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ABSTRACT

To reliably detect the out-of-distribution images based on already deployed con-
volutional neural networks, several recent studies on out-of-distribution detection
have tried to define effective confidence scores without retraining the model. Al-
though they have shown promising results, most of them need to find the op-
timal hyperparameter values by using a few out-of-distribution images, which
eventually assumes a specific test distribution and makes it less practical for real-
world applications. In this work, we propose a novel out-of-distribution detection
method MALCOM, which neither uses any out-of-distribution samples nor re-
train the model. Inspired by the observation that global average pooling cannot
capture the spatial information of the feature maps from convolutional neural net-
works, our method aims to extract informative sequential patterns from the feature
maps. To this end, we introduce a similarity metric which focuses on the shared
patterns between two sequences based on normalized compression distance. In
short, MALCOM uses both the global average and spatial pattern of the feature
maps to accurately identify out-of-distribution samples.

1 INTRODUCTION

The distributional uncertainty refers to an uncertainty originated from the inconsistency between
training and test distributions (Malinin & Gales, 2018). Recently, measuring the distributional un-
certainty of deep neural networks has gained much attention, in order to detect the out-of-distribution
sample which comes from outside the training distribution. In contrast to the existing belief that the
softmax output of deep neural networks is not appropriate measure for uncertainty, Hendrycks &
Gimpel (2017) found out that the softmax score is able to distinguish between in-distribution and
out-of-distribution samples to a degree.

Since then, several methods have shown promising results for out-of-distribution detection (Liang
et al., 2018; Lee et al., 2018b; Lakshminarayanan et al., 2017; Lee et al., 2018a), but the most of
them still have limitations from a practical perspective in that they need to find the optimal values
of hyperparameters using the out-of-distribution samples or retrain the model using a new objec-
tive function specifically designed for detection. For example, Liang et al. (2018) improved the
ability of distinguishing the out-of-distribution data by using temperature scaling and input per-
turbation, which involves in several hyperparameters; this kind of calibration techniques require
out-of-distribution samples for validation to adjust its hyperparameters to manipulate the softmax
outputs. On the other hand, Lee et al. (2018a) defined an another loss function by adding the KL
divergence, assuming that the softmax output of the out-of-distribution is uniform; it has to retrain
the model because of the newly designed loss function. For these reasons, they have been difficult to
be deployed for real-world applications. In this sense, our motivation is how far out-of-distribution
detection can be done without using the out-of-distribution set for validation while employing the
existing softmax classifier without retraining it.

The state-of-the-art method (Lee et al., 2018b) tries to detect out-of-distribution samples based on the
Mahalanobis distance from class means instead of using the softmax output, by utilizing the feature
maps obtained by convolutional neural networks. In particular, they estimate the class-conditional
probabilities for each class, which are more appropriate and effective to detect out-of-distibution
samples than the softmax output which provides a mere relative values between classes. However,
they obtain the feature vectors of input images by averaging each feature map, also known as global
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average pooling. We notice that the spatial information about input images disappears in the process
of averaging feature vectors, and this eventually degrades the detection performance.

To tackle this challenge, we offer to use the normalized compression distance (NCD), which can
measure the distance between two images without the loss of such spatial information of the feature
maps. NCD is a general method of measuring the intrinsic distance between two arbitrary objects
using the off-the-shelf compression algorithm (e.g. 7-zip, bzip, or lzw). With its solid theoretical
background and general applicability, NCD is widely used in various fields, including brain diagno-
sis or spam filtering (Berek et al., 2014; Spracklin & Saxton, 2007). The high-level idea of NCD
is to evaluate how many shared patterns are eliminated when two binary sequences are compressed
together. By using the NCD, we aim to accurately measure how similar the feature maps of a test
sample is with those of training examples, and use it to determine whether the test sample is from
out-of-distribution or not. Our experiments demonstrate that the proposed method, termed as MAL-
COM, achieves better or comparable performances for detecting out-of-distribution images to the
existing methods.

2 BACKGROUNDS

2.1 CONSTRAINED OUT-OF-DISTRIBUTION DETECTION

Before proceeding to describe the notions closely related to our method, let us state what we want
to tackle exactly: out-of-distribution detection without retraining network and without sniffing out-
of-distribution samples. Starting with the definition, let Dtrain = {(xi, yi)}Ni=1 be the training
dataset and f(·;θ) be the model trained on Dtrain. Suppose that each data xi from Dtrain is an
observation of random variableXtrain. Thereby, the out-of-distribution detection task is to obtain the
out-of-distribution score function κ(·;Dtrain,θ,φ) for a discrimination between in-distribution and
out-of-distribution. In other words, given a test instance x∗, the score κ(x∗) should be high if x∗ is
not an observation ofXtrain, otherwise should be low. There are many ways to get score function κ,
but we work on the task under the following constraints:

• The score function parameter φ should be independent with the distribution of test data x∗,
i.e., φ is determined by only in-distribution. This is intuitive in that x∗ does not assume
any test distribution. This requirement implies that hyperparameter tuning by using out-of-
distribution samples is not allowed.

• The model parameter θ should not be changed, i.e., the trained model primitively for the
purpose of classification should not be retrained. Then, the score function can be utilized
by the neural networks which are already trained and deployed in real-world applications.

The existing methods that satisfy these conditions are the softmax output detector (Hendrycks &
Gimpel, 2017) and the simplified Mahalanobis detector (Lee et al., 2018b).

2.2 MAHALANOBIS DETECTOR

The Mahalanobis detector (MAHALANOBIS), one of the best performing methods, introduces an
effective method to remove the correlation between feature maps of the last hidden layer (Lee et al.,
2018b), but combining layers leads to the degradation of the detection performance.

