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ABSTRACT

We study discrete-time mean-field Markov games with infinite numbers of agents
where each agent aims to minimize its ergodic cost. We consider the setting
where the agents have identical linear state transitions and quadratic cost func-
tions, while the aggregated effect of the agents is captured by the population mean
of their states, namely, the mean-field state. For such a game, based on the Nash
certainty equivalence principle, we provide sufficient conditions for the existence
and uniqueness of its Nash equilibrium. Moreover, to find the Nash equilibrium,
we propose a mean-field actor-critic algorithm with linear function approxima-
tion, which does not require knowing the model of dynamics. Specifically, at
each iteration of our algorithm, we use the single-agent actor-critic algorithm to
approximately obtain the optimal policy of the each agent given the current mean-
field state, and then update the mean-field state. In particular, we prove that our
algorithm converges to the Nash equilibrium at a linear rate. To the best of our
knowledge, this is the first success of applying model-free reinforcement learn-
ing with function approximation to discrete-time mean-field Markov games with
provable non-asymptotic global convergence guarantees.

1 INTRODUCTION

In reinforcement learning (RL) (Sutton and Barto, 2018), an agent learns to make decisions that
minimize its expected total cost through sequential interactions with the environment. Multi-agent
reinforcement learning (MARL) (Shoham et al.|2003;{2007; Busoniu et al., 2008) aims to extend RL
to sequential decision-making problems involving multiple agents. In a non-cooperative game, we
are interested in the Nash equilibrium (Nash} [1951)), which is a joint policy of all the agents such that
each agent cannot decrease its expected total cost by unilaterally deviating from its Nash policy. The
Nash equilibrium plays a critical role in understanding the social dynamics of self-interested agents
(Ash, 2000; | Axtell, 2002) and constructing the optimal policy of a particular agent via fictitious self-
play (Bowling and Velosol 2000; |Ganzfried and Sandholm, [2009)). With the recent development in
deep learning (LeCun et al.l|2015)), MARL with function approximation achieves tremendous empir-
ical successes in applications, including Go (Silver et al., [2016; 2017)), Poker (Heinrich and Silver,
2016 Moravcik et al., [2017), Star Craft (Vinyals et al., |2019), Dota (OpenAl, 2018), autonomous
driving (Shalev-Shwartz et al., 2016), multi-robotic systems (Yang and Gul,[2004), and solving social
dilemmas (de Cote et al., 2006} [Leibo et al., 2017; [Hughes et al.,|2018)). However, since the capacity
of the joint state and action spaces grows exponentially in the number of agents, such MARL ap-
proaches become computationally intractable when the number of agents is large, which is common
in real-world applications (Sandholm) 2010; |Calderone), |2017; |Wang et al.| 2017a).

Mean-field game is proposed by Huang et al.[ (2003} 2006); [Lasry and Lions| (2006a3b; 2007) with
the idea of utilizing mean-field approximation to model the strategic interactions within a large pop-
ulation. In a mean-field game, each agent has the same cost function and state transition, which
depend on the other agents only through their aggregated effect. As a result, the optimal policy of
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each agent depends solely on its own state and the aggregated effect of the population, and such an
optimal policy is symmetric across all the agents. Moreover, if the aggregated effect of the popula-
tion corresponds to the Nash equilibrium, then the optimal policy of each agent jointly constitutes a
Nash equilibrium. Although such a Nash equilibrium corresponds to an infinite number of agents, it
well approximates the Nash equilibrium for a sufficiently large number of agents (Bensoussan et al.,
2016). Also, as the aggregated effect of the population abstracts away the strategic interactions be-
tween individual agents, it circumvents the computational intractability of the MARL approaches
that do not exploit symmetry.

However, most existing work on mean-field games focuses on characterizing the existence and
uniqueness of the Nash equilibrium rather than designing provably efficient algorithms. In par-
ticular, most existing work considers the continuous-time setting, which requires solving a pair of
Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck (FP) equations, whereas the discrete-time set-
ting is more common in practice, e.g., in the aforementioned applications. Moreover, most existing
approaches, including the ones based on solving the HJIB and FP equations, require knowing the
model of dynamics (Bardi and Priulil [2014), or having the access to a simulator, which generates
the next state given any state-action pair and aggregated effect of the population (Guo et al.,|2019),
which is often unavailable in practice.

To address these challenges, we develop an efficient model-free RL approach to mean-field game,
which provably attains the Nash equilibrium. In particular, we focus on discrete-time mean-field
games with linear state transitions and quadratic cost functions, where the aggregated effect of the
population is quantified by the mean-field state. Such games capture the fundamental difficulties
of general mean-field games and well approximates a variety of real-world systems such as power
grids (Minciardi and Sacile, 2011), swarm robots (Fang, 2014; Araki et al.l 2017 |Doerr et al.,
2018)), and financial systems (Zhou and Li, 2000; [Huang and Lil 2018). In detail, based on the
Nash certainty equivalence (NCE) principle (Huang et al., [2006} [2007)), we propose a mean-field
actor-critic algorithm which, at each iteration, given the mean-field state p, approximately attains
the optimal policy 7, of each agent, and then updates the mean-field state x assuming that all the
agents follow ;. We parametrize the actor and critic by linear and quadratic functions, respectively,
and prove that such a parameterization encompasses the optimal policy of each agent. Specifically,
we update the actor parameter using policy gradient (Sutton et al., 2000) and natural policy gradient
(Kakadel 2002; |Peters and Schaal, [2008}; Bhatnagar et al., [2009) and update the critic parameter
using primal-dual gradient temporal difference (Sutton et al.l 2009aib). In particular, we prove that
given the mean-field state u, the sequence of policies generated by the actor converges linearly to the
optimal policy 7;,. Moreover, when alternatingly update the policy and mean-field state, we prove
that the sequence of policies and its corresponding sequence of mean-field states converge to the
unique Nash equilibrium at a linear rate. Our approach can be interpreted from both “passive” and
“active” perspectives: (i) Assuming that each self-interested agent employs the single-agent actor-
critic algorithm, the policy of each agent converges to the unique Nash policy, which characterizes
the social dynamics of a large population of model-free RL agents. (ii) For a particular agent,
our approach serves as a fictitious self-play method for it to find its Nash policy, assuming the other
agents give their best responses. To the best of our knowledge, our work establishes the first efficient
model-free RL approach with function approximation that provably attains the Nash equilibrium
of a discrete-time mean-field game. As a byproduct, we also show that the sequence of policies
generated by the single-agent actor-critic algorithm converges at a linear rate to the optimal policy
of a linear-quadratic regulator (LQR) problem in the presence of drift, which may be of independent
Interest.

Related Work. Mean-field game is first introduced in [Huang et al.| (2003} |2006); [Lasry and Li-
ons| (2006aib; 2007). In the last decade, there is growing interest in understanding continuous-time
mean-field games. See, e.g., |Guéant et al.| (2011)); Bensoussan et al.| (2013)); |Gomes et al.| (2014);
Carmona and Delarue| (2013; 2018) and the references therein. Due to their simple structures,
continuous-time linear-quadratic mean-field games are extensively studied under various model as-
sumptions. See |Li and Zhang| (2008)); Bardi| (2011); [Wang and Zhang (2012); Bardi and Priuli
(2014); Huang et al.|(2016a3b); |Bensoussan et al.| (2016;[2017); |Caines and Kizilkale| (2017);|Huang
and Huang| (2017); Moon and Basar| (2018); |Huang and Zhou| (2019) for examples of this line of
work. Meanwhile, the literature on discrete-time linear-quadratic mean-field games remains rela-
tively scarce. Most of this line of work focuses on characterizing the existence of a Nash equi-
librium and the behavior of such a Nash equilibrium when the number of agents goes to infinity
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(Gomes et al., 2010; [Tembine and Huang| 201 1; Moon and Basar, [2014; Biswas| 2015} [Saldi et al.,
2018aib; 2019). See also|Yang et al.|(2018a), which applies maximum entropy inverse RL (Ziebart;
et al., [2008) to infer the cost function and social dynamics of discrete-time mean-field games with
finite state and action spaces. Our work is most related to |Guo et al| (2019), where they propose
a mean-field Q-learning algorithm (Watkins and Dayan, |1992)) for discrete-time mean-field games
with finite state and action spaces. Such an algorithm requires the access to a simulator, which,
given any state-action pair and mean-field state, outputs the next state. In contrast, both our state
and action spaces are infinite, and we do not require such a simulator but only observations of trajec-
tories under given mean-field state. Correspondingly, we study the mean-field actor-critic algorithm
with linear function approximation, whereas their algorithm is tailored to the tabular setting. Also,
our work is closely related to Mguni et al.| (2018), which focuses on a more restrictive setting where
the state transition does not involve the mean-field state. In such a setting, mean-field games are
potential games, which is, however, not true in more general settings (Li et al., 2017} [Briani and
Cardaliaguet, 2018). In comparison, we allow the state transition to depend on the mean-field state.
Meanwhile, they propose a fictitious self-play method based on the single-agent actor-critic algo-
rithm and establishes its asymptotic convergence. However, their proof of convergence relies on
the assumption that the single-agent actor-critic algorithm converges to the optimal policy, which
is unverified therein. In addition, our work is related to Jayakumar and Aditya) (2019), where the
proposed algorithm is only shown to converge asymptotically to a stationary point of the mean-field
game.

Our work also extends the line of work on finding the Nash equilibria of Markov games using
MARL. Due to the computational intractability introduced by the large number of agents, such a
line of work focuses on finite-agent Markov games (Littman, |1994; 2001; |Hu and Wellman, [1998;
Bowling| |2001; [Lagoudakis and Parr}, 2002; |[Hu and Wellman), 2003}, |(Conitzer and Sandholml, 2007}
Perolat et al., |2015} [Pérolat et al.l |2016bja; 2018; |Wei et al., [2017; Zhang et al., 2018; Zou et al.,
2019; [Casgrain et al.,|2019). See also [Shoham et al.| (2003 2007); Busoniu et al.| (2008); L1/ (2018])
for detailed surveys. Our work is related to|Yang et al.|(2018b), where they combine the mean-field
approximation of actions (rather than states) and Nash Q-learning (Hu and Wellman, 2003)) to study
general-sum Markov games with a large number of agents. However, the Nash Q-learning algorithm
is only applicable to finite state and action spaces, and its convergence is established under rather
strong assumptions. Also, when the number of agents goes to infinity, their approach yields a variant
of tabular Q-learning, which is different from our mean-field actor-critic algorithm.

For policy optimization, based on the policy gradient theorem, Sutton et al.| (2000); Konda and Tsit-
siklis| (2000) propose the actor-critic algorithm, which is later generalized to the natural actor-critic
algorithm (Peters and Schaal, 2008}, |Bhatnagar et al., 2009). Most existing results on the conver-
gence of actor-critic algorithms are based on stochastic approximation using ordinary differential
equations (Bhatnagar et al., [2009; |Castro and Meir, |2010; [Konda and Tsitsiklis, [2000; |[Maei, |2018)),
which are asymptotic in nature. For policy evaluation, the convergence of primal-dual gradient tem-
poral difference is studied in [Liu et al.| (2015)); Du et al.| (2017); [Wang et al.| (2017b); [Yu| (2017);
Wai et al.[(2018). However, this line of work assumes that the feature mapping is bounded, which
is not the case in our setting. Thus, the existing convergence results are not applicable to analyzing
the critic update in our setting. To handle the unbounded feature mapping, we utilize a truncation
argument, which requires more delicate analysis.

Finally, our work extends the line of work that studies model-free RL for LQR. For example, [Bradtke
(1993); Bradtke et al| (1994) show that policy iteration converges to the optimal policy, [Tu and
Recht (2017); Dean et al.| (2017) study the sample complexity of least-squares temporal-difference
for policy evaluation. More recently, Fazel et al.| (2018)); Malik et al.| (2018)); Tu and Recht| (2018))
show that the policy gradient algorithm converges at a linear rate to the optimal policy. See as also
Hardt et al.|(2016);|Dean et al.| (2018) for more in this line of work. Our work is also closely related
to|Yang et al.| (2019), where they show that the sequence of policies generated by the natural actor-
critic algorithm enjoys a linear rate of convergence to the optimal policy. Compared with this work,
when fixing the mean-field state, we use the actor-critic algorithm to study LQR in the presence of
drift, which introduces significant difficulties in the analysis. As we show in §3| the drift causes the
optimal policy to have an additional intercept, which makes the state- and action-value functions
more complicated.
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Notations. We denote by || M ||, the spectral norm, p(M) the spectral radius, oy, (M) the min-
imum singular value, and oax (M) the maximum singular value of a matrix M. We use [|a|2 to

represent the />-norm of a vector «, and ()? to denote the sub-vector (a;, @41, .., ;) ', where
ay, is the k-th entry of the vector «. For scalars ay,...,a,, we denote by poly(as,...,a,) the
polynomial of ay, . .., ay, and this polynomial may vary from line to line. We use [n] to denote the
set {1,2,...,n} forany n € N.

2 LINEAR-QUADRATIC MEAN-FIELD GAME

A linear-quadratic mean-field N,-player game involves N, € N agents, whose state transitions are
given by

zi = Avi + Bul + A7, +d' +w;,  Vt>0, i€ [N,

Here A € R™*™ B € R™*k and A € Rm*m are matrices, :Ei c R™ and‘u}: € R* are the state and
action vectors of agent 7, respectively, the vector d* € R™ is a drift term, w; € R™ is an independent
random noise term following the Gaussian distribution N'(0, ¥,,), and Z; = 1/N, - Z;vz‘l a7 is the
mean-field state. The agents are coupled through the mean-field state x;. In the linear-quadratic
mean-field N,-player game, the cost of agent i € [IN,] at time ¢ > 0 is given by

¢ = (x}) " Qxf + (u)) " Ruj + 7] Qmy,

where Q € R™*™, R € RF*¥ and Q@ € R™*™ are matrices, and v} is generated by 7/, i.e., the
policy of agent i. To measure the performance of agent ¢ following its policy 7w* under the influence
of the other agents, we define the expected total cost of agent ¢ as

T
. 1 .
i1 2 Nay — 15 - %
JH (e Tlgr(;E(jﬂ?()q).
We are interested in finding a Nash equilibrium (7!, 72, ..., 7™%), which is defined by

Jirt, o rtt ettt ey < gt wt L i e, VA, i € [N,].

3 ) 9 )

That is, agent ¢ cannot further decrease its expected total cost by unilaterally deviating from its Nash
policy.

For the simplicity of discussion, we assume that the drift term d’ is identical for each agent. We
consider taking the infinite-population limit N, — oo, where each agent has an infinitesimal contri-
bution to the dynamics of the system. Thus, the joint policy of all the agents except agent ¢ can be
modeled as a mean-field policy 7rf, and all the agents following such a mean-field policy 7! generate
the mean-field state Exz where {xI }i>0 is generated following the policy 7t. By the symmetry of
the agents in terms of their state transitions and cost functions, we focus on a fixed agent and drop
the superscript ¢ hereafter.

Before we formally present the formulation of linear-quadratic mean-field games, we first introduce
the following mean-field LQR (MF-LQR) problem, which aims to find an optimal policy for the
fixed agent given the mean-field policy 7.

Problem 2.1 (MF-LQR). Given the mean-field policy 7', we consider the following formulation,
.It+1 = A.It —|— But + Z]EII + d + W,

c(xg,ug) = J;:th + u:Rut + (ExI)TQ(EJ;I),
T

1
T C(:rt,ut)]7

t=0

J(m, 7t = Jim E
—00

where ; € R™ is the state vector, u; € R” is the action vector generated by the policy 7, {xl H>o s
the trajectory generated by the policy 7f, w, € R™ is an independent random noise term following

the Gaussian distribution A'(0, ¥,), and d € R™ is a drift term. Here the expectation ]ExI is taken
across all the agents. We aim to find 7* such that J(7*, 71) = inf ey J (7, 71).
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Note that a controllable linear system using linear quadratic optimal control is always stable. Further
combining the fact that our linear closed-loop dynamics in Problem is driven by the Gaussian
noise term w;, we know that the Markov chain of states generated by the policy ' admits a stationary

distribution and converges to this stationary distribution. This implies that the mean-field state Exl
converges to a constant vector ' as ¢ — oo, which serves as a time-invariant mean-field state. As we
consider the ergodic setting, it then suffices to study Problem[2.T|with ¢ sufficiently large. Therefore,
the influence of the mean-field policy 7' is captured by the mean-field state ;if. By re-formulating
Problem [2.1] with slight abuse of notations, we obtain the following drifted-LQR (D-LQR).

Problem 2.2 (D-LQR). Given a mean-field state u € R™, we consider the following formulation,
Tip1 = Axy + Bug + Ap+ d + wy,
cu(we,u) = o Quy +u) Ruy + p" Qp,

where 2; € R™ is the state vector, u; € R¥ is the action vector generated by the policy 7, w; € R™
is an independent random noise term following the Gaussian distribution N'(0, ¥,,), and d € R™ is
a drift term. We aim to find an optimal policy 7;; such that J,, () = infrem J,, (7).

