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Garbage in, model out: Weight theft with just noise
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Abstract

This paper explores the scenarios under which
an attacker can claim that ‘Noise and access to
the softmax layer of the model is all you need’
to steal the weights of a convolutional neural net-
work whose architecture is already known. We
were able to achieve 96% test accuracy using
the stolen MNIST model and 82% accuracy us-
ing stolen KMNIST model learned using only
i.i.d. Bernoulli noise inputs. We posit that this
theft-susceptibility of the weights is indicative
of the complexity of the dataset and propose a
new metric that captures the same. The goal of
this dissemination is to not just showcase how far
knowing the architecture can take you in terms of
model stealing, but to also draw attention to this
rather idiosyncratic weight learnability aspects of
CNNs spurred by i.i.d. noise input. We also dis-
seminate some initial results obtained with using
the Ising probability distribution in lieu of the i.i.d.
Bernoulli distribution

1. Introduction
In this paper, we consider the fate of an adamant attacker
who is adamant about only using noise as input to a convo-
lutional neural network (CNN) whose architecture is known
and whose weights are the target of theft. We assume that
the attacker has earned access to the softmax layer and is
not restricted in terms of the number of inputs to be used to
carry out the attack.
At the outset, we’d like to emphasize that our goal in dis-
seminating these results is not to convince the reader on the
real-world validity of the attacker-scenario described above
or to showcase a novel attack. This paper contains our initial
explorations after a chance discovery that we could populate
the weights of an MNIST-trained CNN model by just using
noise as input into the framework described below.
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Through a set of empirical experiments, which we are duly
open sourcing to aid reproducibility, we seek to draw the
attention of the community on the following two issues:

1. This risk of model weight theft clearly entails an in-
terplay between the dataset as well as the architecture.
Given a fixed architecture, can we use the level of
susceptibility as a novel metric of complexity of the
dataset?

2. Given the wide variations in success attained by vary-
ing the noise distribution, how do we formally charac-
terize the relationship between the input noise distribu-
tion being used by the attacker and the true distribution
of the data, while considering a specific CNN archi-
tecture? What aspects of the true data distribution are
actually important for model extraction?

The rest of the paper is structured as follows:
In Section 2, we provide a brief literature survey of the
related work. In Section 3, we describe the methodology
used to carry out the attack. In Section 4, we cover the main
results obtained and conclude the paper in Section 5.

2. Related work
The art form of stealing machine learning models has re-
ceived a lot of attention in the recent years. In (Tramèr et al.,
2016), the authors specifically targeted real-world ML-as-a-
service (Ribeiro et al., 2015) platforms such as BigML and
Amazon Machine Learning and demonstrated effective at-
tacks that resulted in extraction of machine learning models
with near-perfect fidelity for several popular model classes.
In (Correia-Silva et al., 2018), the authors trained what they
termed as a copycat network using Non-Problem Domain
images and stolen labels to achieve impressive results in the
three problems of facial expression, object, and crosswalk
classification. This was followed by work on Knockoff Nets
(Orekondy et al., 2018), where the authors demonstrated that
by merely querying with random images sourced from an
entirely different distribution than that of the black box tar-
get training data, one could not just train a well-performing
knockoff but it was possible to achieve high accuracy even
when the knockoff was constructed using a completely dif-
ferent architecture.
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This work differs from the above works in that the attacker
is adamant on only using noise images as querying in-
puts. Intriguingly enough, the state-of-the-art CNNs are
not robust enough to provide a flat (uniform) softmax out-
put (with weight 1/number-of-classes) when we input non-
input-domain noise at the input layer. This was been studied
under two contexts. The first context was within the frame-
work of fooling images. In (Nguyen et al., 2015), the authors
showcased how to generate synthetic images that were noise-
like and completely unrecognizable to the human-eye but
ones that state-of-the-art CNNs classified as one of the train-
ing classes with 99.99% confidence. The second text was
with regards to what the authors in (Goodfellow et al., 2014)
stated to be rubbish-class examples . Here, they showcased
that the high levels of confident mis-predictions exuded by
state-of-the-art trained on MNIST and CIFAR-10 datasets
in response to isotropic Gaussian noise inputs.
In this work, we focus on using Bernoulli noise-samples as
inputs and using the softmax responses of the target model
to siphon away the weights.

