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Abstract

Solver competitions have been used in many areas of AI to
assess the current state of the art, and to guide future research
and real-world applications. AI planning is no exception, and
the International Planning Competition (IPC) has been fre-
quently run for nearly two decades. Due to the organizational
and computational burden involved with running these com-
petitions, solvers are generally compared using a single ho-
mogeneous software environment for all competitors.
In this work, we use the competing planners and benchmark
instance sets from the 2014 IPC Agile and Optimal tracks to
investigate two questions. First, how is planner performance
affected by the specific choice of software environment? Sec-
ond, is it a good strategy to run planners with more recent
versions of their software dependencies, in order to maximise
performance? By running these competition tracks on eight
distinct software environments, we show that planner perfor-
mance varies significantly based on the chosen software en-
vironment, that the magnitude of this variation differs consid-
erably between planners, and that using more recent software
versions is not always beneficial.

Introduction
Automated Planning has been studied extensively for several
decades, resulting in automated planners being deployed in
a variety of real-world applications. Part of the considerable
progress in developing powerful domain-independent plan-
ners can be ascribed to the International Planning Competi-
tions (IPCs). Competitions play an important role in many
areas of AI, helping to drive forward research and devel-
opment of solvers for prominent problems, as well as in-
centivising the development and distribution of related tools
and benchmarks. Competitions also play a prominent role in
assessing and improving the state of the art in solving chal-
lenging AI problems, such as planning.

While all of the planning systems participating in the IPC
are available to be used after the competition, top-ranked
planners receive much of the attention and often have con-
siderable long-term impact on research as well as on real-
world applications. For this to make sense, we need to as-
sume that, at least from a qualitative point of view, con-
clusions derived from competition results generalise well to
other – even significantly different – hardware and software
environments than those used for running the competition. It
is well-known that competition results are already strongly

affected by the set of benchmark instances and the evalua-
tion function used to assess planner performance, as well as
by the way in which benchmarks are described, and by the
set of competitors (Howe and Dahlman 2002; Long and Fox
2003; Hoffmann and Edelkamp 2005; Gerevini et al. 2009;
Linares López, Celorrio, and Olaya 2015a; Vallati and Va-
quero 2015). It also comes as no surprise that results are
strongly affected by resource bounds – in particular, the run-
ning time cutoff and the amount of RAM available to the
planner. Moreover, an analysis performed on the SAT com-
petition showed that ranks of solvers are also affected by
pseudo-random number seeds used in runs of randomised
solvers (Hurley and O’Sullivan 2015).

Interestingly, a previous investigation performed by Howe
and Dahlman (2002) showed that the relative (qualitative)
performance of planners can vary, among other factors, also
when run using different hardware environment configura-
tions. However, as their work focused on identifying poten-
tial sources of performance variation, their analysis concen-
trated on assessing differences between two different ma-
chines having the same software environment configuration.

In this work, we present an investigation into the impact
of software environment choices on competition outcomes.
Our experimental analysis involves eight different software
configurations, including the choice of C/C++ compiler ver-
sion, Python interpreter version and Java version. We at-
tempt to identify aspects that have unequal impact on plan-
ner performance, in order to emphasise those aspects that
have to be carefully considered when interpreting competi-
tion results.

When dealing with such software configuration choices, a
question naturally arises:

Is it better to use the latest available versions of software
environment components such as compilers or interpreters,
or stick to the specific environment used during the IPC?

To help address questions such as this, we investigate the
performance variation of planners that took part in two de-
terministic tracks of the 2014 International Planning Com-
petition: the Optimal and Agile tracks. The Optimal track
is one of the longest-standing tracks in the IPC series, with
many participating planners and substantial impact on the
field of AI planning. While the Agile track was new for IPC
2014, its emphasis on planner running time and low resource
requirements made it ideally suited for our analysis.

Our results show that competition rankings are strongly



affected by the software environment. For a more extensive
analysis, which shows also the impact of different hardware
configurations on planners, the interested reader is referred
to (Bocchese et al. 2018).