Compared with the most studied LQR problem (Lewis et al.| [2012), both the state transition and
the cost function in Problem have drift terms, which act as the mean-field “force” that drives
the states away from zero. Such a mean-field “force” introduces additional challenges when solving
Problem [2.2]in the model-free setting (see for details). On the other hand, the unique optimal
policy 7, of Problem Iﬂl admits a linear form 7, (zy) = —Kﬂz Ty + b,,; under certain regularity

conditions (Anderson and Moorel, 2007)), where the matrix K,r; € RF*™ and the vector bﬁ; e RF
are the parameters of 7. Motivated by such a linear form of the optimal policy, we define the class
of linear-Gaussian policies as

= {r(z) = —Kz+by +0-1: Kr € R¥™ b, c R*}, .1

where o € R and the standard Gaussian noise term 77 € R is included to encourage exploration. To
solve Problem it suffices to find the optimal policy 7}, within II. We define A (p) = m; as the
optimal policy under the mean-field state p.

Assume that all the agents follow the linear policy 7(z) = — K, 2 + b, under the mean-field state
u. By plugging u; = 7(x;) into the state transition in Problem as t — oo, we know that these
agents generate a new mean-field state fipey such that

finew = (I — A+ BK;) Y (Bb, + Ap +d).
We define Az (ft, T) = finew as such a new mean-field state.
Now, we are ready to present the following linear-quadratic mean-field game (LQ-MFG).
Problem 2.3 (LQ-MFG). We consider the following formulation,
2441 = Azy + Bug + Ap + d + wy,
c(xe,u) =z Qry +u) Ruy + p' Qu,

1 T
TZC(mt,ut)],

t=0

where z; € R™ is the state vector, u; € R is the action vector generated by the policy 7, u € R™
is the mean-field state, w; € R™ is an independent random noise term following the Gaussian
distribution M (0, ¥,,), and d € R™ is a drift term. We aim to find a pair (u*,7*) such that (i)
J(r*, 1*) = infren J(m, p*); (i) Ex converges to u* as t — oo, where {z };>0 is the Markov
chain of states generated by the policy 7*.

The formulation in Problem 2.3]is studied by Lasry and Lions|(2007); Bensoussan et al.|(2016); Saldi
et al.| (2018aib). We propose a more general formulation in Problem|[C.2|(see §C|of the appendix for
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details), where an additional interaction term between the state vector x; and the mean-field state p
is incorporated into the cost function. According to our analysis in up to minor modification, the
results in the following sections also carry over to Problem|[C.2] Therefore, for the sake of simplicity,
we focus on Problem [2.3]in the sequel.

In Problem condition (i) is equivalent to the optimality of the policy 7* under the mean-field
state ©*, namely, A;(u*) = 7*. Meanwhile, condition (ii) is equivalent to the invariance of the
mean-field state p* given the policy 7*, namely, Ay (u*, 7*) = p*. Such equivalence follows from
the NCE principle (Huang et al., 2006; [2007)), which also motivates the following definition of the
Nash equilibrium pair (Saldi et al., 2018afb)).

Definition 2.4 (Nash Equilibrium Palr) The pair ( )
pair of Problem [2.3]if it satisfies 7* = Ay (u*) an =
mean-field state and 7* is called the Nash policy.

€ R™ x II constitutes a Nash equilibrium
Ao(p*,7*). Here p* is called the Nash

By Definition Problem aims to find a Nash equilibrium pair (u*, 7*).

3 MEAN-FIELD ACTOR-CRITIC

We first characterize the existence and uniqueness of the Nash equilibrium pair of Problem[2.3Junder
mild regularity conditions, and then propose a mean-field actor-critic algorithm to obtain such a Nash
equilibrium. As a building block of the mean-field actor-critic, we propose the natural actor-critic to
solve Problem

3.1 EXISTENCE AND UNIQUENESS OF NASH EQUILIBRIUM PAIR
We now establish the existence and uniqueness of the Nash equilibrium pair defined in Definition
We impose the following regularity conditions.

Assumption 3.1. We assume that the following statements hold:

(i) The algebraic Riccati equation X = ATXA+Q - A" XB(B"XB+ R)"'BT X A admits a
unique symmetric positive definite solution X*;
(ii) It holds for Ly = Ly Ls + Lo that Ly < 1, where

Li=[|[(1 = MQ (1= A7 + BR'BT) A, |[K*Q7' (1 - )T ~ R BT]
Ly, = [1 —p(A— BK*)]71 | A]l2, Ly = [1 —p(A— BK*)]fl B,

[

Here K* = —(BTX*B + R)"'BT X*A.

The first assumption is implied by mild regularity conditions on the matrices A4, B, @, and R, which
are (1) the positivity of R; (2) the non-negativity of Q = C'TC; (3) the observability of (A, C);
(4) the stability of (A4, B). See|De Souza et al.| (1986); Lewis et al. (2012) for more details. The
second assumption is standard in the literature (Bensoussan et al., 2016; |Saldi et al., 2018b)), which
ensures the stability of the LQ-MFG. In the following proposition, we show that Problem [2.3|admits
a unique Nash equilibrium pair.

Proposition 3.2 (Existence and Uniqueness of Nash Equlhbrlum Pair). Under Assumption[3.1] the
operator A(-) = Aa(+, A1(+)) is Lo-Lipschitz, where Ly is given in Assumption[3.1} Moreover, there
exists a unique Nash equilibrium pair (p*, 7*) of Problem

Proof. See §E.I|for a detailed proof. O

3.2 MEAN-FIELD ACTOR-CRITIC FOR LQ-MFG

The NCE principle motivates a fixed-point approach to solve Problem [2.3] which generates a se-
quence of policies {7 }s>0 and mean-field states {4 }s>o satisfying the following two properties:
(1) Given the mean-field state i, the policy 7y is optimal. (ii) The mean-field state becomes fi541
as t — oo, if all the agents follow 74 under the current mean-field state ;. Here (i) requires solving
Problem given the mean-field state us, while (ii) requires simulating the agents following the
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Algorithm 1 Mean-Field Actor-Critic for solving LQ-MFG.
1: Input:
e Initial mean-field state o and Initial policy 7y with parameters K and by.
e Numbers of iterations S, {Ng}sers), {Hs}sels) {iyn, Ts.n}sels],ne[N,]»

{st,h’ Tf,h}se[SLhE[Hs]'
o Stepsizes {Vs}seis): {1} seis): {Vsmittseisinev el ) {Venatseisy et e, )-
:fors=0,1,2,...,5—1do
. Policy Update: Solve for the optimal policy 751 with parameters K1 and bs 1 of Problem
via Algorithm 2| with fia, e, No Har {Tans Tombneins {100 T2 nelrs Vo Ve
{%,n,t}ne[NS],te[TM], and {’yg,h,t}hG[Hs],te[Tj,h}’ which gives the estimated mean-field state

N

:ZIK5+1 syt
4:  Mean-Field State Update: Update the mean-field state via p1541 + ik
end for
: Output: Pair (7g, ps).

s+1:0s41°

SN

policy 7, given the current mean-field p;. Based on such properties, we propose the mean-field
actor-critic in Algorithm [I]

Algorithm (1| requires solving Problem at each iteration to obtain 7, = Aj(us) and psy1 =
Ao (s, ms). To this end, we introduce the natural actor-critic in that solves Problem

3.3 NATURAL ACTOR-CRITIC FOR D-LQR

Now we focus on solving Problem for a fixed mean-field state u, we thus drop the subscript
 hereafter. With slight abuse of notations, we write m () = —Kx + b+ o - 1 to emphasize
the dependence on K and b, and J(K,b) = J(mg) consequently. Now, we propose the natural
actor-critic to solve Problem

For any policy 7 ;, € II, by the state transition in Problem@, we have
2441 = (A — BK)x; + (Bb+ Ap + d) + ¢, e ~N(0,9,), 3.1

where ¥, = o BB" + U,,. It is known that if p(A — BK) < 1, then the Markov chain {z;}:>¢
induced by (3.I) has a unique stationary distribution N (ux p, @) (Anderson and Moore, 2007),
where the mean-field state 1 j, and the covariance @ i satisfy that

prp= (I —A+BK) Y (Bb+ Ap+d), (3.2)
®yx = (A— BK)®g(A—-BK)" + V.. (3.3)

Meanwhile, the Bellman equation for Problem takes the following form
Px = (Q+ K"RK) + (A— BK)' Px(A — BK). (3.4)

Then by calculation (see Proposition in §B.T] of the appendix for details), it holds that the ex-
pected total cost J(K, b) is decomposed as

J(K,b) = Ji(K) + Jo(K,b) + 0% - tr(R) + 1" Qpu, (3.5)
where J (K') and J2 (K, b) are defined as
Ji(K) =t[(Q+ K RK)®g] = u(Px¥.),

.
J2(K,b) = (’”g”’) (Q fé;RK I;TR) (“fljb). (3.6)

Here J; (K) is the expected total cost in the most studied LQR problems (Yang et al., 2019; |[Fazel
et al., 2018)), where the state transition does not have drift terms. Meanwhile, .J> (K, b) corresponds
to the expected cost induced by the drift terms. The following two propositions characterize the
properties of J5 (K, b).

First, we show that J5(K, b) is strongly convex in b.
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Proposition 3.3. Given any K, the function Jo(K,b) is vi-strongly convex in b. Here vx =
Omin (Y1 (Y15 + Yol Yo i), where V1 = RY2K(I — A+ BK)™'B — RY? and Y3 x =

QY*(I — A+ BK)~'B. Also, J(K,b) has tx-Lipschitz continuous gradient in b, where ¢x is
upper bounded as 1 < [1 — p(A — BEK)| ™% (I|B|I3 - | K3 - | Rll2 + [ BI3 - [|Qll2)-

Proof. See §E.4|for a detailed proof. O

Second, we show that miny, J (K, b) is independent of K.

Proposition 3.4. We define b = argmin, J»(K,b), where Jo (K, b) is defined in (3.6). It holds
that

K_[KQ'(I-A)T —R'BT]-[I-AQ '(I-A)T +BR'BT]™" - (Au+d).
Moreover, Jo (K, b) takes the form of
Jo(K,b5) = (Ap+d)T[(I-—A)Q ' (I — AT +BR'BT| ™" (Au+d),
which is independent of K.

Proof. See §E.2]for a detailed proof. O

Since ming Jo(K,b) is independent of K by Proposition it holds that the optimal K* is the
same as argming J; (K). This motivates us to minimize .J (K, b) by first updating K following the
gradient direction Vg J;(K) to the optimal K*, then updating b following the gradient direction
Vi J2(K*,b). We now design our algorithm based on this idea.

We define Tx, prp, and qxp as

v _(QtATPkA  ATPkB \ _ (T} 12
K=\ B"PkA R+B"PxB) \Y%4 1%

pry =A"[Px - (Ap+d) + o],  axp=DB"[Px-(Ap+d)+ frs], 3.7

where fxp = (I — A+ BK)"T[(A— BK) Pxg(Bb+ Au + d) — KT Rb]. By calculation (see
Proposition [B.3|in of the appendix for details), the gradients of J;(K) and J2(K, b) take the
forms of

VrJi(K)=2(Y2K — T2) . oy, Vi do(K,b) = Y2(~Kugp +b) + Yk + ax-

Our algorithm follows the natural actor-critic method (Bhatnagar et al.l 2009) and actor-critic
method (Konda and Tsitsiklis, 2000). Specifically, (i) To obtain the optimal K™, in the critic up-
date step, we estimate the matrix Y g by T x Via a policy evaluation algorithm, e.g., Algorithm or
Algorithm @] (see §B.2) ’ and § ’ B.3] of the appendix for details); in the actor update step, we update K
via K + K —v- (Y2 K —T2!), where the term TQZK T%} is the estimated natural gradient. (ii)
To obtain the optimal b* given K™, in the critic update step, we estimate Y i+, g+ p, and g« by
T K+» Qi+ b, and fix+ p via a policy evaluation algorithm; In the actor update step, we update b via
b b—-VypJo(K*,b), where @ng(Kﬁ b) = :I?? (—K*[ig~p+b) + Y2 g p + Qic~ p is the
estimated gradient. Combining the above procedure, we obtain the natural actor-critic for Problem
[2.2] which is stated in Algorithm 2]

One may want to apply gradient method to J(K, b) directly in the joint space of K and b. However,
the gradient dominance property of J;(K) in the most studied LQR problem (Yang et al., 2019)
no longer holds for J(K,b). Therefore, the convergence of the gradient method to J(k, ) is not
guaranteed in our problem.

4 GLOBAL CONVERGENCE RESULTS

The following theorem establishes the rate of convergence of Algorithm [I]to the Nash equilibrium
pair (u*, 7*) of Problem
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Algorithm 2 Natural Actor-Critic Algorithm for D-LQR.

1: Input:
e Mean-field state . and initial policy g, b, -
e Numbers of iterations N, H, {fn, T} nens {Tg, T}ZZ}he[H]-
o Stepsizes v, 7", {Vn,t bne V] termals {0 bnepu erry)-

2: for n=0,1,2,...,N —1do

3:  Critic Update: Compute 8 K, via Algorithmwith K, by Hs T, T, {n,t}eerm,)s Ko, and
bg as inputs.

4:  Actor Update: Update the parameter via

Kpp1 < K, —v- (T2 K, - T3).
end for
for h=0,1,2,...,H —1do B
7. Critic Update: Compute Jixy b, Y Kys Qi by, Vid Algorithmwith Thabns s TPy TP,

{727t}te[T};}, Ky, and by.
8:  Actor Update: Update the parameter via

ZANNA

bps1  bp — " [?%(QN(—KN/?K@,L +bn) + ?%NﬁKmbh + QK bn -

9: end for
10: Output: Policy x p, = Ti by estimated mean-field state fig , = fixy by -

Theorem 4.1 (Convergence of Algorithm [T). For a sufficiently small tolerance ¢ > 0, we set the
number of iterations .S in Algorithm [I]such that

log(|lpwo — p*]l2 - e71)
log(1/Lo)

S > 4.1

For any s € [S], we define
. w14 — 4 _ _
€s = mln{ [1 —p(A—BK )] (||B||2 + HA||2) (”Nsnz 2t |z 2) “Omin(Ve) * Omin(R) €2,
w14 _ s
vice - [1 = p(A = BK")]* - | BIg2 - My(us) - €2, e} 2757, 4.2)
where v+ is defined in Proposition [3.3]and

My () = 4HQ‘1(I — AT [I-AQ I -A)T +BRBT] " (Ap. + d)H2

1/2

vt o (W) ot (R)] (4.3)

In the s-th policy update step in Line [3]of Algorithm|T] we set the inputs via Theorem [B.4]such that
Juo (1) — Ju, (7);.) < €5, where the expected total cost J,, (-) is defined in Problem [2.2} and

. =M (1) is the optimal policy under the mean-field state pis. Then it holds with probability at

least 1 — £° that
s —u*ll2 <e, |Ks — K*|lr <e, [bs ="l < (1 + L) - &.

Here p* is the Nash mean-field state, Kg and bg are parameters of the policy g, and K* and b* are
parameters of the Nash policy 7*.

Proof Sketch. The proof of the theorem is based on the convergence of the natural actor-critic al-
gorithm 2] and a contraction argument. First, we prove in Theorem [B.4]that Algorithm [2] converges
linearly to the optimal policy of Problem 2.2] By this, in each iteration of Algorithm|[I| we control
the error between 511 and pf, ; to be £, > 0 with high probability, where 15 ; is the mean-field
state generated by the optimal policy A;(fs); in other words, p%,; = A(jus). Combining the fact
from Proposition that A(+) is a contraction, we deduce that

a1 — 1|2 < || Aps) — A(p™)

|y + & < Lo~ [lps — |2 + &
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with high probability, where €, > 0 is some error term and is specified in the detailed proof. More-

over, by telescoping sum, and note that the sum Zle €s is upper bounded by the desired error &,
we conclude the theorem. See for a detailed proof. O

We highlight that if the inputs of Algorithm [I]satisfy the conditions stated in Theorem [B.4] it holds
that J, (ms41) — Jpu. (7, ) < e forany s € [S]. See Theorem mH B.1| of the appendix
for details. By Theorem @ Algorithm [T| converges linearly to the umque ash equilibrium pair
(u*,7*) of Problemn 2.3] To the best of our knowledge, this theorem is the first successful attempt to
estabhsh that reinforcement learning with function approximation finds the Nash equilibrium pairs
in mean-field games with theoretical guarantee, which lays the theoretical foundations for applying

modern reinforcement learning techniques to general mean-field games.

5 CONCLUSION

For the discrete-time linear-quadratic mean-field games, we provide sufficient conditions for the
existence and uniqueness of the Nash equilibrium pair. Moreover, we propose the mean-field actor-
critic algorithm with linear function approximation that is shown converges to the Nash equilibrium
pair with linear rate of convergence. Our algorithm can be modified to use other parametrized
function classes, including deep neural networks, for solving mean-field games. For future research,
we aim to extend our algorithm to other variations of mean-field games including risk-sensitive
mean-field games (Saldi et al., 2018a}; [Tembine et al., 2014), robust mean-field games (Bauso et al.,
2016), and partially observed mean-field games (Saldi et al., 2019).
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A NOTATIONS IN THE APPENDIX

In the proof, for convenience, for any invertible matrix M, we denote by M~ T = (M~1)T =
(MT)~! and ||M || the Frobenius norm. We also denote by svec(M) the symmetric vectoriza-
tion of the symmetric matrix M, which is the vectorization of the upper triangular matrix of the
symmetric matrix M, with off-diagonal entries scaled by v/2. We denote by smat(-) the inverse
operation. For any matrices G and H, we denote by G ® H the Kronecker product, and G ® s H
the symmetric Kronecker product, which is defined as a mapping on a vector svec(M ) such that
(G ®s H)svec(M) =1/2-svec(HMGT +GMHT).