3. Methodology
3.1. Threat model

We propose a framework for model extraction without pos-
session of samples from the true dataset which the model
has been trained on or the purpose of the model other than
the dimensionality of the input tensors as well as the ability
to access the resulting class distribution from what is as-
sumed to be a softmax activation given an input. We make
the additional assumption that the architecture of the model
to be extracted is known by the adversary. In our experi-
ments, we assume that the input tensor is of dimension 28
by 28 and each pixel has values on the interval [0, 1].

3.2. Victim model

The black box model which we attempt to extract, F (·),
whose architecture is described in Table 3, is trained to
convergence on a standard dataset for 12 epochs using the
Adadelta optimizer with an initial learning rate of 1.0 and a
minibatch size of 128 (Mni). From this point onward, this
model is assumed to be a black box in which we have no
access to the parameters of each layer.

3.3. Random stimulus response for model extraction

We procedurally generate a dataset of ‘stimuli’ comprised
of 600000 28 by 28 binary tensors where each pixel
is sampled from a Bernoulli distribution with a success
probability parameter p. In other words, let each image
xirand ∈ Xrand ⊆ {0, 1}28×28 where xirand,j,k ∼ Bern(p) for
i ∈ {1, ..., 600000}. We sample these tensors with proba-
bility parameters p ∈ {0.01, 0.11, ...0.91}, where each p is

Table 1. Victim architecture as found in the MNIST example in the
documentation for the Keras deep learning library.

LAYER TYPE DIMENSIONS ADDITIONAL
INFORMATION

CONVOLUTIONAL 32, 3× 3 RELU
CONVOLUTIONAL 64, 3× 3 RELU
MAX POOLING 2× 2 -
DROPOUT RATE = 0.25
DENSE 128 RELU
DROPOUT - RATE = 0.5
DENSE 10 SOFTMAX

used to generate 10% of the data. We obtain predictions
from the black box model for each randomly sampled ex-
ample, yirand = F (xirand), which we refer to as ‘responses.’

3.4. Extraction

We train a new model, Fextract(·), on the stimulus response
pairs, {(xirand, y

i
rand)}600000i=1 pairs with no regularization and

evaluate on the dataset originally used to train F (·). The
architecture for this model is the same as F (·), except we
remove the dropout layers to encourage overfitting. We
train for 50 epochs using the Adadelta optimizer with an
initial learning rate of 1.0 and a minibatch size of 128. Ad-
ditionally, we acknowledge a significant class imbalance in
the highest probability classes in the softmax vectors yrand,
so we remedy this by computing class weights according
to the argmax of each softmax vector, and applying this
re-weighting during the training of Fextract(·). We show the
full extraction algorithm in Algorithm 1 and summarize it
in Figure 1.

We evaluate our proposed framework on four datasets from
the MNIST family of datasets with identical dimensions:
MNIST, KMNIST, Fashion MNIST, and notMNIST (LeCun
& Cortes, 2010; Clanuwat et al., 2018; Xiao et al., 2017;
not).

3.5. Experiments with noise distributions

We evaluated the effect of sampling random data xirand from
different distributions on the performance of Fextract(·) on
the MNIST validation set. We used the same training proce-
dure as found in the previously described experiments with
two exceptions: we sample only 60000 procedurally gen-
erated examples and we train Fextract(·) for only 10 epochs.
We evaluated the use of the uniform distribution on the
bounded interval [0, 1], the standard normal distribution,
the standard Gumbel distribution, the Bernoulli distribu-
tion with success parameter p = 0.5, and samples from an
Ising model simulation with inverse temperature parameter
β ∈ [0.0, 0.1, ..., 0.9] and resulting values scaled to {0, 1}.
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3.6. The Ising prior as a model of spatial correlation

The Ising prior is defined by the density (Taroni, 2015):

p (x) =

exp

[
−β

∑
ij∈E

(xixj)

]
∑
x
exp

[
−β

∑
ij∈E

(xixj)

] ;xi ∈ {−1, 1}
Examples of images sampled from the Ising model can be
found in Figure 6.