2.2.1 MAHALANOBIS-VANILLA

We factor out a simplified version of MAHALANOBIS (MAHALANOBIS-vanilla), because the whole
MAHALANOBIS detector needs out-of-distribution samples to tune the hyperparameters of input
preprocessing and layer weights, which fails to satisfy our requirements (Sec 2.1). For the whole
method of MAHALANOBIS which utilizes out-of-distribution samples to boost the performance, we
refer the reader to see (Lee et al., 2018b).

MAHALANOBIS-vanilla uses the feature maps of the last hidden layer of convolutional neural net-
works. To be exact, we denote the output of the l-th hidden layer of the network f by fl for
l = 1, . . . , L, where L is the number of hidden layers. For the l-th hidden layer, let f i

l be the i-th
feature map of its output for i = 1, . . . ,Ml, where Ml is the number of feature maps of the l-th
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Table 1: Performance of different Mahalanobis setting for DenseNet. ‘R’ is the abbreviation for
‘resized’. The best and worst results are highlighted in boldface and underline for each setting.

ID OOD TNR at TPR 95% AUROC Detection Accuracy AUPR(In) AUPR(Out)
MAHALANOBIS-vanilla / MAHALANOBIS-assemble / MALCOM (ours)

CIFAR-10
SVHN 89.2 / 69.4 / 93.4 97.6 / 85.4 / 98.4 92.4 / 82.8 / 94.3 94.5 / 55.9 / 95.9 99.02 / 94.9 / 99.3

TinyIm(R) 82.3 / 84.5 / 94.0 96.3 / 91.7 / 98.5 89.9 / 89.9 / 94.6 96.2 / 83.1 / 98.0 96.4 / 94.7 / 98.7
LSUN(R) 84.5 / 89.0 / 95.7 97.1 / 95.1 / 99.0 91.4 / 92.1 / 95.4 97.2 / 91.0 / 98.9 96.8 / 96.7 / 99.0

CIFAR-100
SVHN 45.0 / 45.8 / 64.9 85.9 / 83.5 / 93.4 78.6 / 77.4 / 86.6 71.7 / 62.4 / 88.3 92.7 / 92.1 / 96.1

TinyIm(R) 82.0 / 83.4 / 85.3 95.7 / 94.3 / 97.1 89.5 / 89.7 / 91.2 95.3 / 90.3 / 97.3 95.9 / 95.4 / 97.0
LSUN(R) 84.5 / 87.7 / 87.2 96.6 / 96.6 / 97.5 91.0 / 92.0 / 92.4 96.8 / 95.7 / 97.8 96.1 / 96.6 / 96.9

SVHN
CIFAR-10 76.3 / 96.9 / 95.9 96.4 / 98.7 / 98.6 91.7 / 96.0 / 95.5 98.7 / 99.6 / 99.5 88.3 / 95.0 / 94.7
TinyIm(R) 71.3 / 100.0 / 100.0 96.0 / 99.9 / 99.9 91.8 / 98.9 / 98.9 98.6 / 100.0 / 100.0 86.9 / 99.6 / 99.6
LSUN(R) 61.4 / 100.0 / 100.0 95.1 / 100.0 / 99.9 91.0 / 99.3 / 99.2 98.3 / 100.0 / 100.0 82.3 / 99.7 / 99.6

hidden layer. Therefore, fl(x) is a 3D tensor of the size Ml ×Hl ×Wl and f i
l (x) is a 2D feature

map of the size Hl ×Wl for any i and l, where Hl andWl are the height and width of each feature
map in l-th layer, respectively. For a notational convenience, we define ml as the global average
pooling of the l-th layer, i.e.,

ml(x) :=‖Ml
i=1 mean(f i

l (x)),

where mean is the average function and ‖ is the concatenation operation. MAHALANOBIS-vanilla
utilizes only the last hidden layer (i.e., the L-th layer), so it can be obtained by calculating class
means and tied-covariance:

µ̂k :=
1

Nk

N∑
n=1
yn=k

mL(xn),

Σ̂ :=
1

N

K∑
k=1

N∑
n=1
yn=k

(mL(xn)− µ̂k)(mL(xn)− µ̂k)T ,

where K is the number of classes and Nk is the number of the data of class k. Then, the out-
of-distribution score function of MAHALANOBIS-vanilla detector κmv (also known as Mahalanobis
distance) is defined by

κmv(x∗) := min
k=1,...,K

(mL(x∗)− µ̂k)T Σ̂−1(mL(x∗)− µ̂k).

In this equation, MAHALANOBIS-vanilla computes the centered data for each class, then performs
linear projection for the centered data by using the inverse of Σ̂. Practically, the inverse of empirical
covariance matrix is approximated by (Moore-Penrose) pseudo-inverse, which performs the singular
value decomposition (SVD) (Barata & Hussein, 2012). For this reason, computing the Mahalanobis
distance becomes equivalent to computing the norm of the sample (i.e., the Euclidean distance from
the origin) after the principal component analysis (PCA) assuming that the origin is the class mean,
which removes the feature correlations.