For notational simplicity, we write E,(-) to emphasize that the expectation is taken following the
policy .

B AUXILIARY ALGORITHMS AND ANALYSIS

B.1 RESULTS IN D-LQR

In this section, we provide auxiliary results in analyzing Problem [2.2] First, we introduce the value
functions of the Markov decision process (MDP) induced by Problem We define the state- and
action-value functions Vi () and Qi »(x, u) as follows

oo

Vico (@) = Z{]E[c(xt,ut) |20 = 2] — J(K, b)}, (B.1)
t=0
Qrp(z,u) =c(z,u) — J(K,b) + E[VK)b(l’l) |z = x,ug = u], (B.2)

where z;, follows the state transition, and u, follows the policy 7 ; given x;. In other words, we
have uy = —Kz; + b+ ony, where 1, ~ N (0, I). The following proposition establishes the close
forms of these value functions.

Proposition B.1. The state-value function Vi j(z) takes the form of

VKyb(iL') = $TPK$ - tl"(PK(I)K) + 2f;7b($ — ,uK,b) - /,L}bPK,uK,b, (B.3)

and the action-value function Q k (z, u) takes the form of

T T
QK,b(x’u) = (i) Tk (i) +2 (f])[f)llj) (i) — tr(PbeK) —o? 'U‘(R + PKBBT)
—b"Rb+2b" RK ey — pfe o (Q + KT RK + Prc) iy
+2fxp[(An+d) — pxcp] + (Ap +d) " Pre(Ap + d), (B.4)

where fxp = (I — A+ BK)"T[(A— BK)" Px(Bb+ A+ d) — KT Rb], and Tk, pr p, and
dx» are defined in (3.7).

Proof. See §E.6|for a detailed proof. O

By Proposition we know that Vi p(x) is quadratic in z, while Qg p(x,w) is quadratic in
(x7,uT)T. Now, we show that (3.5) holds.

Proposition B.2. The expected total cost J (K, b) defined in Problem [2.2]takes the form of
J(Kv b) = Jl(K) + JQ(Ka b) + 02 ’ tr(R) + NT@NH
where

Ji(K) =t[(Q + K" RK)®g]| = tr(PxT.),

T
J (K b) _ [HMKD Q+KTRK _KTR KK b

25 = b —RK R b /-

Here 11y, is defined in (3.2), @k is defined in (3.3), and P is defined in (3.4).
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Proof. See §E.3|for a detailed proof. O

The following proposition establishes the gradients of J; (K) and Jo(K, b), respectively.

Proposition B.3. The gradient of J;(K) and the gradient of J,(K,b) with respect to b take the
forms of

VKJl(K) = Q(T%QK - T%) . (I)K, VbJQ(K7 b) = Q[T%?(—K/JK,Z) + b) + T%ILLKJ) + QK,bL
where T i and g, are defined in (3.7).

Proof. See §E.3|for a detailed proof. O

The following theorem establishes the convergence of Algorithm 2}

Theorem B.4 (Convergence of Algorithm [2). Assume that p(A — BKy) < 1. Lete > 0 be a
sufficiently small tolerance. We set

_ —1
v < IRz + |BII3 - J (Ko, bo) - o (We)] ™,
N>C | Pr-s-7" -log{4[J(Ko,bo) — J(K*, b)) -5*1},
_ -9 _
Ty > poly (| Knllr, [1boll2, |11z, J (Ko, bo)) - ARt - [1 = p(A — BK,)| " -e7®,

~ _ —12 _
T, > poly (|| Knllr, [1boll2, | 1ll2: J (Ko, b0)) - x> « [1 = p(A = BK,)] " e,
1/2

J(
J(
Ynt =Yt
7" < min{1 - p(A4 ~ BEN), [1 = p(A = BEx)] "+ (IBI3 - KNI - I Rll2 + [ BI3 - Q1) },

H>Co-vigh - (4" -1og{4[J(KN,b0) — J(Kn, b5V)] -5—1},

_ _ -1 _
T30 = poly (I K v, [[brlz, llillz, (K, bo)) - Ay, - v - [1 = p(A = BEN)] €77,
~ _ _ -7 _
T3y = poly (1K v, [[brllz: llmllz, T (K bo)) - Ay, - v - [L = p(A = BEN)] 7%,
72,1‘, =70 t_l/ga

where C, Cy, and 7 are positive absolute constants, { K, },,c;n] and {by, } () are the sequences
generated by Algorithm[2] A, is specified in Proposition and vk, is specified in Proposition
h Then it holds with probability at least 1 — £'° that

J(Kn,br) = J(K*67) <&, g = b ll2 < My(p) - €2,

1Bx = Kl < [o0fa(00) -0l (R) €] sy — e 2 < e
where M, (p) is defined in @3).
Proof. See for a detailed proof. O
By Theorem given any mean-field state i, Algorithm[2]converges linearly to the optimal policy

wl’j of Problem

B.2 PRIMAL-DUAL PoLICY EVALUATION ALGORITHM

Note that the critic update steps in Algorithm 2] are built upon the estimators of the matrix T x and
the vector g . We now derive a policy evaluation algorithm to establish the estimators of Y x and
gx.»» Which is based on gradient temporal difference algorithm (Sutton et al., 2009a)).

o(z,u)
Y(w,u) = ( T — fiKb ) , (B.5)
u— (—Kpgp+b)

We define the feature vector as
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where

et = (o bt o) (o Cli o) |

Recall svec(M) gives the symmetric vectorization of the symmetric matrix M. We also define
svec(T k)
agp = |y KK b PEb) | (B.6)
K <—KMK,b + b) * <QK,b>
where Tk, prp, and g, are defined in @]} To estimate T i and gk p, it suffices to estimate
ok . Meanwhile, we define

Orc = Enye, {0, 0) (0w, ) — (', )]}, ®.7)

where (z/,u’) is the state-action pair after (z, u) following the policy 7k ; and the state transition.
The following proposition characterizes the connection between O and o p.

Proposition B.5. It holds that

(rnstbien] o) (o) = (o oot

where ¢ (z, u) is defined in (B.3), a5 is defined in (B:6), and Ok 4, is defined in (B.7).
Proof. See §E.7]for a detailed proof. O

By Proposition|B.5} to obtain a , it suffices to solve the following linear system in ¢ = ({1,¢5 )T,

~ B J(K,b)
O = (E (e, u)(a, u)]) ! (B-8)

where for notational convenience, we define

~ 1 0
®K7b - (]ET"K,E; W(xvu)] @K,b) ' (B-9)

The following proposition shows that © k3, is invertible.
Proposition B.6. If p(A — BK) < 1, then the matrix O ; is invertible, and |Ok ||z < 4(1 +
| K|13)? - |®x]3- Also, 0min(Okb) > Ak, where A only depends on || K ||z and p(A — BK).

Proof. See §E.8|for a detailed proof. O

By Proposition Ok, is invertible. Therefore, (B.8) admits the unique solution (x; =
(J(K,b),ape ) '

Now, we present the primal-dual gradient temporal difference algorithm.

Primal-Dual Gradient Method. Instead of solving (B-8) directly, we minimize the following loss
function with respect to ¢ = ((¢1) 7, (¢?)7),

[(1 - J(K, b)]2 + ‘ Ery., [w(x,u)]cl + @K,b(" —Erg, [c(x, u)w(m,u)] Hz (B.10)

By Fenchel’s duality, the minimization of (B-10) is equivalent to the following primal-dual min-max
problem,

.
min ggggF(C,ﬁ) = {Em,b [W(z,w)]¢" + O p(* — Erye, [C(%U)w(%U)]} & (B.1D
+ [¢M = J(K, b)) - € = 1€l13/2,
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where we restrict the primal variable ¢ in a compact set V; and the dual variable £ in a compact set
Ve, which are specified in Definition [B.7} It holds that

VaF =& + B, [U(m,u)] €2, VeF =05,  VaF=('—J(Kb) -¢,
Ve F =Eg, , [¢v(@,w)]¢" + Ok p(® — Ery, [elz, w)(z, u)] — €. (B.12)
The primal-dual gradient method updates ¢ and £ via
(e =y VaF( ), P =y VeF((E)
£ & -7 VaF((§), €« VaF((9). (B.13)

Estimation of Mean-Field State /. ;. To utilize the primal-dual gradient method in (B.13), it
remains to evaluate the feature vector ¢)(x,u). Note that by (B.3), the evaluation of the feature
vector t(x, u) requires the mean-field state px . In what follows, we establish the estimator fix p

of the mean-field state pi ; by simulating the MDP following the policy g ;, for T steps, and
calculate the estimated feature vector ¢ (x, u) by

~ o(x, u)
Y(z,u) = ) , (B.14)
u— (=Kjigp +0b)

where ¢(x, u) takes the form of
- N T
~ - T — UKD T — UKD
Pl ) = svee K“ i) (o O on) ] |

We now define the sets V; and V¢ in (B.TT).

Definition B.7. Given Ky and by such that p(A — BK() < 1 and J(Ky,by) < oo, we define the
sets V¢ and V¢ as

Ve ={¢ 0.2 ¢ < T, bo), [P lle < Mea + Mz (1+ [ K) - [1 = p(4 - BE)] 7'},
Ve = {1 16" < T(Ko,bo), €212 < Me - (1 + IKIR)" - [1 = p(4 - BK)] ' }.
Here M¢ 1, M¢ 2, and M are constants independent of K and b, which take the forms of
Mex = [(IQUe + 1RI) + (1AIF + | BIR) - V- T(Ko,bo) - 0 (0]
+ ([4llz + 1Bl2) - T (Ko, b0)? - 0 (o) - 0701 (@),
+ [(0Ql2 + IRI>) + (141l + 1Bl12)° - T(Ko, bo) - 7k ()]

J(K07 bo) [Umln(Q) + Umln(R)]
Mz = (|Allz + 1Bll2) - (kg + k), Mg =C- (M1 + M) - J (Ko, bo)? - 02 (Q),

mm

where C'is a positive absolute constant, and x¢ and k are condition numbers of () and R, respec-
tively.

We summarize the primal-dual gradient temporal difference algorithm in Algorlthm Bl Hereafter,
for notational convenience, we denote by % the estimated feature vector w(xt, Ug).

We now characterize the rate of convergence of Algorithm [3]

Theorem B.8 (Convergence of Algorithm . Given Ky, by, K, and b such that p(A — BKj) < 1
and J(K,b) < J(Ky,by), we define the sets Ve and Ve through Definition Let v =

Yot~ /2, where ~o is a positive absolute constant. Let p € (p(A — BK),1). For T >
poly, (1K [|g, [|b]l2, 1]l 25 J (Ko, bo)) - (1 — p)~C and a sufficiently large 7', it holds with probability

atleast 1 — 7% — 76 that
log® T log T

~ _ 2 -2, .
s = ol < A2 poty, (e Il il (Ko to) - | g e = (1_p>2],
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Algorithm 3 Primal-Dual Gradient Temporal Difference Algorithm.

1: Input: Policy 7k j, mean-field state 1, numbers of iteration T and T, stepsizes {t }+er)s
parameters K and bg.

2: Define the sets V; and V¢ via Definition with Ky and by.
3: Initialize the parameters by (p € V, and & € V.
4: Sample T from the the stationary distribution N (s p, Prc).
5. for t=0,...,7T—1do
6:  Given the mean-field state ;1 take action u; following 7k ; and generate the next state z; ;.
7: end for _
8: Setfixy « 1/T - Zthl Z; and compute the estimated feature vector ¢ via (B.14).
9: Sample z from the the stationary distribution N (g b, P ).
10: for t =0,...,7 —1do
11:  Given the mean-field state y, take action u; following 7 3, observe the cost ¢;, and generate

the next state x;1.
12: Set 5t+1 <— Ctl + (th — th—&-l)TCtZ — C¢.
13:  Update parameters via

Chor — G — v (& + 0/ D), CRot G2 — verr - (W — i) T €,

ft1+1 — (I —v41) 'ff,l + Vet1 - (Cfl —c), §1€2+1 — (I —=yeq1) - ff + Vi1 - 01 - Ut
14:  Project (441 and §41 to V¢ and Vg, respectively.
15: end for - ’
16: Setdgp « (O, ve) - (X,—; e - (7). and

% ~ DK b ~ & BE b
T + smatk(af,zl,,ll)c, o (AK,b> — QK p2 le <_5§Kéb + b> )
where Qi p1 = (aK,b)g FHDEED]2 gng K b2 = (aKvb)Ekidilggkid%%-l'

17: Output: Estimators [ix p, T K> and Qg p.

where \f is defined in Proposition Same bounds for | T — T2, |Px.s — pr.sll2. and
|Zxp — gk b]|3 hold. Meanwhile, it holds with probability at least 1 — 7° that
~ logf _
b = prcpllz < =yl (1= p)=2 - polyy (I[®xlz, [ K le. [1Bll2, [l 2]l 2, I (Ko, bo) ).
Proof. See for a detailed proof. O

B.3 TEMPORAL DIFFERENCE POLICY EVALUATION ALGORITHM

Besides the primal-dual gradient temporal difference algorithm, we can also evaluate ak , by TD(0)
method (Sutton and Barto, [2018]) in practice, which is presented in Algorithm E}

Note that in related literature (Bhandari et al., 2018; |Korda and Lal [2015), non-asymptotic conver-
gence analysis of TD(0) method with linear function approximation is only applied to discounted
MDP. As for our ergodic setting, the convergence of TD(0) method is only shown asymptotically
(Borkar and Meyn, 2000; [Kushner and Yin, 2003) using ordinary differential equation method.
Therefore, in the convergence theorem proposed in we only focus on the primal-dual gradient
temporal difference method (Algorithm [3)) to establish non-asymptotic convergence result.

C GENERAL FORMULATION

Compared with Problem a more general formulation includes an additional term x; Py in the
cost function. For the completeness of this paper, we define this general formulation here. Following
from a same argument as in §2| it suffices to study the setting where ¢ is sufficiently large. First, we
propose the following general drifted LQR (general D-LQR) problem, which is parallel to Problem
22
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Algorithm 4 Temporal Difference Policy Evaluation Algorithm.

Input: Policy 7 3, number of iteration T and T, stepsizes {7y heerm-
Sample Z( from the stationary distribution N'(px p, Prc ).
for t=0,...,T—1do
Take action u; under the policy 7 ; and generate the next state Ty .
end for N
o~ -~ T ~
Set UEb < 1/T . Zt:l Xt.
Sample z( from the the stationary distribution N (p Kb, Pr).
for t=0,...,Tdo
Given the mean-field state 1, take action u, following 7 5, observe the cost ¢;, and generate
the next state ;1.
10: Setdrp1 = ¢ + (r — Yr1) TG — ¢t R
11:  Update parameters via (/. y ¢ (1 —%41) - ¢ + i1 - e and Gy <= G — Y1 - 01 e
12:  Project (; to Vé, where Vé is a compact set.
13: end for - -
14: Setagp < (Xo1y Ye) 7t (i1 e ¢7), and

R A S Ny

Y < smat(axp,1), gK:> —agpe — Tk (_Kﬁ?b + b> )

HE b
~ ~ P P 3
where AR b1 = (aK b)ngrdH)(ker)/2 and QK b2 = (aK,b)E:erLgEZIZ;;zH'

)

15: Output: Estimators ix p, T K. and Gk p.

Problem C.1 (General D-LQR). For any given mean-field state . € R™, consider the following
formulation

2ip1 = Azy + Bug + Ap + d + wy,
Culwe,up) = IZta + UtTRUt +p Qu+ QI:P%

1 T
T Zgu(xtvut)‘|v
t=0

where x; € R™ is the state vector, u; € RF is the action vector generated by the policy 7, w; € R™
is an independent random noise term following the Gaussian distribution N'(0, ¥,,), and d € R™ is

Ju(r) = lim E

T—o0

a drift term. We aim to find an optimal policy 7, such that J, (7)) = infren jﬂ(w).

In Problemlﬁ‘, the unique optimal policy 7;(-) still admits a linear form 7}, (2;) = — Kz~ 2y + brx

(Anderson and Moorel 2007), where the matrix K,r; € R¥*™ and the vector bﬂ; € R” are the
parameters of the policy . It then suffices to find the optimal policy in the class IT defined in @.T).

Parallel to Problem [2.3] we define the general LQ-MFG problem as follows.
Problem C.2 (General LQ-MFG). We consider the following formulation
T+l — Al’t + But +Z/J, + d + Wy,
e, w) = ) Quy 4+ u Ruy + 1" Qu + 2z Py,
- 1 <&
J(T(', /1,) = Thm E lT ; C(.’Et7 ’U,t)‘| s

where z; € R™ is the state vector, u; € R is the action vector generated by the policy 7, u € R™
is the mean-field state, w; € R™ is an independent random noise term following the Gaussian
distribution M (0, ¥,,), and d € R™ is a drift term. We aim to find a pair (u*,7*) such that (i)

J(m*, pw*) = infren J(m, u*); (i) Exf converges to u* as t — oo, where {z }+>¢ is the Markov
chain of states generated by the policy 7*.