Sources of Performance Variation
In this work, given the lack of analysis in the literature, we
focus on the impact of software environment on planners’
performance. However, there are many possible sources of
performance variation that can affect empirical performance
analyses and competition outcomes. Here, we briefly survey
some of the most important of these sources of variation.
Planner randomization. Many planners take advantage of
randomization to improve average-case performance and to
avoid manual deterministic development choices. This ran-
domization can result in very different planner trajectories
in repeated runs with different random seeds, with a cor-
respondingly wide variation in the resulting performance
(Hurley and O’Sullivan 2015).
Running time and memory. Generally, increasing the run-
ning time or memory allocated to a planning system will re-
sult in more problem instances solved. However, this perfor-
mance improvement will not be uniform across planners; for
example, planners that perform extensive precomputation or
use pattern databases tend to benefit more from increased
memory limits (Linares López, Celorrio, and Olaya 2015b).
Hardware environment. It is clear that hardware choices,
such as CPU type and speed, can affect planner perfor-
mance, and it is known that planners are affected to vary-
ing degree by such differences in hardware environment
(Howe and Dahlman 2002). Other aspects of the hardware
environment that can have significant impact on planner
performance include CPU cache, memory bandwidth, local
storage medium, general-purpose graphics processing units
(GPGPU) and network fabric.
Software environment. There are many aspects of the soft-
ware environment configuration that can affect planner per-
formance. These choices include the operating system and
version, versions and compilation of system libraries (e.g.,
LIBC), as well as the version, linking, and compiler used for
building all further software components required by a given
planning system.
Benchmark instances. The instances used for evaluating
planning systems should be challenging and need to allow
for performance differences between planners to be iden-
tified. While it is clear that the use of different bench-
marks can lead to very different results, we note that plan-
ning instances are often created using randomised genera-
tors, where a few parameters define the size and the diffi-
culty of the resulting instances. The choice of problem in-
stance domains, generator settings, as well as instance set
size and distribution will all have an effect on planner per-
formance (Howe and Dahlman 2002). Furthermore, also the
order in which elements are listed in benchmarks has strong
influence on planner performance (Vallati et al. 2015b;
Vallati and Serina 2018).
Ranking mechanism. The metric used to assess planner
performance (running time, instance set coverage, solution
quality) and the techniques for aggregating performance

GCC Python JVM

gpj 4.7.2 2.7.3 1.7
Gpj 4.8.2 2.7.3 1.7
gPj 4.7.2 2.7.10 1.7
GPj 4.8.2 2.7.10 1.7
gpJ 4.7.2 2.7.3 1.8
GpJ 4.8.2 2.7.3 1.8
gPJ 4.7.2 2.7.10 1.8
GPJ 4.8.2 2.7.10 1.8

Table 1: The 8 software configurations considered in this in-
vestigation. Lowercase and uppercase are used to distinguish
the “base” and “newer” configurations of each component.

across a given set of benchmark instances affect the out-
come of empirical performance evaluations and competi-
tions. Some competitions use an absolute scoring mecha-
nism (such as mean running time), while others (such as
earlier editions of the IPC) use relative scoring mecha-
nisms, where the performance score of a planner is poten-
tially affected by the performance of its competitors. The
performance of a given planning system in relation to oth-
ers can vary considerably depending on the ranking mech-
anism used (Linares López, Celorrio, and Olaya 2015b;
Vallati, Chrpa, and McCluskey 2018).

Methodology
For our experimental analysis of the impact of the software
environment on planner performance, we chose two sequen-
tial, deterministic tracks of the 2014 International Planning
Competition (IPC): the Agile (15 participants) and Optimal
(17 participants) tracks. These two tracks provide a very in-
teresting test-bed, as they rank competitors using nearly op-
posite metrics. The competing planners are therefore likely
to exploit significantly different approaches and techniques.
In the Optimal track, planner running time is of limited im-
portance: planners are assessed according to their ability to
generate optimal solution plans within a given (large) cut-
off time. In the Agile track, on the other hand, the quality of
solutions is irrelevant, as planners are ranked according to
their ability to quickly find a solution.