2.2.2 DEGENERACY OF MAHALANOBIS-ASSEMBLE

From the observation that MAHALANOBIS-vanilla has the power of removing the correlation over
feature maps, one may extend this concept to all the other hidden layers. To define the MAHA-
LANOBIS-assemble1 detector, we concatenate the average of feature maps (i.e., global average pool-
ing) of all layers and similarly define the class means and tied-covariance:

m(x) :=‖Ll=1 ml(x),

µ̂k :=
1

Nk

N∑
n=1
yn=k

m(xn), Σ̂ :=
1

N

K∑
k=1

N∑
n=1
yn=k

(m(xn)− µ̂k)(m(xn)− µ̂k)T ,

κma(x
∗) := min

k=1,...,K
(m(x∗)− µ̂k)T Σ̂−1(m(x∗)− µ̂k)

1We use the term “assemble” to distinguish it from the “feature ensemble”, which is the method using
logistic regression in the original paper.
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From the experiments, we find an interesting observation that the simply extended detector κma
significantly improve the performance in many cases; however, in some cases, its performance,
especially AUPR(In), is poorer than κmv (see the first two columns of Table 1 for more details).

2.3 NORMALIZED COMPRESSION DISTANCE

To address the degeneracy problem in MAHALANOBIS-assemble, we focus on hindering the loss of
spatial information of the feature maps caused by the average pooling. To this end, we introduce a
compression-based method. Before defining our method precisely, we need to state some notions
briefly because its fundamental properties are originated from the concept of information theory.

2.3.1 KOLMOGOROV COMPLEXITY

The Kolmogorov complexity (or algorithmic complexity) is the complexity of an arbitrary object
which can be represented in string format. Formally, given an universal Turing machine U , the
Kolmogorov complexity K of string x is defined as the minimum length of the programs that are
decoded into x by U . That is,

K(x) := min ({length(p)|U(p) = x where p is a valid program for U}) ,
where length(p) is the length of the program p and U(p) is the result of decoded string with the
program p through U .

The conditional Kolmogorov complexity is the minimum program length for a given universal Tur-
ing machine which already has the string:

K(x|y) := min ({length(p)|U(p|y) = x}) .
If x is highly correlated with y, its conditional complexity would be low.

2.3.2 NORMALIZED INFORMATION DISTANCE

The normalized information distance (NID) is the distance between two strings x and y based on the
conditional Kolmogorov complexity. It does not need any prior knowledge so that it can be applied
to various tasks universally. The distance is described as

NID(x,y) =
max(K(x|y),K(y|x))

max(K(x),K(y))
.

It turns out that NID is a normalized metric (Li et al., 2004), which has following distance properties
for arbitrary x,y, and z:

• NID(x,y) ∈ [0, 1] (normality)
• NID(x,y) = 0 if and only if x = y (identity)
• NID(x,y) = NID(y,x) (symmetry)
• NID(x, z) ≤ NID(x,y) + NID(y, z) (triangle inequality)

Unfortunately, the Kolmogorov complexity is not computable, so NID also cannot be computed.
Instead, the normalized compression distance (NCD) is used as the approximation of Kolmogorov
complexity in many tasks. Given an arbitrary compressor C, NCD is defined by

NCD(x,y) =
min (C(xy), C(yx))−min (C(x), C(y))

max(C(x), C(y))
,

where C(x) is the length of the compression result of x, and xy is the concatenation of x and
y. Any off-the-shelf compressors can be used as the compressor, including 7-zip, gzip, and bzip.
The better compressor we use, the closer the NCD value approaches to the NID value (Cilibrasi &
Vitányi, 2005).

3 MALCOM: OUT-OF-DISTRIBUTION DETECTOR USING NCD

To resolve the degeneracy of MAHALANOBIS-assemble discussed in Section 2.2.2, we propose the
MAhaLanobis distance with COMpressive-complexity pooling (MALCOM), which applies NCD
to measure the distance between the feature maps of convolutional neural networks.
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(a) Global average pooling (b) Compressive-complexity pooling

Figure 1: The proposed compressive-complexity pooling captures the spatial information of feature
maps into the final vector by using NCD, whereas global average pooling cannot make use of it.

3.1 TNCD

NCD can be generalized well to various objects because of its universality. Most previous work use
the raw images (Lan & Harvey) when they calculate NCD, but it is inappropriate to use raw images
for many cases. For example, consider the following strings.

stringa : BABBABBAABABABBBABAABBABB
string b : CCBACABCCCBAABBABABAABCBA
string c : ABACABACAABCBAACBBBCABACA

In case that we only want to recognize the pattern of the symbol C, using NCD on this string is not
useful enough. It needs to look at the features that the classifier consider important. To focus on
such important features, we introduce a translation T . In the case above, for example, T translates
the symbol C into 1 and all other alphabet into 0.

T (a) : 0000000000000000000000000

T (b) : 1100100111000000000000100

T (c) : 0001000100010001000100010

Before the translation, string a looks much simpler than string b or string c. Through the transfor-
mation, we can concentrate only on C in the string b and string c. Formally, for the two symbol
sets Σ and Ω, we denote the translation by T : Σ∗ → Ω∗. Given a transformation T , we define the
translated and normalized compression distance (tNCD) by

tNCD(x,y;T ) =
min

[
C(T (x)T (y)), C(T (y)T (x))

]
−min

[
C(T (x)), C(T (y))

]
max

[
C (T (x)) , C (T (y))

] .

Note that tNCD between x and y depends on what the translation T focuses on. If we fix y and
there exist a lot of translations with different perspectives, x can be described by various aspects y.

3.2 COMPRESSIVE-COMPLEXITY POOLING

We propose the compressive-complexity pooling which utilize the spatial information of a feature
map. For each feature map f i

l , we consider hi
l := gil ◦f i

l as a translation where gil is a quantization-
and-linearization, which discretizes the continuous values and then makes the quantized feature map
a string. We first select a sample s from Dtrain. Then, for the fixed sample s and the test sample x,
we can calculate the tNCD value dil(x; s) for each translation hil ,

dil(x; s) := tNCD(s,x;hil) =
min

[
C(hil(x)hil(y)), C(hil(y)hil(x))

]
−min

[
C(hil(x)), C(hil(y))

]
max

[
C
(
hil(x)

)
, C
(
hil(y)

) ] .

