DIH values in the future by only using the DIH computed on early training history.
In Figure 4, we show two upper triangle matrices quantitatively verifying the above statement. They
are computed based on the results of the CIFAR10 training experiment in Section 2. Take the matrix
A in the left plot for example, given Ui, the top-10k samples with the largest DIH values computed
in epoch 15i, and Uj for any j > i, the entry Ai,j = |Ui∩Uj |/10000. Similarly, the matrix in the right
plot measures the same overlapping percentage for the top-10k samples with the smallest DIH values
between epoch 15i and epoch 15j. They show that after a few first epochs, DIH can accurately
predict the forgettable and memorable samples in the future. This verifies the second statement we
made in Section 2. In addition, they also show that |Ui∩Uj |/10000 between consecutive epochs 15i and
15j is close to 100%, which indicates that DIH is a stable and smoothly changed metric with high
consistency across training trajectory.

Epoch 10

Epoch 10

Epoch 40 Epoch 40

Epoch 60 Epoch 60

10k samples with largest DIH
10k samples with smallest DIH
the remaining 30k samples

10k samples with largest DIH
10k samples with smallest DIH
the remaining 30k samples

10k samples with largest DIH
10k samples with smallest DIH
the remaining 30k samples

Figure 5: LEFT: Averaged prediction-flip and RIGHT: losses (mean and std.) of the three groups of samples
partitioned by a DIH metric (i.e.,running mean of prediction-flip) computed at epoch 10,40 and 60 during training
WideResNet-28-10 on CIFAR10 with random labels. In this setting, the random (but wrong) labels will be re-
membered very well after some training, and DIH in early stages loses the capability to predict the future DIH, i.e.,
they can only reflect the history but not the future. This characteristic of DIH might be helpful to detect noisy data.

Epoch 10

Epoch 40

Epoch 140

Epoch 210

10k samples with largest DIH
10k samples with smallest DIH
the remaining 30k samples
learning rate (rescaled)

10k samples with largest DIH
10k samples with smallest DIH
the remaining 30k samples
learning rate (rescaled)

10k samples with largest DIH
10k samples with smallest DIH
the remaining 30k samples
learning rate (rescaled)

10k samples with largest DIH
10k samples with smallest DIH
the remaining 30k samples
learning rate (rescaled)

Figure 6: LEFT: Averaged prediction-flip and RIGHT: losses (mean and std.) of the three groups of samples
partitioned by a DIH metric (i.e.,running mean of prediction-flip) computed at epoch 10, 40, 140 and 210 during
training a smaller CNN on CIFAR10. It shows that the difference of memorable and forgettable samples is
not sufficiently obvious until very late training epochs, e.g., after epoch-140.

Secondly, we conduct an empirical study of dynamic instance hardness during training a neu-
ral net on very noisy data, as studied in (Zhang et al., 2017) and (Arpit et al., 2017). In particular,
we replace the ground truth labels of the training samples by random labels, and apply the same
training setting used in Section 2. Then, we compute the running mean of prediction-flip for each
sample at some epoch (i.e., 10, 40, 60), and partition the training samples into three groups, as we
did to generate Figure 1. The result is shown in Figure 5. It shows 1) the group with the smallest
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prediction flip over history (left plot) is possible to have large but unchanging loss as shown in
the right plot; and 2) the DIH in this case can only reflect the history but cannot predict the future.
However, it also indicates that the capability of DIH to predict the future is potential to be an effective
metric to distinguish noisy data or adversarial attack from real data. We will discuss it in our future
work.

Thirdly, we change the WideResNet to a much smaller CNN architecture with three convolu-
tional layers2. We apply the same training setting used in Section 2. Then, we compute the running
mean of prediction-flip for each sample at some epoch (i.e., 10, 40, 140, 210), and partition the
training samples into three groups, as we did to generate Figure 1. The result is shown in Figure 6.
Compared to DIH of training deeper and wider neural nets shown in Figure 1, the memorable and
forgettable samples are indistinguishable until very late stages, e.g., Epoch-140. This indicates that
using DIH in earlier stage to select forgettable samples into curriculum might not be reliable when
training small neural nets. We will leave explanation of this phenomenon to our future works.

Figure 7: Top: DIH (running mean of loss) vs. Bottom: instantaneous loss of 50 randomly selected samples
from CIFAR10 when training WideResNet-28-10. It shows that for each individual sample, DIH smoothly
decreases while the corresponding instantaneous loss is much noisier.

Moreover, we provide a comparison of the smoothness between DIH and instantaneous loss on
individual samples in Figure 7. It shows that the DIH is a smooth and consistent measure of the
learning/memorization progress on individual samples. In contrast, the frequently used instantaneous
loss is much noisier, so selecting training samples according to it will lead to unstable behaviors
during training. In Figure 8, we also provide a comparison of DIH and instantaneous loss on the two
groups of samples in Figure 2, which shows a similar phenomenon.

C EXPERIMENTS (CONT.)