We chose to investigate three major software components
in our analysis: GCC compiler version, Python interpreter
version, and Java version. Nearly every planner which took
part in IPC 2014 was entirely or partially reliant on compo-
nents compiled with GCC, and different compiler versions
are very likely to produce different executables even when
identical command-line options are used. We selected GCC
versions 4.7.2 and 4.8.2 as the two configuration options,
since 4.7.2 was that used in the competition and several of
the planners did not successfully compile with GCC ver-
sions more recent than 4.8.2.

Python and Java were by far the next most common soft-
ware dependencies for the planners we considered. We se-
lected Python 2.7.3 and Oracle Java 1.7.0 45, the versions
used in IPC-2014, as well as Python 2.7.10 and Oracle Java
1.8.0 65, the most recent versions at the time of our experi-
ments under which planners would run successfully.

The combination of these choices resulted in 8 poten-



tial software configurations, all of which were used in this
work. Table 1 details each of the 8 configurations consid-
ered. For conciseness, each configuration will be referred to
using one letter for each component: g for the GCC version,
p for the Python version, and j for the Java virtual machine
version. Since we consider two versions of each component,
we use lowercase for indicating the base version, and upper-
case when referring to the more recent version of the given
component. Therefore, we denote the default configuration
provided by the organisers of IPC 2014 as gpj (the base con-
figuration), and the configuration with the more recent of
each option as GPJ (the newer configuration).

Many of the planners that took part in the tracks we con-
sidered did require some modification in order to run suc-
cessfully on our hardware and software configurations, for
example to avoid writing temporary files into their source
directories and polluting results when executing runs con-
currently. We consider these modifications minor and do
not believe that they had any effect on planner execution
or running times. There were two exceptions, namely the
Freelunch planner from the Agile track and the AllPaca plan-
ner from the Optimal track. In the case of Freelunch, we
could not successfully run the planner on our computer clus-
ter with any version of Java. As far as we can determine,
this was caused by the high-memory shared environment on
each cluster node, as Freelunch would crash immediately on
launch with a Java JVM memory allocation exception. In the
case of AllPaca, the planner relied on the presence of a spe-
cific commercial Lisp variant, and we were unable to modify
it to work with any of the Lisp distributions available on our
systems. These two planners have therefore been removed
from our results, but we fully expect that if these issues were
to be fixed, they would not significantly impact our results.

All the experiments were run on a cluster of homogeneous
machines running CentOS version 5.0, each containing two
Intel Xeon X5650 2.66GHz six-core processors with 12MB
cache, and 24GB of available RAM. All planner runs were
performed independently in parallel, with each run assigned
one CPU core, 8GB of RAM, and the running time limits
used in each track of IPC 2014. Running time and memory
limits were monitored and enforced using tools from AClib
(Hutter et al. 2014).

It is common practice in automated planning to include
randomised components in planning systems. Randomisa-
tion is useful, e.g., for breaking ties during the heuristic
search, introducing some noise in the heuristic search state
evaluation, or performing search restarts. Evidently, planner
performance can be affected by this source of stochasticity.
In order to account for this and attempt to isolate the impact
of software configuration on planner performance, our re-
sults for any given planner were obtained by averaging over
five independent runs on each benchmark instance.

Empirical Analysis
Table 2 illustrates how the instance set coverage of the Op-
timal track planners are affected by our software configura-
tions. Several planners exhibit a sizeable performance drop
when Java 1.8 is used instead of version 1.7. The planners
most affected by this are MIPlan and NuCeLaR; the plan-