One can see that Problem|C.2]aims to find a Nash equilibrium pair (u*, 7%).
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Similar to the discussions in to solve Problem one can design an algorithm similar to
Algorithm |1} which solves Problem and obtain the new mean-field state at each iteration. We
omit the detailed algorithm here. Now, we focus on solving Problem [C.]in the sequel.

Similar to we drop the subscript ¢ when we focus on Problem [C.1] for a fixed p. We write

mrp(r) = —Kx + b+ o - n to emphasize the dependence on K and b, and J(K,b) = J(7kp)

consequently. We derive an explicit form of the expected total cost J (K, b) in the following propo-
sition.
Proposition C.3. The expected total cost J (K, b) in Problem is decomposed as
J(K,b) = Jy(K) + Jo (K, b) + 0% - tr(R) + 1" Qp,
where J; (K) and J5 (K, b) take the forms of

JI(K) = t[(Q + KT RK)®g] = t(PxV,),
T
7 +K'"RK —-K'R
JQ(K7 b) = (/”g)b) (Q —RK R ) (Mig’b> + 2NTPMK,b-
Here p1p, is given in (3.2), ® i is given in (3.3)), and Py is given in (3.4).

Proof. The proof is similar to the one of Proposition[B.2] Thus we omit it here. O

Compared with the form of J(K,b) given in (3.5), we see that the only difference is that J (K, b)
contains an extra term 2uTPu Kb in Jo(K,b), which is only a linear term in b (recall that Kb 18
linear in b by (3.2))). Thus, J (K, b) is still strongly convex in b, as shown in the proposition below.

Proposition C.4. Given any K, the function jg(K ,b) is vi-strongly convex in b, here vg =
Umin(YiTKYI,K + Y2TK}/27K)’ where YI,K = Rl/QK(I —A + BK)_lB — R1/2 and YQ,K =

QY2(I — A+ BK)™!B. Also, J5(K,b) has tx-Lipschitz continuous gradient in b, where ¢ is
upper bounded such that 15 < (1~ p(A— BK)|~2 - (|B|2 - |K|2- | Rl + | BI- Q).

Proof. The proof is similar to the one of Proposition[3.3] Thus we omit it here. O

Parallel to Proposition[3.4] we derive a similar proposition in the sequel.

Proposition C.5. Denote by b = argmin, Jo(K, b), then Jo (K, bX) takes the form

Tk ) = (Antd ! S S(I— A)Q! Au+d
2B =Tpry ) e tu-aTs soa-aTsaiae -0 ) Py
which is independent of K. Here S = [(I — A)Q*(I — A)T + BR™'BT]"'. And b¥ takes the

form

W= [KQ' (I -A)T —R'BT]-S- [(Au+d)+ (I - AQ'PTu] - KQ'P'pu.
Proof. The proof is similar to the one of Proposition[3.4] Thus we omit it here. O

Similar to Problem [2.2] we define the state- and action-value functions as

oo

XN/KJ,(x) = Z{E[E(xt,ut) |z = z,up = —Kay +b—|—077t} — j(K, b)},
t=0

Qi p(x,u) = &z, u) — J(K,b) + E[Vip(z') | z,u],

where the 2’ is the state generated by the state transition after the state-action pair (x,u). A slight
modification of Proposition[B.T] gives the proposition below.
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Proposition C.6. For Problem the state-value function \7be($) takes the form
View(x) = 2" Prcw — r(Pic®i) + 23 (% — prrc) — (i) " Prcpires,
and the action-value function Q i,b(z, u) takes the form
T ~ T

Qrp(z,u) = (i) Tx (ﬁ) +2 (%ﬁfﬁ) (ﬁ) —t(Pg®k) — o> - tr(R+ PxBB')—b' Rb

+ 20" RK ey — (ncs) (Q + KT RK + Py + 2f » [(Ap + d) — pxcp)

+ (Ap+d)" Pg(Ap+d) — 21" Pukp.
Here the matrix Y is given in , and the vectors Dg 1, G, are given as

<EK,b> _ AT [PK (Ap+d) + fK,Izl + Pu C.1)
e BT [Pic-(Ap+d) + fres] ) '

where the vector fr, = (I — A+ BK)~T[(A— BK)T P(Bb+ Ap+d) — KT Rb+ Pp).

Proof. The proof is similar to the one of Proposition[B.T} Thus we omit it here. O

Now we establish the gradients of .J(K, b) for Problem

Proposition C.7. The gradient of .J; (K) and the gradient of J5 (K, b) w.r.t. b takes the form

Vi J(K) =2(YRK - TH) o, Vo (K, b) = 2[Y2(~Kpurp +b) + Y2y + dwcn),
where the matrix T is given in (3.7), and the vector gx ; is given in (C.I).

Proof. The proof is similar to the one of Proposition[B.3] Thus we omit it here. O

Equipped with above results, parallel to the analysis in it is clear that by slight modification
of Algorithms [I] [2] and 3] we derive similar actor-critic algorithms to solve both Problem [C.2] and
Problem [C.1] where all the non-asymptotic convergence results hold. We omit the algorithms and
the convergence results here.

D PROOFS OF THEOREMS

D.1 PROOF OF THEOREM [4.1]

We define pf,; = A(us), which is the mean-field state generated by the optimal policy
TR (u2),b*(ns) = Ai1(ps) under the current mean-field state y,. By Proposition the optimal
K*(u) is independent of the mean-field state ;1. Therefore, we write K* = K*(u) hereafter for
notational convenience. By (3:2)), we know that

/‘:+1 ={I-A+ BK"‘)’1 . [Bb*(us) JrZus + d}.
We define
ﬁs-&-l = (I - A+ BKs)il(Bbs +Zﬂs‘ + d)7

which is the mean-field state generated by the policy 75 under the current mean-field state pi5, where
K and b are the parameters of the policy 7s. By triangle inequality, we have

lpsta = 1¥ll2 < st = Bsgallz + [Bser = pipalla + lngen — 172, (D.1)

El Eg E3

where p154 1 is generated by Algorithm We upper bound E4, Es, and E5 in the sequel.

Upper Bound of F;. By Theorem|[B.4} it holds with probability at least 1 — £'° that
E, = ||N'S+1 - /js+1||2 <egs < 5/8 ' 2_87 (D.2)
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where ¢ is given in (#.2).
Upper Bound of Es. By the triangle inequality, we have
Ey — H(I — A+ BEK) " (Bby + Ay +d) — (I — A+ BK*)™" - [Bb* (112) + Apte + d] H2
< || B (1) + Aps + d) - H [[— A+ BE*+B(K,— K*)] "= (I—- A+ BK*)‘1H2

+ | = A+ BK) 7|, - IIBll2 - [|bs — b (1s)] (D.3)

-

By Taylor’s expansion, we have
I e A S U |
== a4 BE) 4 (- a4 BE) B, - K9] T - (- A+ BK*)*H2
<2||(I - A+ BK*)"'B(K, — K*)(I - A+ BK*)™'|,. (D.4)
Meanwhile, by Taylor’s expansion, it holds with probability at least 1 — £1° that
|- A+ BE) ), = (1 - A+ BE + B~ K9) 7|
== a4+ BEY (10— A+ BE) B, - K) H2

<[1-p(A=BE)] " (14 [T = A+ BE) B, K - K,2)

<2[1 - p(A - BK")] %, (D.5)

where the last inequality comes from Theorem [B.4] By plugging (D-4) and (D.3)) in (D-3)), it holds
with probability at least 1 — £'© that

By <2||Bb*(ps) + Aps +d||, - |[(I - A+ BK*)"'B(K, — K*)(I — A+ BK*)™'|,
=4 BIC) Bl =)
< 2||Bb*(ps) + Aps +d|, - [ —p(A=BE*)] | Bl | Ko — K*|2 (D.6)
+2[1— p(A— BE")] 7" [ B2 - [|bs — b (1)
By Proposition[3.4] it holds that
| BO* (1s) + Aps +dl|, < Li - [|Bllz - || sll2 + [[All2 - [lsll2 + ]2
< (Ly- 1Bz + 1 All2) - sl + [z, (D.7)

where the scalar L, is defined in Assumption 3.1} Meanwhile, by Theorem [B.4] it holds with
probability at least 1 — £10 that

>

min min

where Mj,(j15) is defined in (#3). Combining (D.6), (D.7), (D-8), and the choice of £, in @.2), it

holds with probability at least 1 — £'° that
E, <e/8-27°. (D.9)

|5y~ K < [oph (o) - onhy (B) e by = b* ()], < My(pa) -2, (D)

Upper Bound of E3. By Proposition 3.2} we have

Es = |phiy — 12 = ||A(us) — Ap®)||, < Lo~ s — 172, (D.10)

where Ly = L1 L3 + Lo by Assumption[3.1]

By plugging (D-2), (D.9), and (D.10) in (D-I)), we know that

lptse1 = p*ll2 < Lo - llps — p*ll2 +e-27°72, (D.11)
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which holds with probability at least 1 — 1°. Following from (D-TT)) and a union bound argument
with S = O(log(1/¢)), it holds with probability at least 1 — &5 that

lns = w*ll2 < L5 - llwo — u*ll2 +€/2,

where we use the fact that Ly < 1 by Assumption[3.1} By the choice of S in @.I)), it further holds
with probability at least 1 — £° that

s — ul| <e. (D.12)
By Theorem and the choice of €4 in {#.2)), it holds with probability at least 1 — &5 that
* * — — 1/2
IKs — K[l = || Ks — K*(u5)|, < [omb (¥e) - omiy(B) 25/ < e (D.13)

Meanwhile, by the triangle inequality and the choice of £, in (@.2)), it holds with probability at least
1 — &5 that

los =572 < lbs = b (s) [, + [[" (us) = b°],

< My(ps) g + L - lus — p*2
<1+ 1ILy) ¢, (D.14)

where the second inequality comes from Theorem [B.4] and Proposition [3.4] and the last inequality
comes from (D.12)). By (D:12)), (D.13), and (D.14), we conclude the proof of the theorem.

D.2 PROOF OF THEOREM[B 4

Proof. We first show that Jy(Kn) — J1(K*) < /2 with a high probability, then show that
Jo(Kn,br) — Jo(K*,b*) < £/2 with a high probability. Then we have

J(Kn,by) — J(K*,b%) = J1(Kn) + J2( Ky, bg) — J1(K*) — Jo(K*,b*) < ¢
with a high probability, which proves Theorem [B.4]

Part 1. We show that J; (K ) — J1(K*) < £/2 with a high probability.
We first bound J; (K1) — J; (K32) for any K3 and K5. By Proposition J1(K) takes the form of

Ji(K) =tu(Pg¥.) =E,nou.)(y Pxy) (D.15)

The following lemma calculates y ' P,y — y | P,y for any K and Ko.

Lemma D.1. Assume that p(A — BK;) < 1 and p(A — BK3) < 1. For any state vector y, we
denote by {y; }+>0 the sequence generated by the state transition y;+1 = (A — BKas)y, with initial
state yo = y. It holds that

v P,y —y P,y =Y D, i, (1),
>0

where
D ra(y) = 2y (K2 — K0) (YR, Kq = TR, )y +y ' (K — K1) T TR, (K2 — Ki)y.
Here T i is defined in (3.7).

Proof. See for a detailed proof. O

The following lemma shows that J; (K) is gradient dominant.

Lemma D.2. Let K* be the optimal parameter and K be a parameter such that J; (K) < oo, then
it holds that

J(EK) = J(K*) < 0 (R) - |95 |2 - w[(YRK = TR) T(YRK — TR)]. (D.16)
Ji(K) = J1(K*) > omin(Po,) - [ TRZT - e[ (YREEK — T3 T(YTREK — 13)]. (D.17)

26



Published as a conference paper at ICLR 2020

Proof. See §F.2)for a detailed proof. O

Recall that from Algorithm 2] the parameter K is updated via
K=K, —v- T2 K, - T%), (D.18)

where T K, is the output of Algorithm [3} We upper bound |J1 (K1) — J1(K™)| in the sequel.
First, we show that if .J; (K,,) — J1(K™*) > ¢/2 holds for any n < N, we obtain that

Ji(Kn) < Ji(Kn-1) < -+ < J1(Ko), (D.19)

which holds with probability at least 1 — £'3. We prove (D.19) by mathematical induction. Suppose
that

Ji(Kp) < J1(Kp—1) <--- < J1(Ko), (D.20)

which holds for n = 0. In what follows, we define K n-+1 as

Kppi=K,—v- (Y2 K, - T%), (D.21)
where Yk, is given in (3.7). By (D.21)), we have
Sy (K1) = J1(Kn) = Eyeno,u.) v "(Pg,,, — Pr.)y]
_ _27.“[(1,}? . (T22 TQl ) (T22 — 2l )]
+97uw[@r (T22 -1% /)Tﬁ;{m(ﬁ?n n— T3]
< -2y-ul[®g (T22 - T21 )2 K, — Y3 )] (D.22)

+2 TR 2 - tr[‘I’K (TR K, = Y% ) (YR K = TR )]
where the first equality comes from (D.13), the second equality comes from Lemma [D.1] and the
last inequality comes from the trace inequality. By the definition of Y x in (3.7)), we obtain that

| 2 < [|Rll2 + [|BI3 - | 2 < | Rll2 + 1B3 - J1(Kn) - 05 (Te)

min

< [IRl|2 + | BI3 - Jl(Ko) Frmin (We); (D.23)

where the second 1nequa11ty comes from Proposmon B2l By plugging (D.23) and the choice of
stepsize v < [||R||2 + || B3 - J1(Ko) - ot (¥.)]~ ! into (D-22), we obtain that

Ji(Kpy1) — Jl(Kn) < —v-u[@g (YR K, — YR )T (Y32 K, — TR )]
< =y Omin(We) - [(TR K = T )T (TR, Ko = TR,)]
< =7 Omin(Ve) - Omin(R) - [ @se- I3 - [J1(Kn) — Ji(K™)] <0, (D24)
where the last inequality comes from Lemma[D.2]

The following lemma upper bounds |.J; (Kp41) — J1(Kpi1)]-
Lemma D.3. Assume that .J;(K,,) < Ji(Kp). It holds with probability at least 1 — £1° that

|J1(I~(n+1) - Jl(Kn+1)| <7 omin(Ve) - omin(R) - ”q)K*”z_l -e/4,

where K, 41 and K, are defined in (D.18) and (D.21)), respectively.
Proof. See for a detailed proof. O

Combining (D-24) and Lemma[D.3] if J1(K,) — J1(K*) > £/2, it holds with probability at least
1 — &'® that

J1(Kpy1) — J1(Ky) n+1) Ji(K +|J1 n+1) Jl(KnH)}

Ji(
-7 Umln(\lle) . Umin( ) . ||(I)K* 5 . 5/4 < 0. (D.25)

I/\ I/\
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Combining (D.20) and (D-23), it holds with probability at least 1 — £!® that
J1(Kni1) < J1(Kp) < < Ji(Ko).

Finally, following from a union bound argument and the choice of N in Theorem if J1(K,) —
J1(K*) > €/2 holds for any n < N, we have

Ji(Kn) < Jhi(Kn-q) < -+ < J1(K),
which holds with probability at least 1 — 3. Thus, we complete the proof of (D.19).
Combining (D.24) and (D:23), for J, (K,,) — J1(K*) > /2, we have
J1(Kpg1) = JU(E*) < [1 =7 omin(Ve) - omin(R) - (|9 [|51] - [J1(Kp) — J1(K*)],

which holds with probability at least 1 — £'3. Meanwhile, following from a union bound argument
and the choice of N in Theorem it holds with probability at least 1 — ¢! that

JUKN) — JU(K*) < /2. (D.26)

The following lemma upper bounds || Ky — K*||.
Lemma D.4. For any K, we have
1 = K < 005 (Pe) - 0in(R) - [J1(K) = S (K7)].

Proof. See for a detailed proof. O
Combining and Lemma[D.4] we have
[Fn — K*[lp < [0k (W) - oy (R) - 2/2) %, (D27)

which holds with probability 1 — e!1.

Part 2. We show that Jo(Kn,by) — Jo(K*,b*) < /2 with high probability. Following from

Proposition it holds that Jo(K*,b*) = Jo(Kn,bEV). Therefore, it suffices to show that

JQ(KN, bH> — JQ(KN, bKN) < 8/2.

First, we show that if J (K, bp,) — Jo (K, b5~) > ¢/2 for any h < H, we obtain that
Jo(Kn,br) < Jo(Kn,ba—1) < --- < Jo(Kpn,b1) < Jo(Kn, bo), (D.28)

which holds with probability at least 1 — £'3. We prove (D.28) by mathematical induction. Suppose
that

Jo(Kn,bp) < Jo(Kn,bp—1) < -+ < Jo(Kn, bo), (D.29)
Recall that by Algorithm 2] the parameter b is updated via
bh+1 = bh - "/b . ﬁbJQ(KN, bh) (D30)
Here
Vida(Kn,bp) = YR (—KNFkybn +bn) + iy Ak bn + Qi bn (D.31)
where T Kk~ and Gk, p, are the outputs of Algorithm We define Ehﬂ as
gh+1 = bh - ’yb . VbJQ(KN, bh) (D32)
Here
Vodo(Kn,bp) = TR (—KN iy on +bn) + Tiy HEKxbn + Qi bn s (D.33)

where Yk, and g », are defined in (3.7). We upper bound Ja (K, by 1) — Jo(Kn, b5 ) in the
sequel. Following from (D-32)) and Proposition[3.3] we have

Jo(Kn, bs1) — Ja(Knoby) < —2/2 - | Vo da(Kn, b)) |2

< —viy 7 [J2 (B, ba) = Jo (K, b))

< —vgy -7’ <0, (D.34)
where VKy is specified in Proposition The following lemma upper bounds |Jo (K, bpy1) —
Jo (KN, bpt1)]-
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Lemma D.5. Assume that Jo(Kx,b) < J2(Kn, by). It holds with probability at least 1 — 5 that
| J2 (KN, bpgt) — JQ(KNvgh+1)| <viy 7' e/2,
where by, 1 and b1 are defined in (D:30) and (D-32), respectively.