5



Under review as a conference paper at ICLR 2020

Intuitively, for an image x drawn from a specific class, the distance dil becomes small if some aspects
of x corresponding to the translation hil are similar to s, and it would be large otherwise.

The compressive-complexity pooling is defined by a fixed sample s with aggregating every feature
maps,

ρl(x; s) =‖Ml
i=1 d

i
l(x, s).

All the layers can be concatenated for x with respect to s,

ρ(x; s) :=‖Ll=1 ρl(x; s).

This can be interpreted as the distance of x from s, considering the patterns of spatial information
for each feature map. Figure 1 illustrates the overall process of the compressive-complexity pooling
and how it differs from the global average pooling.

3.3 SCORE FUNCTION FOR OUT-OF-DISTRIBUTION

To put it all together, we can obtain the mean vectors m̃ that encodes spatial information by con-
catenating the mean pooling vectors and the compressive-complexity pooling vectors. We apply the
Mahalanobis distance to remove correlation between feature maps.

m̃(x) := m(x) ‖ ρ(x; s)

µ̂k :=
1

Nk

N∑
n=1
yn=k

m̃(xn), Σ̂ :=
1

N

K∑
k=1

N∑
n=1
yn=k

(m̃(xn)− µ̂k)(m̃(xn)− µ̂k)T

Based on the mean vectors, we define the final out-of-distribution score function κ which is capable
of accurately measuring the out-of-distribution score:

κMALCOM(x∗) := min
k=1,...,K

(m̃(x∗)− µ̂k)T Σ̂−1(m̃(x∗)− µ̂k).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

For experiments, we follow the experimental setup mainly used by previous work (Liang et al.,
2018; Lee et al., 2018b).

Models. For fair comparisons, we use the pretrained DenseNet (Huang et al., 2017) and ResNet
(He et al., 2016) provided by the previous work (Lee et al., 2018b)2. According to the authors,
they use DenseNet with 100 layers, growth rate k=12 and dropout rate 0, while ResNet with 34
layers and dropout rate 0. Both the models are trained using stochastic gradient descent (SGD) with
Nesterov momentum for classifying CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and SVHN
(Netzer et al., 2011). For more details, we refer to the original paper (Lee et al., 2018b).

Dataset. We use out-of-distribution image datasets: TinyImageNet (Deng et al., 2009), LSUN (Yu
et al., 2015), and iSUN (Xu et al., 2015). The in-distribution datasets have 10 classes except for
CIFAR-100 which has 100 classes. CIFAR-10 (or CIFAR-100) has 50,000 training and 10,000 test
images, while SVHN has 73,257 training and 26,032 test images. For out-of-distribution datasets,
TinyImageNet contains 10,000 test images of 200 classes, LSUN contains 10,000 of 10 classes, and
iSUN contains 8925 images. Liang et al. (2018)3 preprocessed TinyImageNet and LSUN by either
randomly cropping of size 32 × 32 or downsampling to size 32 × 32.

Competing Methods. We compare the performance of our method with that of the existing meth-
ods satisfying the two constraints (Section 2.1), which are the independence with out-of-distribution
samples and exploitation of the model without retraining. As far as we know, there is only one
method perfectly satisfying these requirements: BASELINE (Hendrycks & Gimpel, 2017) using the

2https://github.com/pokaxpoka/deep Mahalanobis detector
3https://github.com/facebookresearch/odin
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Table 2: Ablation results on analyzing the effect of each component: the concatenation of fea-
ture maps from all layers (denoted by layer aggregation), global average pooling, and compressive-
complexity pooling. AUROC is used as an evaluation metric. The best results are marked in bold-
face.

Method Layer
aggregation

Global average
pooling

Compressive
complexity pooling

CIFAR-10 CIFAR-100

TinyIm LSUN TinyIm LSUN

BASELINE - - - 94.14 95.47 71.62 70.84

MAHALANOBIS-vanilla - X - 96.27 97.06 95.69 96.60
MAHALANOBIS-assemble X X - 91.67 95.09 94.29 96.59

MALCOM
(ours)

- - X 93.26 94.42 92.29 92.28
- X X 95.47 96.14 95.92 96.78
X - X 95.77 95.33 93.31 92.27
X X X 98.52 98.96 97.11 97.47

softmax output to distinguish out-of-distribution data from in-distribution data. In addition, we can
use the simplified version of (Lee et al., 2018b), i.e., MAHALANOBIS-vanilla (Section 2.2.1), al-
though the original method uses the input preprocessing and ensembles the layers by introducing
the hyperparameters. The implementation details about the compression of the feature map are
provided in Appendix A.

Evaluation Metrics. We adopt the five performance metrics the same with the previous work (Lee
et al., 2018b): true negative rate (TNR) at 95% true positive rate (TPR), area under the receiver op-
erating characteristic curve (AUROC), area under the precision-recall curve (AUPR), and detection
accuracy. For the details, we refer to (Lee et al., 2018b).