For this experiment, we evaluated the role of the in-
verse temeprature β parameter of the Ising sampler in
training Fextract(·). We first partition the stimulus re-
sponse pairs, (XIsing, YIsing) into 10 subsets with 7000 ex-
amples each corresponding to the different β parameters
used to generate the samples, where (XIsing, YIsing) =⋃
β∈{0.0,0.1,...,0.9}{(XIsing,β , YIsing,β)}. We train Fextract(·)

for 10 epochs for each β and validate on the original dataset.
We performed this experiment for MNIST, KMNIST, Fash-
ion MNIST, and notMNIST and report the variation in per-
formance over different values of β.

Figure 1. Overview of the model extraction algorithm.

4. Results
4.1. MNIST

We evaluate the efficacy of our framework by training F (·)
on MNIST and going on to evaluate the performance of
Fextract(·) on MNIST after extraction. We found that F (·)
achieved a validation accuracy of 99.03% and Fextract(·)
achieved a validation accuracy of 95.93%. The distribu-
tion of the argmax of Yrand can be found in Figure 2. The
most underrepresented class according to the argmax of
Yrand was class 6 represented by 198 out of 600000 random
examples.

Algorithm 1 Stimulus response model extraction.
Input: data Xtrain, Ytrain, Xval, Yval

Initialize F (·).
Initialize numRandomExamples = 600000.
Initialize dim = 28.
Fit F (Xtrain), Ytrain.
Evaluate F (Xval), Yval.
for p in {0.01, 0.11, ..., 0.91} do

for q in {0, 1, ..., numRandomExamples/10} do
for j in {0, 1, ..., dim-1} do

for k in {0, 1, ..., dim-1} do
xsample,j,k ∼ Bern(p)

end for
end for
Xrand = Xrand ∪ xsample

end for
end for
Initialize Fextract(·).
for i ∈ {1, ..., |Xrand|} do
yirand = Fextract(x

i
rand)

end for
Compute class weights CWY rand given Yrand

Fit Fextract(Xrand), Yrand with CWY rand.
Evaluate Fextract(Xval), Yval.

4.2. KMNIST

Our experiments with KMNIST resulted in F (·) achieving
a validation accuracy of 94.79% and Fextract(·) achieving a
validation accuracy of 81.18%. Class 8 was found to be
the class with the fewest representatives according to the
argmax of Yrand, which had 272 representative examples
out of 600000.

4.3. Fashion MNIST

On the Fashion MNIST dataset, we found that F (·) achieved
a validation accuracy of 92.16%, while Fextract(·) achieved
a validation accuracy of 75.31%. For Fashion MNIST, the
most underrepresented class according to the argmax of
Yrand was class 7 (sneaker) with only 12 out of 600000 ran-
dom examples. Notably, the most common mispredictions
according to Figure 3 were incorrectly predicting class 5
(sandal) when the ground truth is class 7 (sneaker) and pre-
dicting class 5 (sandal) when the ground truth is class 9
(ankle boot). Fextract(·) seems to predict the majority of
examples from shoe-like classes to be of class 5 (sandal).

4.4. notMNIST

We found that the notMNIST dataset had a more uniform
class distribution according to the argmax of Yrand than
the other datasets that we evaluated. The class with the
fewest representatives in this sense was class 9 (the letter j)



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Garbage in, model out: Weight theft with just noise

Table 2. Performance using different noise distributions.

DISTRIBUTION Fextract(·)
VALIDATION ACCURACY

UNIFORM (a = 0, b = 1) 11.72%
STANDARD NORMAL
(µ = 0, σ = 1) 68.79%
STANDARD GUMBEL
(µ = 0, β = 1) 70.03%
BERNOULLI (p = 0.5) 76.58%
ISING (β ∈ {0.0, 0.1, ..., 0.9}) 98.02%

with 3950 out of 600000 examples. Despite this potential
advantage, the extracted model Fextract(·) failed to generalize
to the notMNIST validation set, achieving an accuracy of
10.47%, and as can be seen in Figure 3, Fextract(·) predicts
class 5 (the letter e) in the vast majority of cases. In contrast,
F (·) achieved a validation accuracy of 88.62%.