Proof. See for a detailed proof. O

Combining and Lemma|D.5} we know that if Jo (K, by) — Jo(Kn, b5V) > ¢, it holds with
probability at least 1 — £'® that

Jo(Kn,bps1) = Jo(Kn, ) < Jo(Kn,bps1) — Jo(Kn, ) + | Jo (K, bpyr) — JQ(KN,EhH)}
< vy 7P e/2<0. (D.35)
Combining and (D:33), it holds with probability at least 1 — £'® that
Jo(Kn,byt1) < Jo(Kn,bp) < --- < Jo( K, bo).

Following from a union bound argument and the choice of H in Theorem if Jo(Kn,bp) —
Jo (K, b5~ > ¢ holds for any h < H, we have

Jo(Kn,br) < Joa(Kn, b 1) < -+ < Jo(Kp, bo),
which holds with probability at least 1 — &'3. Thus, we finish the proof of (D.28).
Combining (D-34) and Lemma for Jo(Kn,by) — Jo( Ky, b5N) > /2, we have
Jo (KN, bpg) — Jo(Kn, 05N) < (1= viey -4%) - [Ja(Kn, br) — Jo(Kn, b)),

which holds with probability at least 1 — 3. Meanwhile, following from a union bound argument
and the choice of H in Theorem it holds with probability at least 1 — ¢! that

Jo(Kn, b)) — Jo (K, bEY) < e/2. (D.36)

By Proposition [3.3]and (D-36), it holds with probability at least 1 — ¢! that
br — b5~ ||y < (2e/vg+)Y/2. (D.37)
Following from Proposition 3.4} we know that
bEN — b = (Ky — K*)Q Y(I—A)T (D.38)
I -A)Q ' (I-A)T +BR'BT] - (Ap+d).
Combining (D.27)), (D.37)), and (D.38)), it holds with probability 1 — ¢! that

brr — b5V ||y < M, - £1/2,

where
My(p) = 4”@*1(1 ~AT [I-AQ ' I-AT+BR'BT] T (Au+ d)H2
(vt + ok (00 - ol (R)] .
We finish the proof of the theorem. O

D.3 PROOF OF THEOREM[B.S]

Proof. We follow the proof of Theorem 4.2 in |Yang et al.| (2019), where they only consider LQR
without drift terms. Since our proof requires much more delicate analysis, we present it here.

Part 1. We denote by Z and §A the primal and dual variables generated by Algorithm 3] We define
the primal-dual gap of as

gap(C, €) = gg;;F(a §) = min F(¢,€). (D.39)
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In the sequel, we upper bound ||dx » — ax p||2 using (D39).
We define Cx , and £() as

G = (JUE D) ak,) s €)= argmax (¢, ). (D.40)

Following from (B.12), we know that
Q) =¢ = J(K,b), €(() =Eny, [t(z,0)]¢" + Ok pC® — Ery, [clz, w)ib(z, u)]. (D41
The following lemma shows that (x , € V, and £(¢) € V¢ forany ¢ € V.

Lemma D.6. Under the assumptions in Theorem , it holds that (x » = (J(K,b), g o) eV
Also, for any ¢ € V, the vector £(¢) defined in (D.40) satisfies that {(¢) € V.

Proof. See §F.6|for a detailed proof. O

By (B12), we know that V¢ F(Ckp,0) = 0 and VeF(Cxp,0) = 0. Combining Lemma [D.6] it
holds that (Cf 5, 0) is a saddle point of the function F'(¢, £) defined in (B:TT).

Following from (D-39), it holds that

Erp., [w(x,u)]z\l + Ok b? —Erp, [c(x,u)¢ x,u H2 + fz\l - J(K, b)|2

— F(C,€(0) = gnaxF(Z €) = gap(C, €) + min F((, ), (D.42)

CeVe

where the first equality comes from (D.4T)), and the second equality comes from the fact that £ (Z) =

argmaxecy, I F(C,¢) by (DAQ) and Lemma We upper bound the RHS of (D.42) and lower
bound the LHS of (D-42) in the sequel.

As for the RHS of (D.42), it holds for any £ € V¢ that

min F(G,€) < min max F(¢,§) = min £(C,£(0))

1 . 2
2 ?elgz{’ Ere, [0(2,0)] ¢ + Ok pC? — Bnye, [z, )b (z, u)] H2 + ¢t — J(K, b)|2}

_0, (D.43)

where the first equality comes from the fact that {(¢) = argmaxcy, F(¢; &) by (D-40) and Lemma
[D.6] the second equality comes from (D.41)), and the last equality holds by taking { = (xk» € V.
Meanwhile, we lower bound the LHS of (D.42)) as

By [0, 0)] 8+ 01008 — By, [elar, )i, )] + [~ (K1)

= €6 = )z = Ak - I = Crpll = A - 1@ — e pll3, (D.44)

where the first equality comes from the definition of ) &, in (B29), and the first inequality comes

from Proposition[B.6] Here A is defined in Proposition[B.6} Combining (D-42)), (D-43), and (D.44),
it holds that

~

lass — axplls < A - gap(C, &), (D.45)
which finishes the proof of this part.
Part 2. We now upper bound gap(z £ ). We denote by Z, = (z], 4, )T fort € [T], where Z, and @,

are generated in Line[6] of Algorithm [3] Following from the state transition in Problem [2.3]and the
form of the linear policy, {Z;}, [T follows the following transition,

thrl = th +v+ 51/, (D46)
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where

- Eu—i—d 5 — W I — A B
\—K(Au+d)+b)’ T\ -Kw+on)’ “\-KA -—-KB)"

Note that we have
A B I
L= (—KA —KB) = (—K) (4 B).

Then by the property of spectral radius, it holds that

o(L) = p<<A B) (IK)> (A BEK)<1.

Thus, the Markov chain generated by (D-46) admits a unique stationary distribution N (u, 3. ),
where

_ _ —1 _ T \I]w _\ijKT
w,=I—-L)"" v, Y,=L¥,L + (—K\I/w KU KT +02I)" (D.47)
The following lemma characterizes the average
T
. =1/T-) %. (D.48)
t=1

Lemma D.7. It holds that
~ 1 1=~
Mz ~ N(,U’Z + =pz, ~E~)7
Tt
where ||zl < M, - (1 p) 72 a2 and [|S7 ¢ < M- (1 — p)~* - || - Here M, and My,

are positive absolute constants. Moreover, it holds with probability at least 1 — 7"~ that

log T

72 = pzll2 < Fia (1= p)72 - poly([[@xc 2, | K[le [1D]l2, 1 ]12)-

Proof. See for a detailed proof. O

Lemma [D.7] gives that

log T

HMK,b - MK,sz < ﬁ

(1= p)"% - poly([ @2, 1 K]lr, [1bll2, [lll2)
which holds with probability at least 1 — T'—6.

We now apply a truncation argument to show that gap(z , E ) is upper bounded. We define the event
£ in the sequel. Following from Lemma it holds for any z ~ N (., 2,) that

2o + 1T pz ~ N(0,%, +1/T - 55).

By Lemma|[G.3] there exists a positive absolute constant Cyy such that
P[llle = e +1/T - pzll} - u(E2)] > 7] < 2exp[~Co - min(2 S, 7S:151)], D49)

where we write ¥, = %, +1/7T - if for notational convenience. By taking 7 = C -log T - ||3. ||
in (D.49) for a sufficiently large positive absolute constant C1, it holds that

P[[ll2 = - + 1/T - puzll3 — (S2)| > €y -log T+ |8 le] <T7°. (D.50)
We define the event &, 1 for any ¢ € [T'] as

£ = {|llze =7 + 1T - pglly = (E2)] < Cr - log T+ | e e .
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Then by (D-50), it holds for any ¢ € [T that

P(&q) >1-T75. (D.51)
Also, we define
=) & (D.52)
te[T)

Following from a union bound argument and (D:5T)), it holds that
P(&)>1-T75. (D.53)
Also, conditioning on &1, it holds for sufficiently large T that

~ 2
yelaﬁllzt =2

<CylogT - [|S. Ik + (52) + 11/T - pg 3

<2Cy - 1+ Ms(1—p)~H/T?] log T+ |8 l2 + Mu(1 = p)72/T2 - | 123

< CyologT (14| KJE) [ @xllz- (1= p) 7+ Cs - (b3 + [1l3) - (1= p)~* - T2
<205 -1ogT - (14 |K[}) - [|@xll2- (1 = p) 7Y, (D.54)

where C;, C», and ('3 are positive absolute constants. Here, the first inequality comes from the
definition of &; in (D-52)), the second inequality comes from Lemma [D.7] and the third inequality
comes from (D.47). Also, we define the following event

& = {|lfi- — p= +1/T - pzll> < C1}. (D.55)
Then by Lemma(D.7} we know that
P(&)>1—-T°° (D.56)
for T sufficiently large. We define the event £ as
E=&()é.
Then following from (]m, @ and a union bound argument, we know that
PE)>1-T°—-T75,

Now, we define the truncated feature vector o (x, u) as 1(z,u) = @(m, u) 1g, the truncated cost
function ¢(x, u) as ¢(x,u) = c¢(x, u) g, and also the truncated objective function F'((, ) as

F(¢.&) = (B +E[@ - F)07)¢ ~E@ED)} €+ [~ E@] & - l3/2. D57

where we write 1) = ¢(z,u) and ¢ = &(z, u) for notational convenience. Here the expectation
is taken following the policy 7 ; and the state transition. The following lemma establishes the

upper bound of |F((, &) — F((,€)|, where F(C,€) and F(C, €) are defined in (B-IT) and (D.37).

respectively.
Lemma D.8. It holds with probability at least 1 — T that

1 logT
76O - FGO| < (574 20 )00 )72 poly (1K bl e, (o)

Proof. See for a detailed proof. O

Following from (D-39) and Lemma it holds with probability at least 1 — 7"~6 that
|2ap(C,€) — gap(¢, €))|

1 logTv
2T T1/4

<

) (1= p)2 - poly (| K g, 1bll2, | £ll2, J (Ko, bo)). (D.58)
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~

where we define gap(C, €) as

gp(C, &) = max F(C, &) — min F(C.8).

Therefore, to upper bound of gap((, ), we only need to upper bound gap((, £).

Part 3. We upper bound gap((, £) in the sequel. We first show that the trajectory generated by the
policy 7  and the state transition in Problemis [S-mixing.

Lemma D.9. Consider a linear system y;+1 = Dy, + ¥ + vy, where {y; }+>0 C R™, the matrix
D € R™*™ gatisfying p(D) < 1, the vector 9 € R™, and vy ~ AN(0,X) is the Gaussians. We
denote by w; the marginal distribution of y; for any ¢ > 0. Meanwhile, assume that the stationary
distribution of {y; }+>¢ is a Gaussian distribution N'(( — D) ™19, £, ), where ¥, is the covariance
matrix. We define the 3-mixing coefficients for any n > 1 as follows

5(”) = i’gg EyNWt |:H]P>yn( | Yo = y) - PN((I*D)*lﬂ,Zm)(')HTv} .
Then, for any p € (p(D), 1), the 8-mixing coefficients satisfy that

Bn) < Cppy- [tr(Sec) +m-(1— p)_2}1/2 o,

where C), p 9 is a constant, which only depends on p, D, and ). We say that the sequence {y; }+>0
is S-mixing with parameter p.

Proof. See Proposition 3.1 in|Tu and Recht (2017) for details. O

Recall that by (3.I), the sequence {x; };>o follows
.’Et+1:(A—BK)l't-f—(Bb-’—Z,U,-'—d)-’—Et, EtNN(O,\Ije),

where the matrix A — BK satisfies that p(A — BK) < 1. Therefore, by Lemma the sequence

{2 }+>0 is B-mixing with parameter p € (p(A — BK),1), where z; = (2} ,u/)". The following

lemma upper bounds the primal-dual gap for a convex-concave problem.

Lemma D.10. Let X and ) be two compact and convex sets such that ||z — 2'|]s < M and ||y —
Y|l < M forany z, 2’ € X and y,y’ € ). We consider solving the following minimax problem

i H :]Eervw G » Y3 9
min max H(z, y) G,y )]

where the objective function H (z,y) is convex in z and concave in y. In addition, we assume that
the distribution ¢, is S-mixing with 5(n) < C. - p", where C. is a constant. Meanwhile, we assume
that it holds almost surely that G(x, y; €) is ZO—Lipschitz in both x and y, the gradient V. G(z, y; €)
is El-Lipschitz in z for any y € Y, the gradient V,G(z, y; €) is El-Lipschitz iny forany x € &,
where C., ZO, fl > 1. Each step of our gradient-based method takes the following forms,

wipr =P [we = o1 - VaG(xeyis )]s yern = Ty [ye — o1 - VG, yrs €]

where the operators I'xy and I'y projects the variables back to X and ), respectively, and
the stepsizes take the form v, = ~o - t~'/2 for a constant 7o > 0. Moreover, let 7 =
() N yew) and § = (31—, 7))~ (321—, 7:w:) be the final output of the gradi-
ent method after T’ iterations, then there exists a positive absolute constant C, such that for any
d € (0,1), the primal-dual gap to the minimax problem is upper bounded as

. C-(M2+ L2+ LoL1M) 1log®T +1log(1/8) C-C.LoM

H(z — min H <
neg A y) — g A D) los(1/7) VT T

which holds with probability at least 1 — 4.

Proof. See Theorem 5.4 in|Yang et al.|(2019) for details. O
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To use Lemma m we define the function G((, ; {/;, {5’ ) as
GG &, 0) = [0 + (@ - W T &) &+ (¢' - - & —1/2- ¢},
where 1) = J(x, u) and U = zZ(a:' u’). Note that the gradients of G((, &; 0, {/)v’) take the form
G [ PTe e ) T _(~ e )
VCG(<?§5w7¢)_ <’(/)(’(/J ¢)T§2 véG(C5§7w7w)_ wcl+(w_w/)wT<2_’5¢_§2 .
By Definition[B.7|and Lemma|[D.6] we know that
IVeG(¢,&0.4) |, < poly (| K [lr, (Ko, bo)) -log T - (1= p) 2,
|VeG (¢, &4,4)]|, < poly (I K]lr, llull2, T (Ko, bo)) - log T - (1 — p)~2. (D.59)

This gives the Lipschitz constant Ly in Lemma for G(C,&;4,1). Also, the Hessians of
G(¢, &9, 9) take the forms of

VG &0,0) =0,  VEG(&V,Y) = —
which follows that

Ve &0, 00, =0, [[VEGE &, 9], = 1. (D.60)

This gives the Lipschitz constant L1 in Lemma 0| for V.G((, &; 1/1 ¢ ) and V:G((,&; 1/) 1/)
Moreover, note that (D.54) provides an upper bound of M, combining (D.39), @ and Lemma

| it holds with probability at least 1 — 7' ~° that

~ ~ _ poly([|K e, |2, T (Ko, bo)) - log® T
< .
2ap(C, §) < (1—p)*- VT

Combining (D.43), (D:38)), and (D.61)), we know that

(D.61)

log® T logT
T1/2 . (1—p)* T1/4 . (1—p)2 ’

@xs — arpllz < A%” - polyy (1K Ik, [1bll2, llullz, J (Ko, bo)) -

Same bounds for ||'Y"K — Yr|& |IPrs — Pr.bll3, and ||gx» — qx »||3 hold. We finish the proof of
the theorem. [

E PROOFS OF PROPOSITIONS

E.1 PROOF OF PROPOSITION[3.2]

Proof. We follow a similar proof as in the one of Theorem 1.1 in|Sznitman|(1991) and Theorem 3.2
in|Bensoussan et al.|(2016). Note that for any policy 7k € II, the parameters K and b uniquely
determine the policy. We define the following metric on II.

Definition E.1. For any 7x, 1,, TK,.5, € II, we define the following metric,
7r1 b0 — Try o ll2 = c1 - [ K1 — Kafl2 + 2 - [[b1 — ball2,
where c; and cs are positive constants.

One can verify that Definition [E.T| satisfies the requirement of being a metric. We first evaluate the
forms of the operators A;(-) and Ao (-, -).

Forms of the operators A;(-) and Ax(-,-). By the definition of A;(u), which gives the optimal
policy under the mean-field state y, it holds that

Al (/’[/) = 7727

where 7 solves Problem This gives the form of A;(-). We now turn to As(p, ), which gives
the mean-field state p,ew generated by the policy 7 under the current mean-field state p. In Problem
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the sequence of states {x;};>0 constitutes a Markov chain, which admits a unique stationary
distribution. Thus, by the state transition in Problem [2.2]and the form of the linear-Gaussian policy,
we have

finew = (A = BE ) finew + (Bbx + Ap + d), (E.1)
where K and b, are parameters of the policy 7. By solving (E-I) for fiyew, it holds that
Ao(p, ) = pinew = (I — A+ BK ) ' (Bby + Ap + d).
This gives the form of Aa(-, ).
Next, we compute the Lipschitz constants for A;(-) and Aa(-, -).