4.2 RESULTS

Ablation study. We ablate the components of our method to show the interaction between the
global average pooling and the compressive-complexity pooling. To this end, we use the DenseNet
pretrained on CIFAR-10 and CIFAR-100. The out-of-distribution datasets are the resized TinyIma-
geNet and the resized LSUN, and the AUROC is measured as the evaluation metric. Table 2 shows
the results of the ablation study. The layer aggregation refers to the method that uses the concatena-
tion of feature maps of all the layers. From the results, we obtain the following observations:

• The performance of our compressive-complexity pooling is improved by concatenating
the feature maps of all the layers, whereas the performance of the global average pooling
becomes worse when it concatenates the feature maps of all the layers.

• The compressive-complexity pooling is always worse than the global average pooling when
we use only the feature maps of last hidden layer.

• Using both the pooling techniques at the same time consistently improves the detection
performance. It shows that each pooling provides different information.

Main results. The main results are summarized in Table 3. we repeat each experiment five times
and report the averaged results. See Appendix D for more detailed results. (C) and (R) denote
the dataset “resized” and “cropped”, respectively. Our proposed method, MALCOM, achieves
significantly better performance than other competing methods in most cases. Nevertheless, for
minor cases, we observe that MALCOM with ResNet slightly degrades the performance on the
resized TinyImageNet and the resized LSUN. From the extensive experiments, we conclude that our
compressive-complexity pooling successfully captures the spatial information from its feature maps,
and it is helpful to accurately measure the confidence score for detecting the out-of-distribution data.

5 RELATED WORK

As deep learning has made remarkable progress in the past few years, many methods have been
proposed to estimate the confidence of the model prediction beyond just enhancing the model accu-
racy. Although the modern neural networks have achieved higher classification accuracy than in the
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Table 3: Performance of different out-of-distribution detection methods using pretrained DenseNet
and ResNet. For out-of-distribution datasets, ‘C’ and ‘R’ are the abbreviations for ‘cropped’ and
‘resized’, respectively. The best result is highlighted by boldface.

ID OOD TNR at TPR 95% AUROC Detection Acc. AUPR(In) AUPR(Out)

BASELINE/ MAHALANOBIS-vanilla / MALCOM (ours)

D
en

se
N

et

C
IF

A
R

-1
0 SVHN 40.4 / 89.2 / 93.4 89.9 / 97.6 / 98.4 83.2 / 92.4 / 94.3 83.7 / 94.5 / 95.9 94.4 / 99.0 / 99.3

TinyIm(C) 65.8 / 74.6 / 100.0 95.4 / 95.4 / 99.9 90.1 / 88.4 / 99.1 96.5 / 95.8 / 99.9 93.9 / 95.1 / 99.9
TinyIm(R) 59.4 / 82.3 / 94.0 94.1 / 96.3 / 98.5 88.5 / 90.0 / 94.6 95.3 / 96.2 / 98.0 92.4 / 96.4 / 98.7
LSUN(C) 61.4 / 52.9 / 99.9 94.9 / 90.8 / 99.8 89.8 / 82.8 / 98.6 96.2 / 91.9 / 99.8 93.2 / 89.6 / 99.8
LSUN(R) 65.8 / 74.6 / 100.0 95.4 / 95.4 / 99.9 90.1 / 88.4 / 99.1 96.5 / 95.8 / 99.9 93.9 / 95.1 / 99.9

C
IF

A
R

-1
00

SVHN 26.2 / 45.0 / 64.9 82.6 / 85.9 / 93.4 75.5 / 78.6 / 86.6 75.1 / 71.7 / 88.3 90.4 / 92.7 / 96.1
TinyIm(C) 32.7 / 52.9 / 98.1 81.1 / 86.8 / 98.8 72.9 / 79.1 / 96.6 82.9 / 85.9 / 99.2 80.0 / 87.3 / 98.2
TinyIm(R) 17.3 / 82.0 / 85.3 71.6 / 95.7 / 97.1 65.7 / 89.5 / 91.2 74.1 / 95.3 / 97.3 69.0 / 95.9 / 97.0
LSUN(C) 40.1 / 12.4 / 95.3 85.4 / 60.6 / 98.4 76.7 / 56.9 / 95.7 87.0 / 61.7 / 98.8 84.4 / 60.5 / 97.2
LSUN(R) 16.4 / 84.5 / 87.2 70.8 / 96.6 / 97.5 65.0 / 91.0 / 92.4 74.2 / 96.8 / 97.8 67.9 / 96.1 / 96.9

SV
H

N

CIFAR-10 69.1 / 76.3 / 95.9 91.8 / 96.4 / 98.6 86.5 / 91.7 / 95.5 95.4 / 98.7 / 99.5 83.5 / 88.3 / 94.7
TinyIm(C) 79.0 / 64.8 / 100.0 94.8 / 95.0 / 100.0 89.9 / 90.5 / 100.0 97.2 / 98.3 / 100.0 89.1 / 83.1 / 100.0
TinyIm(R) 79.7 / 71.3 / 100.0 94.8 / 96.0 / 99.9 90.2 / 91.8 / 98.9 97.0 / 98.6 / 100.0 88.9 / 86.9 / 99.6
LSUN(C) 76.7 / 70.6 / 100.0 93.8 / 95.3 / 100.0 88.8 / 89.7 / 100.0 96.7 / 98.2 / 100.0 87.4 / 86.8 / 100.0
LSUN(R) 77.1 / 61.4 / 100.0 94.1 / 95.1 / 99.9 89.2 / 91.0 / 99.2 96.7 / 98.3 / 100.0 88.0 / 82.3 / 99.6