Instance coverage for each software configuration

Planner gpj Gpj gPj GPj gpJ GpJ gPJ GPJ

cGamer-bd 130.2 131.4 131.4 130.8 128.2 127.4 127 128.8
RIDA 117.2 115.8 117.4 116 117.4 116.2 117 116.4
Metis 112.2 112.4 112.6 112.6 112.8 112.6 112.4 111.8
SymBA-1 108.2 108.6 108.4 108.4 108.8 108.6 108.4 108.6
SymBA-2 108 108.8 108.2 108.6 108.6 109 108.4 108.4
MIPlan 112.6 112.6 113.2 113 102.2 103.2 103.4 103
D-Gamer 107.6 110 109 106.6 104.2 105.6 104.6 105.4
NuCeLaR 108.8 108.6 108.2 108.6 98.6 98.6 98.4 98.8
DPMPlan 101.4 101.8 102.2 102.2 102.4 102.8 102.4 102.4
Cedalion 95.4 96 96 96.2 95.2 95.8 95.6 95.8
Gamer 96.8 96.4 96.4 96.4 93.2 92.6 91.8 93.8
Rlazya 91 91.8 92.2 91.8 91.8 92 92.6 91.8
SPMaS 75.8 76.8 74.6 75.4 77.2 75.6 74.8 75.4
Hflow 56 57 56.8 57.2 56 57.2 56.6 57
Hpp 15 15 15 15 15 15 15 15
Hpp-ce 15 15 15 15 15 15 15 15

Table 2: Number of problem instances solved (instance cov-
erage) for each of our 8 software configurations, using the
IPC 2014 Optimal track planners and benchmark instance
set. We present the mean coverage over 5 independent runs.
Boldface is used to indicate the best performance achieved
by a planner, in presence of variations.

IPC score for each software configuration

Planner gpj Gpj gPj GPj gpJ GpJ gPJ GPJ

Cedalion 107.4 106.2 106.9 107.6 105.8 107.1 107.6 107.0
IBaCoP 70.1 65.8 70.0 64.9 69.1 66.0 69.8 66.2
USE 79.3 77.7 79.6 78.1 78.1 78.1 77.6 75.7
ArvandHerd 89.2 90.2 88.1 88.2 87.9 87.5 88.8 89.8
IBaCoP2 59.6 56.6 60.0 55.7 58.1 55.6 58.6 56.1
Jasper 84.8 83.7 84.3 79.9 82.3 82.3 84.5 79.7
Mercury 67.8 67.5 67.8 66.5 66.4 67.7 67.1 67.0
BFS-f 66.1 66.4 66.2 66.7 64.7 66.1 66.1 66.5
Probe 71.4 71.2 71.3 71.4 70.7 71.4 71.5 71.2
YAHSP3 73.7 73.6 73.5 73.2 73.3 73.1 73.8 73.5
Madagascar-pc 63.4 62.6 63.4 62.6 63.1 62.6 63.2 62.4
YAHSP3-mt 56.0 54.2 54.2 53.8 53.7 54.4 56.0 53.4
Madagascar 64.1 63.9 64.0 63.9 63.9 64.1 64.0 63.3
SIW 49.6 50.2 50.1 49.8 49.4 50.3 50.0 50.1

Table 3: IPC score for each of our 8 software configurations,
using the IPC 2014 Agile track planners and benchmark in-
stance set. We present the mean coverage over 5 independent
runs. Where performance variations exist for a given plan-
ner, we show the best performance achieved by that planner
in boldface.

ners based on Gamer, i.e., Gamer, cGamer-bd and Dynamic-
Gamer also show a performance drop, although not as sig-
nificant as for the previously-mentioned planners. We note
that the performance variations observed for MIPlan, NuCe-
LaR, Dynamic-Gamer and Gamer were sufficient to cause
changes in competition ranking between software environ-
ment configurations. The remaining planners of the Optimal
track show minor performance fluctuation. Figure 1(a) pro-
vides a visual representation of the performance variation on
each of the 8 considered configurations.

Table 3 shows how the software configuration affects
planner performance for the Agile track. Performance is
measured in terms of IPC score 1, which is focused on the
running time required to find any satisficing plan; the qual-
ity of those plans is not considered. Some planners from
this track demonstrated high sensitivity to the GCC com-

1https://helios.hud.ac.uk/scommv/IPC-14/rules.html
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Figure 1: Mean number of instances solved (instance coverage) and IPC score, respectively, using the planners and benchmark
instance sets from the IPC 2014 Optimal 1(a) and Agile 1(b) tracks. We present results for each of the 8 software configurations.

piler version. For example, extreme variation can be ob-
served in the performance of IBaCoP and IBaCoP2, to the
extent of causing changes in competition ranking for IBa-
CoP. The performance of other Agile track planners, in par-
ticular Use and Jasper, are affected by a combination of
GCC and Python versions. The other planners exhibit only
minor performance variation.