Lipschitz constant for A, (-). By Proposition[3.4] for any p1, o € R™, the optimal K * is fixed for
Problem Therefore, by the form of the optimal ¥ given in Proposition it holds that

A1 () = Ar(o)||, < 2 |[[(1 = QT (1 = )T + BRTBT] A

Q- T = RBTY| -l - el
=coly - [|pu1 — p22, (E.2)
where L, is defined in Assumption 3.1}

Lipschitz constants for A, (-, -). By Proposition[3.4} for any s,y € R™, the optimal K* is fixed
for Problem[2.2] Thus, for any 7 € II such that  is an optimal policy under some x € R™, it holds
that

[A2(p1, ™) = Aa(pz, m)|[, = [|(T = A+ BE) ™" A+ (11 = po)
<[t —p(A—BK*)] " Az 1 — pell2
= Lo - |1 — p2ll2, (E.3)

where L is defined in Assumption[3.1]} and K. = K* is the parameter of the policy . Meanwhile,
for any mean-field state ;x € R™, and any poicies 71, w2 € II that are optimal under some mean-field
states (i1, o, respectively, we have

||A2(‘LL,7T1) - AQ(Maﬂ-Q)HQ = H(I —A+ BK*)ilB ' (bﬂ'l - bﬂz)”g
< [1=p(A=BE")] " - |IBll2 - Ibr, — bryll2
=cy 'Lz - ||m1 — 22, (E.4)

where in the last equality, we use the fact that K, = K, = K* by Proposition [3.4] Here L3 is
defined in Assumption and b, and b, are the parameters of the policies 7; and 5.

Now we show that the operator A(+) is a contraction. For any p7, uo € R™, it holds that

[ AGm) = Ao, = {8 (1. As (1)) = Aoz, s (1) |

SHAz (1, A () — A2(M1,A1(M2))H2+HA2(M1,A1(M2)) - A2(u27A1(u2))H2
< ¢y 'Ly || A (1) = Av(p2) ||, + Lo - |1 — pall
<cy'Ly-coly - ||y — poll2 + Lo - [|pn — poll2 = (L1Ls + La) - [l — pall2,

where the first inequality comes from triangle inequality, the second inequality comes from (E-3)
and (E-4), and the last inequality comes from (E:2). By Assumption [3.I] we know that Ly =
LiLs + Lo < 1, which shows that the operator A(-) is a contraction. Moreover, by Banach fixed-
point theorem, we obtain that A(-) has a unique fixed point, which gives the unique equilibrium pair
of Problem[2.3] We finish the proof of the proposition. O
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E.2 PROOF OF PROPOSITION[3.4]

Proof. By the definition of J5 (K, b) in and the definition of px p in , the problem
y bE, p
mbin Jo (K, b)

is equivalent to the following constrained problem,

- "(O+KTRKE —-K'R\ (u
w \b “RK R b

st. (I —A+BK)u— (Bb+ Ap+d) =0. (E.5)
Following from the KKT conditions of (E.3)), it holds that
2M (‘g) +NxkA=0, Ng (’g) +Ap+d=0, (E.6)
where
_(Q+KT'RK —-K'R _(-I—-A+BK)T
By solving (E:6), the minimizer of (E-3)) takes the form of
(“g;?ﬂ = M ' Ng(Np M N ) H(Ap + d). (E.7)
By substituting (E.7)) into the definition of J> (K, b) in (3:6), we have
Jo(K,b5) = (Ap+d) T (Np M N )" H(Ap + d). (E.8)

Meanwhile, by calculation, we have
Mol < Q! QKT ) .
K KQ' KQ'KT+R!
Therefore, the term N, M ;' Nx in (E) takes the form of
NpMg'Ng =1 —-A)Q *(I-A")+BR'B". (E.9)
By plugging (E-9) into (E:8), we have
Jo(K,0%) = (Ap+d)T[(I - A)Q (I -AT)+ BR'BT] ™ (Au + d).
Also, by plugging into (E.7), we have

(ugkw) B (KQ‘lg_i(fl)_T{);—lBO (1= Q' (1~ A)T + BR'BT] " (Au+d).

We finish the proof of the proposition. O

E.3 PROOF OF PROPOSITION [B.2]

Proof. By the definition of the cost function ¢(z, u) in Problem(recall that we drop the subscript
w when we focus on Problem[2.2)), we have

Ec; = E(z] Qu; +u/ Rus + ' Qpu)
=E(z; Qi+ 2] K" RKx; — 20" RKx; +b' Rb+ on Ry + 1" Qu)
=E[z](Q+ K "RK)x, — 20" RKx;] +b" Rb+ 0* - tr(R) + n" Qu, (E.10)

where we write ¢; = ¢(x¢,u;) for notational convenience. Here in the second line we use u; =
7k b(xt) = —Kxy + b+ ong. Therefore, combining (EI0) and the definition of J (X, b) in Problem

22] we have

J(K,b)

T
. 1 T T T T TA
= lim 7 ;{E[’Jit (Q+ K'"RK)z; —2b" RKay| +b' Rb+ 0? - tr(R) + p Qu}
=Eon(ursar) |t (Q+ KTRK)x — 20" RKz] +b"Rb+ 02 - tr(R) + p" Qu
=tu[(Q+ K "RK)®x] + g (Q+ K RK)uk, —2b" RK g, (E.11)

+b"Rb+0?-tr(R) + ' Qpu.
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Now, by iteratively applying (3.3) and (3:4), we have
tr[(Q + K" RK)®k] = t(PxT.), (E.12)
where P is given in (3.4). Combining (E.TT)) and (E.12)), we know that
J(K,b) = Ji(K) + Jo(K,b) + 0% - tr(R) + 1" Qp,

where
Ji(K)=t[(Q+ K RK)®k| = u(Pg¥.),
T
J. (K b) _ [ HKD Q""KTRK _KTR MK b
20 = b —RK R b )
We finish the proof of the proposition. O

E.4 PROOF OF PROPOSITION[3.3|

Proof. By calculating the Hessian matrix of J2(K, b), we have
V3, Jo(K,b) =BT (I — A+ BK)" " (Q+ K"RK)(I - A+ BK)™'B
— [RK(I-A+BK) 'B+B'"(I-A+BK) "K'R|+R
—[RV2K(I — A+ BK)"'B—R"?]" [RV?K(I - A+ BK)"'B — R"/?]
+B"(I-A+BK) "Q(I - A+ BK)'B,

which is a positive definite matrix independent of b. We denote by its minimum singular value as
vi. Also, note that |V, Jo(K, b)||2 is upper bounded as

—2
[ Vi J2 (K, )|, < [1 = p(A = BE)] - (Bl - IK]I3 - [|1Rll2 + [ BI3 - |Qll2)-
Therefore, it holds that
—2
k< [1=p(A=BE)] - (Bl IK]5 - Rl + IBII3 - 1Q]]2),

where ¢ ¢ is the maximum singular value of V%, .Jo (K, b). We finish the proof of the proposition. [

E.5 PROOF OF PROPOSITION[B.3]

Proof. Following from Proposition[B.2] it holds that
JI(K) =tu(PgV.) =E, o0y Pry) =Eynou.)[fx®)], (E.13)
where fr(y) =y Pxy. By the definition of Py in (3.4), we obtain that

Vi) = Vie{yT(@+ KTRE)y + [(A - BK)y] " Pic[(A~ BK)y] '}

— 9RKyy" + Vi [fK((A - BK)y)] (E.14)
Also, we have
Vi [fK((A - BK)y)} = Vi fi((A— BK)y) — 2B Pc(A— BK)yy". (E.15)
By plugging (ET3) into (E14), we have
Vi fx(y) =2[(R+B"PxB)K — B"PxAlyy" + Vi fx ((A— BK)y). (E.16)
By iteratively applying (E.I6), it holds that
Vi fx(y) =2[(R+ BTPxkB)K — BT PcA] -y "y, (E.17)
t=0

where y;41 = (A — BK)y; with yo = y. Now, combining (E-T3) and (E-I7), it holds that
Vi Ji(K)=2[(R+ B"PxB)K — B P A| 0 = 2(Y3K — T3) - O,

where Tk is defined in (3.7). Meanwhile, combining the form of x5, in (3:2), it holds by calcula-
tion that

Vi Jo(K,b) = 2[YR (=K px s +b) + T s + arn),
where g, is defined in (3.7). We finish the proof of the proposition. [
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E.6 PROOF OF PROPOSITION [B.1]

Proof. From the definition of Vi (z) in and the definition of the cost function c(z,u) in
Problem [2.2] it holds that
Vico (@) = Z{E[xj (Q+ KT RK)z, — 2b" RKx;

=0
+b Rb+o?n) Ry + " Qu| o = x| — J(K, b)}

Combining (3.I), we know that Vi ,(x) is a quadratic function taking the form of Vi ;(z) =
2 Gz +rTx + h, where G, r, and h are functions of K and b. Note that Vi p(x) satisfies that

Vip(z) = c(z, —Kz +b) — J(K,b) + E[Vk (') | ], (E.18)

by substituting the form of ¢(x, — Kz +b) in Problem[2.2]and J (K, b) in (3-3) into (E-I8), we obtain
that

2 Gr+rz+h
=2 (Q+K"RK)x — 20" RKz+b Rb+ ' Qu (E.19)
— [tr(P W) + pge y (Q + K TRK ey — 20" RK pucy + 1" Qpu+b' Rb]
+ [(A= BK)z + (Bb+ Au+d)]  G[(A — BK)z + (Bb+ Ap + d)]
+tu(GV.) +r"[(A— BK)x + (Bb+ Ap+d)| + h — o? - tr(R).

By comparing the quadratic terms and linear terms on both the LHS and RHS in (E-T9), we obtain
that

G = Py, r=2fKp,

where frp = (I — A+ BK)™ T[(A— BK)" Px(Bb+ Au+d) — KT Rb]. Also, by the definition
of Vi p(x) in (B.I), we know that E[V ;(x)] = 0, where the expectation is taken following the
stationary distribution generated by the policy 7k ; and the state transition. Therefore, we have

h=—=2fkplirs — ticp Py — t(Pe®r),
which shows that
VKJ,(I’) = ’ITPKJZ — tl'(PKq)K) + 2f;,b($ - NK,b) — M%,bPK:uKJ" (EZO)

For the action-value function Q i 5 (x, u), by plugging (E.20) into (B:2), we obtain that

Qrp(,u) = (i) : Tk (i) +2 (pKvb) : (2) —tr(Px®g) — 02 - (R + PxBB")

aK.b
—b " Rb+2b" RK g — gy (Q + KT RK + Py
+2fxs[(Ap+d) — prcp] + (Ap+d) " Pr(Ap+ d).
We finish the proof of the proposition. [
E.7 PROOF OF PROPOSITION [B.3]

Proof. By Proposition @ it holds that () i , takes the following linear form

Qrp(m,u) = p(x,u) "ok + B, (E21)
where 3k p is a scalar independent of  and u. Note that @) K.b(z, u) satisfies that
Qrp(w,u) = c(z,u) — J(K,b) + By, [Qrp(a’, u) | z,u], (E.22)

where (z/,u’) is the state-action pair after (z, u) following the policy 7k ; and the state transition.
Combining (E.2T) and (E22), we obtain that

Yz, u) ok = clz,u) — J(K,b) + B, [0(2),0) |m,u]TaK,b. (E.23)
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By left multiplying 1 (z, u) to both sides of (E.23)), and taking the expectation, we have

T
Em(,b{¢($a u) W(% u) - ’(/)(LIJ/, u/)] } QKb + Eﬂ'K,b W(% U)] : J(Ka b) = Eﬂ'K,b [C(Z‘, U)¢($a u)] .
Combining the definition of the matrix © g 4 in (B.7), we have

G I 4 R CHE )

which concludes the proof of the proposition. [

E.8 PROOF OF PROPOSITION [B.6

Proof. Invertibility and Upper Bound. We denote by z; = (x/,u,)" for any ¢ > 0. Then

following from the state transition and the policy 7k p, the transition of {z; };>¢ takes the form of
ze41 = Lz + v + 6y, (E.24)

where L, v and ¢ are defined as

L= A B v = Zﬂ+d 5 — Wt
~\-KA4 -KB)’ " \-KAp+d)+b)’ P\ -Kwi o)

Note that L also takes the form of
I
= (L) m

Combining the fact that p(UV') = p(VU) for any matrices U and V, we know that p(L) = p(A4 —
BK) < 1, which verifies the stability of (E.24). Following from the stability of (E.24), we know
that the Markov chain generated by admits a unique stationary distribution N (., ), where
1~ and X, satisfy that

ps = Ly, + v, Y., =LY, LT + Us.

where

v Y —U, KT
=\ =KV, KU, K +0%I)"

Also, we know that X, takes the form of

;
_ x _ (I)K —(I)KKT _ 0 0 I I
e = COVKu)] = <—K<I>K KOxKT +021> - (0 02.[) * (—K) P (—K) :

(E.25)
where @ is defined in (3.3).
The following lemma establishes the form of © g ;.
Lemma E.2. The matrix © ; in (B.7)) takes the form of
(25 @ )T - L&, L)T 0
Oxp= ( 0 2.(I-10)T)"
Proof. See for a detailed proof. O

Note that since p(L) < 1, both I — L ®, L and I — L are positive definite. Therefore, by Lemma
e matrix © g is invertible. This finishes the proof of the invertibility of © i ;. Moreover, by
(E.25]

E.25) and Lemma we upper bound the spectral norm of ©  j, as
2
1©xpll2 < QmaX{I\EzH% (L) 22 (1 + ||L||2)} <AL+ KR 1exl3,

which proves the upper bound of ||O p||2.
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Minimum singular value. To lower bound Umin(é K,b), we only need to upper bound

Urnax(é[_(h)) = H(:);{lbﬂz We first calculate é;&b. Recall that the matrix O, in takes the
form of

5 _ 1 0
Kb = ETA’K,[, [’l/)(ﬂ?, ’LL)] @K,b '
By the definition of the feature vector ¥(z,u) in (B.5), the vector 7, = Er, ,[1(x,u)] takes the

form of
~ EZ
5, = Eny, [0(z,u)] = (SVS,fim )> !

where 0y, denotes the all-zero column vector with dimension & + m. Also, since © j, is invert-
ible, the matrix © g 5 is also invertible, whose inverse takes the form of

~ 1 0
6= (Lo 5. o)
Kb - K,lb "0z eK}b

The following lemma upper bounds the spectral norm of é;{}b.

Lemma E.3. The spectral norm of the matrix é;(}b is upper bounded by a positive constant Aics
where Ax only depends on || K ||2 and p(A — BK).

Proof. See §F.10|for a detailed proof. O

By Lemma we know that O’min(é K.b) 18 lower bounded by a positive constant Ax = 1/ A K,
which only depends on || K ||z and p(A — BK). This concludes the proof of the proposition. O

F PROOFS OF LEMMAS

F.1 PRrRoOOF oF LEMMA D]

Proof. Following from (3:4), it holds that

.
y Pr,y=> y'[(A- BK2)'] (Q+ K RK;)(A— BK3)'y. (F.1)
t>0
Meanwhile, by the state transition y;11 = (A — BK>5)y;, we know that
yt = (A — BKQ)tyO = (A — BKQ)ty (FZ)
By plugging (F.2) into (FI)), it holds that
v P,y =Y vy (Q+ K RE2)ye = > (y) Qui +y/ K3 REKoyy). (F3)
t>0 t>0
Also, it holds that
v P,y =Y (1 P yer1 — v P, i) (F.4)
>0

Combining (F3) and (F.4), we have

v P,y —y P,y =Y (4 Que + vy K3 RKoye +yl 1 Pyers — ! Pryyr). (FS)
>0

Also, by the state transition y;+1 = (A4 — BK>)y;, it holds for any ¢ > 0 that
yi Qur + y! Ky RE>y: + y/' 1 Pr,yer — yi Prcy e
=y, [Q+ (K2 — K1 + K1) R(K> — K1 + K1)|w
+y/ [A— BK, — B(Ky — K1)| ' P, [A— BE, — B(Ks — K1)|yi — v/ Pr,ut
=2y (K2 — K1) [(R+ B Pg, B)K1 — B' Pk, Aly;
+y, (Ky — K1) (R+ B" Pg, B)(Ks — K1)y,
= 2y:(K2 - Kl)T(T%(QlKl - T%(l )y + y;—(Kz - Kl)T'r%?l (K2 — K1)y, (F.6)

1
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where the matrix Y g, is defined in (3.7). By plugging (F-6) into (F3), we have
y' Py —y' Py
= 2 (Ko — K1) (YR Ky = Y3y + v (Ko — K1) TYR (Ko — Ky

>0
= Z Dk, K, (yt>7
>0
where D, i, (y) = 2y" (Ko — K1) (YR K1 — Y% )y +y" (Ko — K1) T3 (Ko — K1)y. We
finish the proof of the lemma. O

F.2 PROOF OF LEMMA[D.2]

Proof. We prove (D.16) and (D.17) separately in the sequel.