R
es

N
et

C
IF

A
R

-1
0 SVHN 32.2 / 54.5 / 79.2 89.9 / 93.9 / 96.6 85.1 / 89.1 / 91.1 85.9 / 91.6 / 94.4 93.6 / 96.0 / 98.3

TinyIm(C) 49.1 / 66.1 / 99.0 92.6 / 95.4 / 99.6 86.9 / 90.4 / 97.3 94.1 / 96.6 / 99.7 90.1 / 93.3 / 99.6
TinyIm(R) 44.1 / 69.3 / 89.7 91.0 / 95.0 / 98.3 85.0 / 88.6 / 93.1 92.5 / 95.8 / 98.4 88.3 / 94.0 / 98.2
LSUN(C) 52.8 / 50.1 / 98.1 93.3 / 94.3 / 99.5 88.1 / 90.3 / 96.7 94.8 / 96.0 / 99.6 90.9 / 90.8 / 99.4
LSUN(R) 45.1 / 78.3 / 91.6 91.1 / 96.6 / 98.5 85.3 / 90.7 / 93.8 92.5 / 97.1 / 98.7 88.6 / 95.8 / 98.4

C
IF

A
R

-1
00

SVHN 19.9 / 43.2 / 61.4 79.3 / 89.4 / 92.6 73.2 / 82.0 / 84.4 65.9 / 83.6 / 87.2 88.3 / 94.3 / 96.4
TinyIm(C) 16.9 / 34.7 / 88.8 75.8 / 85.5 / 97.9 70.1 / 78.2 / 92.1 76.5 / 87.1 / 97.9 71.2 / 82.6 / 97.9
TinyIm(R) 20.2 / 20.3 / 64.2 77.1 / 78.9 / 92.5 70.8 / 72.0 / 83.9 79.7 / 81.8 / 93.0 73.2 / 74.4 / 92.5
LSUN(C) 12.7 / 42.5 / 88.5 70.5 / 87.4 / 97.8 66.6 / 80.0 / 92.0 68.1 / 88.4 / 97.8 66.5 / 85.3 / 97.8
LSUN(R) 18.4 / 19.6 / 60.6 75.6 / 79.0 / 91.6 69.8 / 72.3 / 82.7 77.4 / 82.0 / 92.4 71.7 / 74.1 / 91.3

SV
H

N

CIFAR-10 78.3 / 85.0 / 90.4 93.0 / 97.0 / 98.0 90.1 / 93.1 / 94.5 94.8 / 99.0 / 99.3 86.4 / 89.3 / 93.4
TinyIm(C) 82.5 / 83.3 / 100.0 94.0 / 96.9 / 100.0 91.4 / 93.9 / 99.1 95.3 / 99.0 / 100.0 88.4 / 86.8 / 99.9
TinyIm(R) 79.1 / 84.5 / 97.7 93.5 / 97.0 / 99.2 90.4 / 93.1 / 96.4 95.4 / 98.9 / 99.7 86.9 / 89.1 / 97.8
LSUN(C) 79.6 / 84.1 / 100.0 93.1 / 97.0 / 99.9 90.5 / 93.2 / 98.5 94.5 / 99.0 / 100.0 87.3 / 87.8 / 99.7
LSUN(R) 74.5 / 78.3 / 97.2 91.5 / 96.2 / 99.0 88.9 / 91.9 / 96.2 93.8 / 98.7 / 99.7 84.6 / 85.9 / 97.1

past, the confidence calibration in neural networks is poorer than a decade ago, i.e., the discrepancy
between the prediction score of the neural network and the ground-truth class probability gets worse
compared with that of the past (Guo et al., 2017). To make matters worse, most neural networks, es-
pecially for non-Bayesian, have no measure of uncertainty, which hinders reliable decision-making
just by the prediction score in many practical areas (e.g. medical diagnosis, self-driving car). Thus,
there has been much work to attain the measurement for uncertainty or confidence calibration other
than classification accuracy (Guo et al., 2017; Lakshminarayanan et al., 2017; Jiang et al., 2018)

Even though Bayesian deep learning provides uncertainty properly, several methods were recently
proposed to estimate uncertainty of non-Bayesian deep neural networks. Especially, it turns out that
some regularization techniques of neural networks (e.g. dropout, batch normalization) are inter-
preted as approximate Bayesian inference so that uncertainty can be captured in conventional deep
neural network (Gal, 2016; Teye et al., 2018). These work are significant in that deep neural net-
works are not required to re-model or retrain once they have been trained by using dropout or batch
normalization even if they do not consider the uncertainty at train time. MALCOM is inspired
mainly by these work because it can be applied more practically to neural networks which already
have been trained and deployed.

Most previous work of out-of-distribution detection can be divided into two main approaches: in-
troducing parameter and defining new objective function. An prominent example of the former is
Liang et al. (2018) (ODIN) which suggests two hyperparameters for softmax output to a boost in
performance: temperature scaling and input preprocessing. Since ODIN, most studies using soft-
max output use these two parameters. Vyas et al. (2018) tried to solve the problem with ensemble
of classifiers by dividing the training data and adding loss by defining entropy for in-distribution
and out-of-distribution as a self-supervised learning method, and used two parameters to improve
performance. Our closely related work, Lee et al. (2018b) focuses on the internal features of the
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CNNs, while it uses some hyperparameter logistic regression for aggregating all feature maps and
input preprocessing.