Figures 1(a) and 1(b) show how the competition ranks are
affected by the eight considered software configurations. It
is easy to observe that the ranks are significantly influenced
and many of the planners face changes in rank. Moreover,
these results provide a valuable example of the impact of
other sources of variation on the reproducibility of com-
petition results: almost all of the considered planners were
ranked differently in IPC 2014 official results.

Intuitively, one would expect the competing planners to
achieve their best performance either on the base configura-
tion (gpj) or on the newer configuration (GPJ). With regard
to the former, the underlying hypothesis is that the planners’
code should have been somehow “tuned” – for the sake of
competition performance – for the configuration used in IPC
2014; this appears plausible, since participants had access
to the competition cluster for testing their planners (Val-
lati et al. 2015a). On the other hand, it is also likely that
optimisations introduced in newer versions of compilers or
interpreters will be reflected in noticeable performance im-
provements of planning systems making use of them. Inter-
estingly, for planners that participated in the Agile track, we
observed a tendency for the base configuration to lead to
the best performance (but still for only 6 of 14 competitors),
while none of the planners achieved their best performance
using the newer configuration. The situation is different for
the Optimal track planners; Table 2 indicates that, while no
planner achieves its best performance on the newer configu-
ration, the base configuration is rarely the one providing the
best results. Each planner is affected in a different way by

the considered 8 software configurations.

Conclusion
Our analysis shows that the software environment in which
a planner is run can substantially impact performance, and
that this effect varies significantly among planners. These
software environment changes can be as minor as the ver-
sion of the compiler used to create each planner executable.
Our analysis also indicates that running planners on soft-
ware configurations that are more recent than those used in
the competition can have surprisingly detrimental effects on
performance.

While our experimental observations do suggest that com-
petition performance results should be carefully interpreted,
we caution that these observations should not be misunder-
stood as invalidating or diminishing the utility of planner
competitions in general. Attempting to compensate for many
of the sources of performance variation discussed in this
paper would place a heavy burden on competition organis-
ers, both in terms of time and additional computational re-
sources. Allowing competitors the ability to customize their
own software configuration for the competition, as done in
the 2018 IPC using containers, could potentially reduce this
source of variation, but could also have the side effect of bi-
asing the competition results in favour of competitors with
the expert knowledge, computational resources and time to
finely tune their systems.

We see several possible avenues for future work: first, us-
ing the knowledge gained in this work, the study and de-
velopment of a competition measuring solver performance
across several distinct hardware and software environments;
second, a thorough analysis of additional sources of perfor-
mance variation not covered in (Bocchese et al. 2018), in-
cluding benchmark instance set selection and solver stochas-
ticity.



References
Bocchese, A. F.; Fawcett, C.; Vallati, M.; Gerevini, A. E.;
and Hoos, H. H. 2018. Performance robustness of AI
planners in the 2014 international planning competition. AI
Commun. 31(6):445–463.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth in-
ternational planning competition: PDDL3 and experimental
evaluation of the planners. Artif. Intell. 173(5-6):619–668.
Hoffmann, J., and Edelkamp, S. 2005. The determinis-
tic part of IPC-4: an overview. J. Artif. Intell. Res. (JAIR)
24:519–579.
Howe, A. E., and Dahlman, E. 2002. A critical assessment
of benchmark comparison in planning. J. Artif. Intell. Res.
(JAIR) 17:1–3.
Hurley, B., and O’Sullivan, B. 2015. Statistical regimes and
runtime prediction. In Proceedings of the Twenty-Fourth In-
ternational Joint Conference on Artificial Intelligence, IJ-
CAI, 318–324.
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