Proof of (D.16). From the definition of J; (K') in (3.6), we have
Ji(K) — Ji(K*) = (PP, — P+ W) =Eyun0w.) (¥ Py —y' Pr+y)
= -FE [Z Dx k- (yt):| , (E7)
>0

where in the last equality, we apply Lemma|[D.T]and the expectation is taken following the transition
Y41 = (A — BK*)y, with initial state yo ~ N (0, ¥.). Here we denote by D -+ (y) as

D+ (y) =2y (K" = K)(TRE = Yy +y' (K" — K) TR (K" — K)y.

Also, we write D - (y) as
Dri-(y) =2y (K" = K)(YEK = TRy +y" (K" - K) " TR(K* — K)y (F3)

=y [K* = K+ (CR) 7 (YRE - T3] TR[K* — K + (T2) 7 (CRK - T3]y

y (YRK =TT (XR)(TRE - TR)y.
Note that the first term on the RHS of is positive, due to the fact that it is a quadratic form of a
positive definite matrix, we lower bound Dk gk~ (y) as
D s+ (y) 2 —y (TRE = T3) T (TR) T (TRK — TR)y. (F9)

Combining and (E9), it holds that

(g,

t>0
= (@l - w[(TRE = TR)T(CR) T (TRK — TR)]
<Oy 1 @xell2 - w[(TRE = TR)T(TRE — TR
< i (B) | @rc=[l2 - o [(TRE = TR) T (TR K — TR)],

min

T (K) — Ji(K*) <

(02K - 3T () (YR - 13)

where the last line comes from the fact that Y22 = R + BT Px B = R. This complete the proof of

([.16).

Proof of (D.17). Note that for any K, it holds by the optimality of K* that

J(K) = Jy(K*) > Ji(K) — Ji(K) = ~E [Z DK,;((yt)} (F.10)
t>0

where the expectation is taken following the transition y;11 = (A — BK )y; with initial state yo ~
N(0,%,). By taking K = K — (Y2)"}(Y2K — T%) and following from a similar calculation as
in (E8), the function D, = (y) takes the form of

Dy gly) =—y " (YRK —YR)T(Y) " (TRK - T%)y. (E11)
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Combining (F10) and (FIT)), it holds that
J(E) = J(K") 2 [0 (TRE = T3) T (YR) H(TRE - T§)]
> owin(Ve) - [ITRl " - w[(TRE — T3) T (TRE — TR,
where we use the fact that &z = (A — BK)®z(A — BK)" + W, > U, in the last line. This
finishes the proof of (D.17). O

F.3 PROOF OF LEMMA D3]
Proof. By Proposition[B.2] we have

[ (Kng1) = Ji(Kns)| = 0[(Pg, = Proa) ] S 1Pg = Propllz - [Pl (E12)

nt1
The following lemma upper bounds the term ||Pf<n+1 — P, |l2-
Lemma F.1. Suppose that the parameters K and K satisfy that
IK — K|z (|4 - BKll2 + 1) - [®k |2 < owmin(Pu)/4- | B]l5 7, (F.13)
then it holds that
1Pz = Prcllz < 6- 00, (Vo) - [@xcllz - (1K |2 - | B2 - K — K2 (F.14)

~(I1Bll2 - 1K ]l2) - |A = BE||2 + [|Bll2 - [|K[l2 + 1).
Proof. See Lemma 5.7 in|Yang et al.|(2019)) for a detailed proof. O

To use Lemma it suffices to verify that K, and K, satisfy (FI3). Note that from the
definitions of K41 and K, in (D18) and (D:21), respectively, we have
[Knt1 = Kpsilla - (1A = BEoyal2 +1) - |27, [l

Kni1

<v- 1Tk, = T, s - (14 |Knll2) - (|14 = BEpyal2+1) - [|®% _ |lo- (F.15)

n+1
Now, we upper bound the RHS of (FT3). For the term || A — BK,, 11]|2. it holds by the definition of
K, +1 in (D:21) that
|A = BKpill2 < |A— BEpll2+ 7+ |Bll2 - |13, Kn — T, |I2
<A=BEullz +v-[1Bll2 - [Tk, ll2 - (1+ [ Knll2)- (F.16)
By the definition of Y g, in (3.7)), we upper bound || Yk, ||2 as
2
1Tk, ll2 < 1Qll2 + 1 Bll2 + (1Allr + 1Bll)” - [ Pc., 12
2 _
< @Qll2 + 1Rz + (IIAllr + 1 Bllr)” - J1(EKo) - 05 (o), (E.17)
where the last line comes from the fact that
Ji(Ko) > J1(Ky) = r[(Q + K, RK,,)®x, | = tt(Pk, Ue) > || Pr, |2 - Omin(Pe).
As for the term || P Rois |l2 in (E.I3)), from the fact that
Ti(Ko) 2 Ji(Kpy1) = tr[(Q+ K REw )P 1> [0 o omin(@Q),
it holds that
195, ll2 < J1(EKo) - 0503 (Q)- (F.18)
Therefore, combining (F13), (F16), (F17), and (F.18), we know that
1K1 — Kngallz - (| A — BEga ]2 + 1) - P72
< poly, ([ Knll2) - 1Tk, = T, [ (F.19)
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From Theorem it holds with probability at least 1 — 70,4 — 7,76 that
polys ([ Knlle, [lell2) log® T,

Tk, — Tk, |lr < M, (1= p)? T/ (F.20)
pOIY4(”KnHF, ||b0||2, ||'uH2) 10g1/2 Tn
i A ' ~1/8 )
K, Tn . (1 _ p)

which holds for any p € (p(A — BK,,), 1). Note that from the choice of T}, and T, in the statement
of Theorem [B.4] that

_ -9 _
Ty > polys (| Knlle, boll2, lull2) - AL - [1 = p(A— BK,)] ~-e7°,
~ _ —-12  _
T, > polyg (| Knlle, lboll2: [lll2) - AR - [1 = p(A = BE,,)] " -2,

it holds that

poly; (|1 Kullr, lullz) log® T, polyy (I Kullr, llbollz: llull2) — log'/* T,

e, L—p? Ak, FI5 (11— )

—1
< min{ [poly1 (||KnH2)} - Omin(V,)/4 - ||Bll3 " (F.21)

-1
[POIYZ(”KHHZ)} /8- omin(Ve) - Omin(R) - [[Px~ ”271 : |\Ije|F1}~

Combining (F.19), (F20), and (F21)), we know that (F13) holds with probability at least 1 — ¢'°
for sufficiently small € > 0. Meanwhile, by (F.16), (F17), and (FI8), the RHS of (F14) is upper
bounded as

6- o (V) - [

min a2 1K psllz - IRl - [ Kng1 — Kngall2
(IBll2 - [ Knsall2) - |A = BEpialla + |Bllz - [ Knsall2 + 1)
< poly, (| Knll2) - | Tk, = Tr,|lF- (F22)
Now, by LemmalE.1} it holds with probability at least 1 — £ that
Pz, —Px <6 0mt(W0) - 1@z, 2 1K1l [Rll2 - [ Kntt = Kngall2
- (IBllz2 - [ Knt1ll2) - |A = BEpgalla + [|Bll2 - [ K gall2 + 1)
< poly, (| Kullz) - 1T, — Tx, [
< /87 omin(Ve) - Omin(R) - [ x5 - [Tl (F.23)

where the second inequality comes from (F.22)), and the last inequality comes from (F20) and (E21).
Combining (F12)) and (F23)), it holds with probability at least 1 — €5 that

‘Jl(i?n+1) - Jl(Kn+1)| S v Umin(\lle) : Umin<R) : ||q)K*||;1 : 5/47
which concludes the proof of the lemma. O

n+1||2

F.4 PROOF OoF LEMMA D 4]

Proof. Note that Y22, K* — T2, is the natural gradient of J; at the minimizer K*, which implies
that
T2 K*— Y3 =0. (F.24)
By Lemma[D.T] it holds that
Ji(K) — J1(K*) = o(Px ¥, — Pi- V) =By on00.) (¥ Py —y' Pr+y)

- E{Z 207 (K = K*) (TR K = T3y + ) (K = K*)TT2.(K - K*)yi| }
>0

= E{ZUI(K - K*) " TR (K — K*)yt}, (F25)
t>0
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where we use (F24) in the last line. Here the expectations are taken following the transition y; 1 =
(A — BK)y; with initial state yo ~ N (0, ¥.). Also, we have

E{ZyJ (K — k)T (K K*)yt}
t>0
=tr[Px(K — K*)"TR.(K — K*)]
> || Pkl - T2 - tr[(K — K*)T (K — K*)]
> 0min(Ve) - omin(R) - | K — K*||2, (F.26)

where we use the fact that @5 = (A— BK)®x(A—BK)+V, = V. and Y2, = R+ BT P+ B =
R in the last line. Combining (F.23) and (F26), we have
T (K) = Ji(K") 2 0win(Pe) - Omin(R) - | K — K*|.

We conclude the proof of the lemma. O

F.5 PROOF OF LEMMA[D.3]

Proof. Following from Proposition [3.3] we have
Jo(Kn,bpt1) — JQ(KN,th)
<A Voo (KN, bns1) | [Voda(En, by) — Vida(Kn, bp)]
+ ()2 vy /2 | Voda (K, by) — Vodo (K, bp)|
Jo (K, bng1) = Jo(Kn, buga)
< 2" Vi do (K, bpi1) T [Voda(Kn,by) — Vi do (K, by)] (F27)
— (V") ekn /2 || Vo (K, br) — Vda(Kn, bp) E,

where v, and 1, are defined in Proposition 3.3} Also, following from Proposition [B3] it holds
that

Voo (K v, bui) ||, < polyy (1B w v, 1n 2, llll2, J(Kn,bo)) - [1 = p(A — BKy)] -
(F.28)

Combining (F27)), (F28)), and the fact that vy, < 1xy < [1 — p(A — BKy)]~2 - poly, (|| Kn||2),
we know that

|J2(KN7bh+1) - Jz(KN,EhH)} (F.29)
< (4")2 - polyy (|1 Knll2) - || Voo (K nsbn) — Vodo(Kn ba)|[ - [1 — p(A — BKy)] ™
+97 - poly; (1K [le, [ballz lll2, J (K, b0)) - || V2 (K, br) = VoK, by,
1= p(A-BEN)] "

Note that from the definition of ﬁng(KN, by) and Vi, Jo(K v, by) in (D31) and (D-33)), respec-
tively, it holds by triangle inequality that

[ Voo (K, by) — Vi o (K, bi) |,

IRy = TR M2 KN 2 iry s ll2 + 1TZ 2 - 1K ll2 - b, = pacn w2

2
27

+ 12, = TRz - onllz + 175, — TRy 2 - 1Bk bn |2 + |1 Trcn 5 — Qrcn by ll2
+ HT%{lNH? : H//’ZKN»bh - MKN:bh”Q'
By Theorem B.8] combining the fact that Jo (K, by) < Jo(Kn,bo) and the fact that ||y |2 <

J(KN,b0)/0min(Q), we know that with probability at least 1 — (7?)~* — (T%)~6, it holds for any
p € (p(A— BKy),1) that

Vo da(Kn,br) — Vi do (K, by, (F.30)
log® i logl/2 ili
(TOYVA1—=p)2 (T8 (1—p) ]

< Agay - POLys (1N [les [[bn 2 1125 J2 (K n, bo)) -

N
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Following from the choices of 1°, %, and T in the statement of Theorem it holds that

2 - polyy (K x Ik, 1w lls l1ell2s T (B, 50)) - Ak, - polys (1K wllgs 1B 12 122ll2, Jo (K v, bo))
log® T? log!/2 Tt } B ,
’ 5 ~ n 1 - p(A - BK 1— o(A— BK
(T2)V/4(1 — p)? + TOE - (1— p) [ p( N)} + [ o( N)]

log® T logval’
ol (.l Dl ) - [ e+
b -1
-(7")? - polys (1K nl2) - Axc,
<viy 7P -g/2.
Further combining (F29) and (F30), it holds with probability at least 1 — £'° that
| Jo (K, bag1) — Jo(Kn, bni1)| < vy 9P - €/2.
We then finish the proof of the lemma. O

F.6 PRrROOF OoF LEMMA [D.6|

Proof. We show that (x , € V¢ and £(¢) € V¢ for any ¢ € V. separately.

Part 1. First we show that (x , € V. Note that from Deﬁnition we know that (z , = J(K,b)
satisfies that 0 < (j,, < J(Ko, bp). It remains to show that (3, = a satisfies that [|CF [la <
M. By the definition of ax 5, in (B-6)), we know that

12 < I scllE+ 1 a3 - (leessll3 + Nl o12)
2 - 2
+ (1Al + 11Bll2)" - (1P ll2 - [ Ap+ dll2 + [l ficb]12) (F.31)

where frxp = (I — A+ BK)""[(A — BK)"Pg(Bb + Ap + d) — K" Rb] and for notational
simplicity, we denote by pj , = —Kpugp + b. We only need to bound T, px b, ff o Prc, and
fK ». Note that by Proposition the expected total cost J (K, b) takes the form of

JUK,b) = w(PiW,) + iy Quirc + (e )T Rptie, + 0% - te(R) + 1" Q.

Thus, we have

s p

J(Ko,bo) = J(K,b) > omin(Vo) - tr(Pk) = omin(Vu) - [ Prll2,

J(Ko,by) > J(K,b) > M—[I;’bQ,UK,b > omin(Q) - ||px ]2,

J(Ko,bo) > J(K,b) > () Ruaey > omin(R) - [l p 2,
which imply that

HPK”2 < J(K0>b())/amin(\ljw)7
ik plle < J(Ko,bo)/omin(Q),
g pllz < J(Ko,bo)/omin(R). (F.32)

= (§ 9)+ () Peta B,

I klle < (1Qr + I Rle) + (1AIZ + 1 BIE) - [ P,
ITxkll2 < (IRl + [Rll2) + (1Allz + [1Bll2)* - [[Pill>-
Combining and the fact that || Px ||[r < /m - || Pk ||2, we know that
Ikl < (1QUr + I1RIIE) + (14N + IBIE) - Vi - (Ko, by)/Trmin(Pes),
ITxll2 < (1Qll2 + I1RIl2) + (1 All2 + 1Bll2)* - J (Ko, bo)/Tumin (V). (F.33)

For T g, it holds that

which gives
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Now, we upper bound the vector fx ;. Note that by algebra, the vector fx ; takes the form of
frp=—Prprp+ (I — A+ BK) " (Quiy — K" Ruf ).
Therefore, we upper bound fx p as
_ _ -1
Ifxbll2 < J(Ko,b0)? - 0ty (V) - 000in(@) + [L = p(A = BK)] - (5q + kg - [|K[|p) (E34)
Combining (F31), (F32)), (F33), and (F34), it holds that
Ik pll2 = llomcpllz < Mea + Mez - (L+ [ K|lp) - [L = p(A — BK)] ™.
Therefore, it holds that (x, € V.

Part 2. Now we show that for any ¢ € V¢, we have £(¢) € V. Recall that from (D-41)), it holds that
§(O) = = J(ED), Q) = Enye, [, 0)] ¢ +OspC* = Enye, [olw, w)tp(,w)]. (B35)

Then we have
£1(0)] = [¢F = J(K, b)| < J (Ko, bo), (F.36)

where we use the fact that since ¢ € V¢, we have 0 < (! < J(Ko, bo) by Definition[B.7] Also, by
(F.35), we have

1O, < |[Ersca [0 w6+ [O1calle - I e + [Ers ol wiia ]| . @37)
—_——
B1 Bz B3
Note that we upper bound B; as
By < J(Ko,bo) - ‘ Ere, [0(z, )] H2 (F.38)
Following from the definition of ¢ (z, u) in (B:3), we know that
B [0, )] |, < 1521, (F39)

where 3., is defined as

.
- N[ ok —oKT O\ _ (0 0 I I
e = COVKU)] = (—K(I)K KoxK' +a21) - (0 021) * (—K) P (—K) :

Combining and (F39), we have
By < J(Ko,bo) - [|Zz]|r- (F.40)

By Proposition we upper bound Bj as

-1
By <4(1+||K[7)? - [|®k 5 - (Mcq + Mc2) - [1— p(A— BK)] ™, (F41)

where we use the fact that { € V; and Definition As for the term Bs in (F.37), we utilize the
following lemma to provide an upper bound.

Lemma F.2. The vector E, ., [c(z,u)(x, u)] takes the following form,

2svec[Y.diag(Q, R)X. + (., diag(Q, R))X.]