6 CONCLUSION

This paper proposes MALCOM, which accurately measures the confidence score of a test sam-
ple for out-of-distribution detection, without using any hyperparameters and without retraining the
model. MALCOM addresses the limitation of the existing Mahalanobis distance-based method
that cannot exploit the spatial information of image feature maps. We introduce the compressive-
complexity pooling based on NCD to consider the spatial information of the feature map when
measuring the distance from class means. Our extensive evaluation on image benchmark datasets
shows that the compressive-complexity pooling leverages the spatial information of the feature
maps, and it improve the performance compared to the global average pooling. In addition, by
using the both the pooling techniques simultaneously, MALCOM achieves the best performance
for out-of-distribution detection.
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A IMPLEMENTATION DETAILS

Lempel-Ziv-Welch complexity. Although there are many efficient off-the-shelf compressing al-
gorithms (e.g. 7-zip, GZip, and BZip), we do not consider them because strings do not need to be
actually compressed. We only need to obtain the lengths of compressing results to calculate NCD.
Because of its computational efficiency, we adopt the Lemple-Ziv-Welch (LZW) coding scheme
(Welch, 1984), which enables to compute the length of a string in O(n) and to accelerate the com-
putation by using GPU.

Hilbert space-filling curve. There are several choices to linearize the 2D feature maps, including
simple row-wise (or column-wise) linearization. Among them, linearizing the images by Hilbert
curve turns out to be effective when using NCD for images (Liang et al., 2008; Mortensen et al.,
2009; Coltuc et al., 2018). For this reason, we adopt Hilbert curve to linearize the 2D feature maps.

Lloyd-Max quantizer. We quantize the feature maps by using the Lloyd-Max quantizer (Lloyd,
1982; Max, 1960), which effectively minimizes the information loss. We fix the quantization level
to 4, which is known to perform well for images when it used with our compression scheme (i.e.,
LZW) (Pinho & Ferreira, 2011; Coltuc et al., 2018).

B VALIDATION ON OUT-OF-DISTRIBUTION SAMPLES

In this section, we compare our proposed method with the two additional baselines: ODIN (Liang
et al., 2018) and MAHALANOBIS (Lee et al., 2018b). Both of them utilize out-of-distribution sam-
ples to find the optimal hyperparameters values. In this sense, they do not satisfy our first constraint
describing that any test distributions should not be assumed, as discussed in Section 2.1. Neverthe-
less, we loosen this constraint and report the results to show relative the performance compared to
the state-of-the-art methods.

ODIN. ODIN increases the maximum value of the softmax score using temperature scaling and
input preprocessing, and uses this softmax score as the score function. Let fL+1 ∈ RK be the
outputs of the last fully-connected layer of a trained model f , i.e., fL+1 =

[
f1L+1, · · · , fKL+1

]
is the

layer right before applying softmax. Then, with the two hyperparameters To and εo, respectively for
the temperature scaling and the input preprocessing, the out-of-distribution score function is defined
as follows:

σk(z;To) :=
ezk/To∑K
j=1 e

zj/To
∀z = [z1, · · · , zK ] ∈ RK ,

S(x;To) := max
k=1,...,K

σk (fL+1 (z) ;To) ,

κODIN(x∗; εo, To) := −S (x∗ + εosign (∇ logS(x∗;To)) ;To) ,

where sign is the sign function.

Mahalanobis. MAHALANOBIS is similar to our proposed method in that it calculates the Ma-
halanobis distance by using the global average pooling on feature maps from a target layer. The
main difference of MAHALANOBIS from MAHALANOBIS-vanilla is that it uses the weighted sum
of multiple Mahalanobis scores, which are obtained from more than one layers, and the weight for
the l-th score is introduced as the hyperparameter αl

m. In addition, MAHALANOBIS also adopts the
input preprocessing technique with the hyperparameter εm, which plays a similar role to ODIN. The
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Table 4: Performance of different out-of-distribution detection methods that utilize out-of-
distribution samples for the validation. For out-of-distribution datasets, ‘C’ and ‘R’ are the ab-
breviations for ‘cropped’ and ‘resized’, respectively. The best result is highlighted in boldface.

ID OOD TNR at TPR 95% AUROC Detection Acc.

ODIN / MAHALANOBIS / MALCOM (ours) / MALCOM++(ours)

D
en

se
N

et

C
IF

A
R

-1
0

SVHN 86.16 / 92.35 / 93.67 / 95.07 95.51 / 98.06 / 98.52 / 98.84 91.43 / 93.72 / 94.45 / 95.05
TinyIm(C) 95.70 / 99.36 / 99.99 / 99.53 99.11 / 99.82 / 99.92 / 99.89 95.36 / 98.93 / 99.17 / 99.04
TinyIm(R) 9292.41 / 95.04 / 94.38 / 95.41 98.51 / 98.89 / 98.67 / 99.03 93.91 / 95.05 / 94.74 / 95.33
LSUN(C) 91.08 / 98.87 / 99.79 / 99.11 98.21 / 99.63 / 99.78 / 99.79 94.02 / 98.62 / 98.65 / 98.66
LSUN(R) 96.22 / 97.04 / 95.79 / 96.89 99.23 / 99.21 / 98.98 / 99.25 95.66 / 96.14 / 95.44 / 96.11

iSUN 93.87 / 95.21 / 94.07 / 95.64 98.84 / 98.92 / 98.75 / 99.09 94.56 / 95.14 / 94.61 / 95.41

C
IF

A
R

-1
00

SVHN 70.65 / 87.23 / 64.80 / 85.79 93.82 / 97.08 / 93.47 / 96.27 86.58 / 91.23 / 86.76 / 90.68
TinyIm(C) 72.51 / 99.38 / 98.04 / 98.65 94.35 / 99.78 / 98.82 / 99.54 86.93 / 98.96 / 96.60 / 98.28
TinyIm(R) 42.64 / 88.38 / 85.64 / 88.36 85.22 / 97.43 / 97.17 / 97.51 77.04 / 92.18 / 91.43 / 92.17
LSUN(C) 81.18 / 99.48 / 95.51 / 98.67 96.49 / 99.76 / 98.31 / 99.59 90.17 / 98.86 / 95.72 / 98.14
LSUN(R) 41.21 / 92.13 / 88.54 / 92.44 85.45 / 97.83 / 97.67 / 97.95 77.06 / 93.65 / 92.89 / 93.76

iSUN 37.41 / 88.43 / 85.28 / 89.26 84.06 / 97.32 / 97.26 / 97.60 76.04 / 92.22 / 91.61 / 92.44