We use cosine annealing learning rate schedule for multiple episodes. The switching epoch between
each two consecutive episode for different datasets are listed below.

• CIFAR10, CIFAR100: (5, 10, 15, 20, 30, 40, 60, 90, 140, 210, 300);
• Food-101, Birdsnap, FGVCaircraft, StanfordCars: (10, 20, 30, 40, 60, 90, 150, 240, 400);
• ImageNet: (5, 10, 15, 20, 30, 45, 75, 120, 200);
• STL10: (20, 40, 60, 80, 120, 160, 240, 360, 560, 840, 1200);
• SVHN: (5, 10, 15, 20, 30, 40, 60, 90, 140, 210, 300);
• KMNIST, FMNIST: (5, 10, 15, 20, 30, 40, 60, 90, 140, 210, 300);

We report how the test accuracy changes with the number of training batches for each method, and
the wall-clock time for all the 11 datasets in Figure 9-12.

2The “v3” network from https://github.com/jseppanen/cifar_lasagne.
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Figure 8: Top: DIH (running mean of loss) vs. Bottom: instantaneous loss of 10 samples randomly selected
from the top 10k samples with the largest(red) and the smallest(blue) DIH at epoch 40 of training of WideResNet-
28-10 on CIFAR10 (the same as Figure 2. It shows that for each individual sample from the two groups, DIH
smoothly decreases while the corresponding instantaneous loss is much noisier.

Table 2: Details regarding the datasets and training settings (#Feature denotes the number of features
after cropping if applied), “lr_start” and “lr_target” denote the starting and target learning rate for the
first episode of cosine annealing schedule, they are gradually decayed over the rest episodes.

Dataset CIFAR10 CIFAR100 Food-101 ImageNet STL10 SVHN

#Training 50000 50000 75750 1281167 5000 73257
#Test 10000 10000 25250 50000 8000 26032
#Feature (3, 32, 32) (3, 32, 32) (3, 224, 224) (3, 224, 224) (3, 96, 96) (3, 32, 32)
#Class 10 100 101 1000 10 10

#Epoch T 300 300 400 200 1200 300
BatchSize 128 128 80 256 128 128
lr_start 2× 10−1 2× 10−1 2× 10−1 2× 10−1 2× 10−1 2× 10−2

lr_target 5× 10−4 5× 10−4 1× 10−4 1× 10−4 5× 10−4 1× 10−3

Table 3: Details regarding the datasets and training settings (cont.)
Dataset Birdsnap FGVCaircraft StanfordCARs KMNIST FMNIST

#Training 47386 6667 8144 50000 50000
#Test 2443 3333 8041 10000 10000
#Feature (3, 224, 224) (3, 224, 224) (3, 224, 224) (1, 28, 28) (1, 28, 28)
#Class 500 100 196 10 10

#Epoch T 400 400 400 300 300
BatchSize 258 256 256 128 128
lr_start 4× 10−1 4× 10−1 4× 10−1 4× 10−2 4× 10−2

lr_target 1× 10−4 1× 10−4 1× 10−4 1× 10−3 1× 10−3
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Figure 9: Training DNNs by using DIHCL (and its variants), SPL (Kumar et al., 2010), MCL (Zhou & Bilmes,
2018), and random mini-batch SGD on 3 datasets, i.e., CIFAR10, CIFAR100 and STL-10. We use “Diverse” to
denote DIHCL that further reduces St by applying submodular maximization for Eq. (5). We report how the test
accuracy changes with the number of training batches for each method, and the (log-scale) wall-clock time for
1) the entire training and 2) the submodular maximization part in DIHCL with diversity and MCL.
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Figure 10: Training DNNs by using DIHCL (and its variants), SPL (Kumar et al., 2010), MCL (Zhou & Bilmes,
2018), and random mini-batch SGD on 3 datasets, i.e., SVHN, Fashion MNIST and Kuzushiji MNIST. We
use “Diverse” to denote DIHCL that further reduces St by applying submodular maximization for Eq. (5). We
report how the test accuracy changes with the number of training batches for each method, and the (log-scale)
wall-clock time for 1) the entire training and 2) the submodular maximization part in DIHCL with diversity and
MCL.

23



Under review as a conference paper at ICLR 2020

Figure 11: Training DNNs by using DIHCL (and its variants), SPL (Kumar et al., 2010), MCL (Zhou & Bilmes,
2018), and random mini-batch SGD on 3 datasets, i.e., ImageNet, Food-101 and Birdsnap. We report how the
test accuracy changes with the number of training batches for each method, and the wall-clock time for 1) the
entire training and 2) the submodular maximization part in MCL.
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Figure 12: Training DNNs by using DIHCL (and its variants), SPL (Kumar et al., 2010), MCL (Zhou & Bilmes,
2018), and random mini-batch SGD on 2 datasets, i.e., FGVC Aircraft and Stanford Cars. We report how the
test accuracy changes with the number of training batches for each method, and the wall-clock time for 1) the
entire training and 2) the submodular maximization part in MCL.
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