4.5. The performance of different noise distributions

In evaluating the effect of sampling from different distribu-
tions to construct Xrand, we found that among the uniform,
standard normal, standard Gumbel, Bernoulli distributions,
and the Ising model, samples from the Ising model attained
the highest accuracy at 98.02% when evaluating Fextract(·)
on the MNIST validation set. The results for each of the
other distributions can be found in Figure 2. We postu-
late that this is due to the modelling of spatial correlations,
which is a property which is lacking when sampling from the
uniform, standard normal, standard Gumbel, and Bernoulli
distributions, as the pixels are assumed to be i.i.d.

4.6. Extraction hardness resulting from data

We propose a measure of model extraction hardness result-
ing from the dataset which the original model is trained on
as the ratio of the post-extraction validation accuracy (using
Fextract(·)) and the pre-extraction validation accuracy (using
F (·)) under our framework. We show that the resulting
ratios are align with the mainstream intuition regarding the
general relative learnability of MNIST, KMNIST, Fashion
MNIST, and notMNIST. For MNIST, we found this ratio to
be 0.9687, the ratio for KMNIST was 0.8564, for Fashion
MNIST we found it to be 0.8171, and notMNIST achieved
a ratio of 0.1181.

4.7. The role of modelling spatial correlation

We found that the loss and accuracy undergo ‘phase tran-
sitions’ as the value of β is varied. In Figure 4, we see
that across datasets, the losses tend to be minimized around
β = 0.3, however the behavior of larger values of β varies
from dataset to dataset. We postulate that this is indicative

Table 3. Performance on original dataset before and after extraction
(measured on the validation set).

DATASET PRE-EXTRACTION POST-EXTRACTION
ACCURACY ACCURACY

MNIST 99.03% 95.93%
KMNIST 94.79% 81.18%
FASHION
MNIST 92.16% 75.31%
NOTMNIST 88.62% 10.47%

of the different distributions of the amount of spatial corre-
lation across each dataset. We also found that accuracy is
maximized at β = 0.4 for MNIST, β = 0.3 for KMNIST
and Fashion MNIST, and β = 0.2 for notMNIST, where the
behavior here also varies as β increases from the optimal
value. We show this in Figure 4.

5. Conclusion and future work
In this paper, we demonstrated a framework for extract-
ing model parameters by training a new model on random
impulse response pairs gleaned from the softmax output
of the victim neural network. We went on to demonstrate
the variation in model extractability based on the dataset
which the original model was trained on. Finally, we pro-
posed our framework as a method for which relative dataset
complexity can be measured.

5.1. Future work

This is a work in progress and we are currently working
along the following three directions: In our experiments,
pixels are notably i.i.d., whereas in real world settings, im-
age data is comprised of pixels which are spatially correlated.
In this vein, we intend to establish the relationship between
the temperature of an Ising prior and the accuracy obtained
by the stolen model. We will experiment with different ar-
chitectures, specifically exploring the architecture unknown
scenario where the attacker has a fixed plug-and-play swiss-
army-knife architecture whose weights are learned by the
noise and true-model softmax outputs. Additionally, we will
explore methods for constructing Xrand which gives more
uniform distributions over argmax(Yrand) and evaluate the
associated effect on the performance of Fextract(·).
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A. Additional figures

Figure 2. Distribution of classes given Xrand. From top to bottom:
MNIST, KMNIST, Fashion MNIST, notMNIST.
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Figure 3. Confusion matrices of Fextract(·) on Xval. From top to
bottom: MNIST, KMNIST, Fashion MNIST, notMNIST.

Figure 4. Loss phase transitions when β is varied. From top to
bottom: MNIST, KMNIST, Fashion MNIST, notMNIST.
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Figure 5. Accuracy phase transitions when β is varied. From top
to bottom: MNIST, KMNIST, Fashion MNIST, notMNIST.
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Figure 6. Examples of images from an Ising model simulation at
various β parameters.