EWK,I; [C(LU, u)z/;(x, 'I.L)] = » 2Q,UfK,b
“\ 2R
svec(2,)
+ [N;,bQﬂK,b + (N%,b)TRNuK,b + ﬂT@M] < (())m ) .
k

Here the matrix X, takes the form of
(% —Pr KT
Zz == T 2 .
Kb KOgK' +0°-1
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Proof. See §F.11|for a detailed proof. O

From Lemma[F2]and (E.32)), it holds that

By < 3[l|Qlr + | Rl + J (Ko, bo) - [Qll2/0min(Q) (F.42)
+ J (Ko, bo) - | R]l2/0min(R)] - [1Z:]]3-

Moreover, by the definition of 3, in (E:23), combining the triangle inequality, we have the following
bounds for ||, || and ||, ||2,

12206 <2(d+ K[ - 19x 2, [Z2ll2 <200+ [K[F) - 19k ]2 (F.43)
Also, we have
J(Ko,bo) > J(K,b) > u[(Q + K RK)®x| > [|®k||2 - omin(Q),

which gives the upper bound for ® i as follows,

|®xll2 < J(Ko,b0)/omin(Q). (F.44)
Therefore, combining (F37), (F40), (E4T), (F42), (F43), and (F44), we know that
€2, < O+ (Mca + Mc2) - I (Ko, bo)? /07 (Q) (F.45)

(LK) [1 = p(A - BE)]

By (F36) and (F43), we know that £(¢) € V¢ for any ( € V.. We conclude the proof of the
lemma. =

F.7 PROOF OF LEMMA [D.7]
Proof. Assume that Zy ~ N (114, 3+). Following from the fact that
Ziy1 =Lz + v+ 6y,

it holds that
t—1
% ~ N( i+ ZL’ (LT)'S4L' + > (LT) \1/5LZ> (F.46)
1=0
where

v — (Vo KU,
= \KU, KU, K" +0%I)"

From (D.47), we know that y, takes the form of
o0
=(I-L)y'v= ZL]V. (F47)
=0

Therefore, combining (F.46) and (F47), we have

T
E(fi.) = pz + % > Lips - Z Z Liv. (F.48)

t=1 tlzt

We denote by

ST St

t=1 i=t
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Meanwhile, it holds that

T T oo
<D D) il + YD (L) (vl
t=1 i=t
—1 —2
L=p(L)] - llptllz + [1 = p(L)] -l
M- (1 =p)72 [z, (F.49)
where M, is a positive absolute constant.

For the covariance, note that for any random variables X ~ A (p1,21) and Y ~ N (pg, Xa), we
know that Z = X +Y ~ N(u1 + p2, X), where | 2] < 2|21 ]||r + 2||X2]||p. Combining (F46),
we know that 11, ~ N (Efi., ¥5/T), where X5 satisfies that

T T t—1
T/2- 1706 <> p(L)* - [S4lle + D> (L) - [|Ws]e
t=1 t=1 7=0
-1 ~ -1
<[ =pL)?] - AZille+T- [1=p(L)?] - [ Ws]lr,

which implies that
IS5l < Ms - (1= p) 7" |2z, (E.50)
where My is a positive absolute constant. Combining (F:48), (F-49), and (F50), we obtain that

R 1 1~
/J’z NN(MZ + T/l“, ~Z~),
T

where [|uzlla < M, - (1= p)~2 - [|uz]l2 and [|S5]e < Ms - (1 — p)~' - |2, ||r. Moreover, by the

Gaussian tail inequality, it holds with probability at least 1 — 7~ that

. logf _
17 = pzllz < =+ (1= p) 72 - poly ([ @ ll2, [ K le, 1Bll2, [|1el]2)-
Tt/4
Then we finish the proof of the lemma. O

F.8 PROOF OF LEMMA[D.§]

Proof. We continue using the notations given in §D.3] We define
~ ~ o~~~ T
F(6,©) = {E@)C +E[ - 01072 ~E(eh)} €+ [¢" ~E(@)] €~ 1/2- I},

where 12 = @(m, u) is the estimated feature vector. Here the expectation is only taken over the
trajectory generated by the state transition and the policy 7k 3, conditioning on the randomness

induced when calculating the estimated feature vectors. Thus, the function ﬁ(( , &) is still random,
where the randomness comes from the estimated feature vectors. Note that |F(¢,€) — 13(& & <
[F(C,€) = F(CE] +F(C,€) — F(, &)l Thus, we only need to upper bound [F/((,§) — F(¢,€)]
and |F(C7§) - F(<a€)|

Part 1. First we upper bound |F' (¢, &) — ﬁ(( ,€)|. Note that by algebra, we have
[F(¢,€) = F(¢,€)]
~ PN 8T
- [{B@ - D¢ + B[ -7 - G- 10T - Bletw - D]} €

<E(IY = Blle) - [IC 1+ E(Ie = 'll2 + 21l12) - ¢z + E(e)| - €22, (BSD)
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where the expectation is only taken over the trajectory generated by the state transition and the policy
i - From Lemma[D.7} it holds that

P(|fs — ps + 1T - pzlla < C1) >1-T76. (F.52)
Therefore, combining (F32), it holds with probability at least 1 — 75 that

where the expectation is conditioned on the randomness induced when calculating the estimated
feature vectors. Also, we know that

E(c) < poly([[®xllz, 1K lr, [[bll2, [l (Ko7bo)) (E.54)
Therefore combining (E5T), (F33), (F34), and Definition [B.7} it holds with probability at least
1 — T-6 that
|F(¢,&) = F(¢, 9| <E(Iv — %ll2) - poly (@2, [ K[lr, 1bll2, [|ell2, J (Ko, bo)).  (F.55)
Following from the definitions of ¢(, v) in (B.3) and 1(x, v) in (B.14), we upper bound ||¢)(z, u) —
Y(x,u)||2 for any x and u as

-~ —~ ~ 2 P
[(z,u) = (@, )13 = i — )3+ || 2(ie — p2) "+ (2 — p2)z " |5 + lpepl — 6:0] |7
< poly (|| @k |2, |1 K lg, [[bll2, | ]l2 (K07b0)) 1= — I3, (F.56)

where /i, is defined in (D7), i, is defined in (D-48), and z = (z7,u")T. Also, by Lemmal[D.7|
we know that

logf1 _
=y (1= p)72 - poly (@2, 1K v, [b]l2: [lell2, I (Ko, bo)). (E57)

which holds with probability at least 1 — 7. Combining (F:33), (F36), and (F57), it holds with
probability at least 1 — 7"~ that

logl~1
P8~ FGol < =

122 — 22 <

(1= p)2 - poly (| K g, 1bll2, | £l|2, J (Ko, bo)). (F.58)

Part 2. We now upper bound |F(¢, €) — F(¢, €)| in the sequel. By definitions, we have
[F(¢.6) - F(¢.0)

- [{BG - D) + BT - 9007 - G- D71 -B@T - D)} € + B

<[{B@c +BGINE 5D} ¢ +E@! 2 (59

+ “]E(IZ/(ZT)C2]T§2‘ Lerngye,

where we define the event £’ as

&= ( N {112t = g+ 1T - izl — (52| < G log T ”52'2}> e

te(T)

where &, is defined in (D.35). Combining the fact that P(£;) > 1 — T and Lemma it holds
that P(£') > 1 — T—° — T—°. Following a similar argument as in Part 1, it holds from (F39) that

76 - FGO| < (1 + 2177 ) v (e [l el S b)) (R0

for sufficiently large 7" and T.

1
T1/4

Now, combining and (F.60), by triangle inequality, it holds with probability at least 1 — T-6
that

1 logT
F(.€) — F(¢.9)| < (2T ;§/4) (1= )72 poly (1K s 6]z, 12, (Ko, bo)).

We finish the proof of the lemma. O

49



Published as a conference paper at ICLR 2020

F.9 PRrROOF OoF LEMMAI[E.2|

Proof. Recall that the feature vector ¢ (z, u) takes the following form

o) = (svec[<z )z - uzf]) |

Z = Mz
‘We then have

blo) = e’y = (VT G kDL, o)

where we denote by y = z — i, and (2, ') is the state-action pair after (x, u) following the state
transition and the policy 7x p. Therefore, for any symmetric matrices M, N and any vectors m, n,

it holds from (B.7) and (E61) that
T
svec(M) svec(N)
(") o (™

_ ﬂ«:y,é{ (sve;SM)) ! <svec(yny)> <svec [yy™ . _(L(yi ; f) 5()Ly +6)7] ) ! (svecn(N)) }

= Ey,a{(<M, yy ) +mTy) [(Nyyy" — (Ly+6)(Ly+6)") +n"(y— Ly — 5)]}

=E,((yy", M) (yy" — Lyy LT — Vs, N)) +E,((yy", M) -n' (y — Ly)) (F.62)
Ay As
+E,(mTy - (yy" —Lyy LT — U5, N)) +Ey[m y-n"(y — Ly)],
Az Ay

where the expectations are taken over y ~ N (0, %) and § ~ N (0, Us). We evaluate the terms A;,
As, As, and Ay in the sequel.

For the terms Ay and Aj in (E62), by the fact that y = z — p1, ~ N(0, X, ), we know that these two
terms vanish. For A4, it holds that

Ay =E, [mTy (y — Ly)Tn] =E, [mTny(I - L)Tn} =m'S,(I-L)"n. (F.63)
For A, by algebra, we have

=E,((yy", M) - <yy —Lyy LT — U;,N))

=E,((yy". M) (yy" — Lyy LT, N)) = E,((yy ", M) - (¥s5,N))

=E,[y"My-y" (N LTNL> y] = (52, M) - (¥5,N)

=Eyonon[u SY2MEY2u - uTSYA(N — LTNL)SY?u] — (3., M) - (U5, N). (F64)

Now, by applying Lemma|[G.I]to the first term on the RHS of (F.64), we know that
Ay =2u[S2MEY? . 82N - LTNL)SY?]
+u(EY2MEY?)  u[SYAHN - LTNL)EY?] — (2., M) - (U5, N)
=2(M,S,(N—L"NL)S.) + (2., M) - (£, — LY, L" — ¥s,N)
=2(M,%.,(N-L"NL)Y.),

where we use the fact that ¥, = LY., L' + Uy in the last equality. By using the property of the
operator svec(-) and the definition of the symmetric Kronecker product, we obtain that

Ay = 2svec(M) svec [Z.(N - LTNL)EZ}
=2svec(M) " [E, ®, 8, — (.L7) ®; (S.L")]svec(N)
= 2svec(M) " [(2. ®s 2.)(I — L®s L) " |svec(N). (F.65)
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Combining (F62)), (F.63)), and (F.63), we obtain that

(sve;SM)) T Orc (svec;fN))

=svec(M) " [2(2. ®; 2.)(I —L®s L) |svec(N) +m'S.(I-L) ' n

_ (sve;ﬁM))T <2<zz ®: S~ Le, LT Ez(lg L)T> (sve;(M) ,

Thus, the matrix © g ;, takes the following form,

(2. @8I - Lo, L)T 0
Oxp = ( 0 S.(I-L0)T)°

which concludes the proof of the lemma. [
F.10 PROOF OF LEMMA[EJ]
Proof. From the definition of ©  , in (B9), it holds that

193blI2 < 1+ 1054113 + 105,013, (F.66)

where o, is defined as

G = By, [, 0)] = <SV“(ZZ)> :

0k+m

We bound the RHS of (F66) in the sequel. For the term ©, 5, combining Lemma we have

o= (/2701 B (5203 et
K0z Oksm
_(1/2-(I- L@, L) T (27" @, B71) - svec(S.)
0k+m
_(1/2-(I-L®,L)"" -svec(x;1) (F67)
0k+m ’ '

where we use the property of the symmetric Kronecker product in the second and last line. By taking
the spectral norm on both sides of (F.67)), it holds that

1©x0zlla =1/2- ||(I = L@, L)~ - svec(37 1],
<1/2-|[I-L®s L)~ |, - [[svec(=7Y)|,
<1/2-[L=p*(L)] " 127 e

<1/2-VE+m-[1=p2(0)] 272

=12 VEk+m-[1=p*L)] o0k (52), (F.68)

where in the third line we use Lemmato the matrix L ®; L. Similarly, we upper bound || @I_(}b Il2
in the sequel

JO7 bl < min{1/2- [1 = A(0)] o (22), [L = p(D)] ok (S2) }- (F.69)
Thus, combining (F66), (F.63), and (F.69), we obtain that
107,13 < 1+1/2 VE+m- [1—p*(D)] " - opk(52)
n min{1/2 1= A on2 (2., [1 - p(L)] ‘1a;}n(zz)}. (E70)
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Now it remains to characterize oy, (X,). For any vectors s € R™ and r € R¥, we have

T
(i) 2R (i) = Eo N (s, 1) ummie o - | x){ (s (& = pacp) + " (u+ Kpgcp — b)]Q}
= EzNN(uK,b,ch),nNN(o,I){ [(s — K'r) (2 — prp) + UTT??]2}
= ExNN(MK,mK){ (s = KTr)"(z— prp)] 2} +Eponon [(or )] (E71)
The first term on the RHS of (E71)) is lower bounded as
EmNN(;LK,bgbK){ (s=K'r) (z— NK,b)}z} =(—K'r) ®g(s—K'r)
> ls = K'r)|3 omin(®x) > lIs — K713 - omin(Ve), (F.72)

where the last inequality comes from the fact that ouin(Px) > omin(¥y) by (3:3). The second
term on the RHS of (E71) takes the form of

E,no.0) [(arTn)?] = o?||7]|3. (E73)
Therefore, combining (E71)), (F72)), and (F.73), we have

.
S S
(T) e <T> > [ls — K 'r13 - omin (Vo) + 2|7l

> Omin(Yo) - ”S”% + [02 - ”K”% : Umin(qu)} : ”ﬂl%

From this, we know that

Umin(zz) Z min{amin(\llw)a 0'2 - ||K||§ : Umin(q]w)}- (F74)
Thus, combining (E70) and (E.74), we know that || C:)I_{?b |2 is upper bounded by a constant i, where
Ax only depends on || K ||, and p(L) = p(A — BK). This finishes the proof of the lemma. O
F.11 PROOF OF LEMMA[F2|

Proof. First, note that the cost function ¢(x, u) takes the following form,

. svec [diag(Q, R)] - - T
c(x,u) = ¢(z,u) ;QRMK,b + [ pQurcp + (1) Rufey + 1 Qul.
/ﬁ(,b

For any matrix V' and vectors v, v,, it holds that

- (svee(V)
EﬂK,b[c(Jc,u)w(w,u)] < Vg >

Uy,
svec [diag(Q, R)] svec(V)
=Erp s ¥(z,u)" 2QK b Y(z,u)" < Vg ) (E75)
2R Vu
D,
~ /svec(V)
+ ]EﬂK,b 'l/)(xv U)T(N},bQﬂK,b + (:U'uK,b)TR//”LIL(,b + IU'TQM) ( Uz )
vy,
Do

In the sequel, we calculate D, and D, respectively.
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Calculation of D;. Note that by the definition of ¢(x, u) in (B.3), it holds that

Dl = Eﬂ'}(,b [(Z - Mz)Tdiag(Qa R)(Z - ’uz) - (Z - MZ)T (3%Z£:Z>]

: l(z 1)V (2= ) + (2 — )T (Ux)

Uy

= Enye, [(2 = 1) " diag(Q, B) (2 — ) - (2 — 1) 'V (2 — puz)] (E76)
T
2Q V.
<2RZ}{?Z> (2 = p=) (2 — )" (UZ) :
Here = = (z",u")" and p. = E,,,(2). For the first term on the RHS of (F76), note that
z — piz ~ N(0,%.). Therefore, by LemmalG.1] we obtain that

Er, [(z = p2) " diag(Q, R)(z — p) - (2 — pz) "V (2 — )]
= 2(2.diag(Q, R)X., V) + (., diag(Q, R)) - (£, V)

T B

= svec [QEzdiag(Q, R)Y. + (2., diag(Q, R)) - EZ} Tsvec(V). (F.77)

Meanwhile, the second term on the RHS of (E.76)) takes the form of

- T
2 Vg 2 Vg
(Q%ji}jlf) (2= pa)(z = p) (%)1 = |z, (Z%Zéj:)} (vu) . (F.78)
Combining (E76), (E77), and (F.78), we obtain that
2svec[X.diag(Q, R)E. + (X.,diag(Q, R))X. | T (svec(V))

E

TK,b

D, = > 2Qu Kb Vg (F.79)
#\ 2Ry Uy
Calculation of D,. By the definition of the feature vector ¢(z, u) in (B.3)), we know that
- svec(X,) svec(V)
Dy = (i Qurc + (i) Bitfep + 1" Qu) | Om ve ] (F.80)
Ok Uy
Now, combining (F.73), (F79), and (E.80)), it holds that
2svec[¥.diag(Q, R)X. + (X.,diag(Q, R))¥. |
ETFK,b [C(I7 U)¢($, U)] = ) QQ,UK,b
#\2Ruf
- svec(X,)
+ [ Qe + (wicp) " Rty + 1" Qul ( %m > :
k
which concludes the proof of the lemma. O

G AUXILIARY RESULTS

Lemma G.1. Assume that the random variable w ~ N (0, I), and let U and V' be two symmetric
matrices, then it holds that

E(w Uw-w'Vw) =2t(UV) + tr(U) - tr(V).
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Proof. See Magnus et al.| (1978)) and |[Magnus| (1979) for a detailed proof. O
Lemma G.2. Let M, N be commuting symmetric matrices, and let ay, . . ., au,, 81, - - -, B, denote
their eigenvalues with vy, . . ., v,, a common basis of orthogonal eigenvectors. Then the n(n + 1)/2

eigenvalues of M ® N are given by («;8; + «;8;)/2, where 1 <i < j < n.

Proof. See Lemma 2 in|Alizadeh et al.| (1998)) for a detailed proof. O

Lemma G.3. For any integer m > 0, let A € R™*™ and  ~ N (0, I,;,). Then, there exists some
absolute constant C' > 0 such that for any ¢ > 0, we have

P|[n” An—E(n" An)| > ] <2-exp[~C - min(2) 42, tlAlz")]-

Proof. See|Rudelson et al.[(2013) for a detailed proof. O
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