SV
H

N

CIFAR-10 71.73 / 96.53 / 95.40 / 94.61 91.37 / 99.02 / 98.56 / 98.57 85.80 / 96.32 / 95.44 / 95.02
TinyIm(C) 81.76 / 100.00 / 100.00 / 100.00 94.84 / 100.00 / 100.00 / 99.99 89.64 / 99.99 / 99.99 / 99.97
TinyIm(R) 84.06 / 99.57 / 99.96 / 99.51 95.11 / 99.88 / 99.87 / 99.86 90.35 / 98.93 / 98.93 / 98.84
LSUN(C) 74.41 / 100.00 / 100.00 / 100.00 91.89 / 100.00 / 100.00 / 100.00 86.38 / 99.98 / 99.98 / 99.98
LSUN(R) 81.12 / 99.65 / 100.00 / 99.61 94.54 / 99.90 / 99.89 / 99.88 89.16 / 99.29 / 99.26 / 99.16

iSUN 82.15 / 99.64 / 99.99 / 99.58 94.68 / 99.89 / 99.88 / 99.88 89.62 / 99.31 / 99.17 / 99.18

R
es

N
et

C
IF

A
R

-1
0

SVHN 86.55 / 96.19 / 78.61 / 96.15 96.65 / 99.14 / 96.56 / 99.19 91.08 / 95.76 / 91.13 / 95.65
TinyIm(C) 74.76 / 99.85 / 98.86 / 99.90 94.58 / 99.97 / 99.59 / 99.98 87.39 / 99.29 / 97.20 / 99.50
TinyIm(R) 72.51 / 97.38 / 89.52 / 97.64 94.04 / 99.47 / 98.27 / 99.52 86.48 / 96.32 / 93.16 / 96.51
LSUN(C) 72.08 / 99.86 / 97.95 / 99.89 93.80 / 99.97 / 99.47 / 99.97 86.88 / 99.30 / 96.56 / 99.43
LSUN(R) 73.83 / 98.74 / 91.37 / 98.99 94.14 / 99.69 / 98.52 / 99.72 86.69 / 97.49 / 93.76 / 97.55

iSUN 73.20 / 97.96 / 91.02 / 98.15 94.02 / 99.52 / 98.45 / 99.56 86.49 / 96.74 / 93.64 / 96.93

C
IF

A
R

-1
00

SVHN 62.75 / 92.41 / 61.63 / 91.41 93.94 / 98.18 / 92.60 / 97.98 88.05 / 93.75 / 84.62 / 93.30
TinyIm(C) 30.82 / 99.74 / 88.70 / 99.77 79.75 / 99.91 / 97.81 / 99.92 73.51 / 99.23 / 92.04 / 99.29
TinyIm(R) 49.19 / 89.44 / 64.61 / 92.31 87.62 / 97.93 / 92.60 / 98.38 80.11 / 92.74 / 84.04 / 93.75
LSUN(C) 37.47 / 99.64 / 88.21 / 99.76 76.17 / 99.89 / 97.67 / 99.91 71.03 / 99.05 / 91.78 / 99.31
LSUN(R) 45.59 / 92.80 / 61.51 / 92.89 85.64 / 98.27 / 91.77 / 98.32 78.26 / 93.93 / 82.94 / 93.97

iSUN 45.26 / 89.77 / 61.63 / 90.94 85.45 / 97.85 / 91.54 / 98.04 78.41 / 92.87 / 82.62 / 93.16

SV
H

N

CIFAR-10 79.83 / 97.62 / 90.26 / 97.51 92.09 / 99.31 / 98.00 / 99.35 89.44 / 96.91 / 94.44 / 96.87
TinyIm(C) 84.69 / 99.97 / 100.00 / 99.97 93.75 / 99.98 / 99.96 / 99.99 91.23 / 99.94 / 99.13 / 99.96
TinyIm(R) 82.10 / 99.73 / 97.56 / 99.74 91.99 / 99.88 / 99.19 / 99.90 89.35 / 99.08 / 96.34 / 99.06
LSUN(C) 82.41 / 99.94 / 100.00 / 99.95 92.72 / 99.98 / 99.90 / 99.98 90.28 / 99.91 / 98.58 / 99.93
LSUN(R) 77.69 / 99.84 / 96.96 / 99.84 89.44 / 99.89 / 99.00 / 99.91 87.35 / 99.52 / 96.22 / 99.53

iSUN 79.10 / 99.79 / 97.24 / 99.78 91.32 / 99.93 / 99.10 / 99.92 89.22 / 99.48 / 96.28 / 99.36

formulation of MAHALANOBIS is given by

µ̂l,k :=
1

Nk

N∑
n=1
yn=k

ml(xn), Σ̂l :=
1

N

K∑
k=1

N∑
n=1
yn=k

(ml(xn)− µ̂l,k)(ml(xn)− µ̂l,k)T ,

Ml(x) := min
k=1,...,K

(ml(x)− µ̂l,k)T Σ̂−1
l (ml(x)− µ̂l,k),

κMAHALANOBIS(x
∗;αm, εm) =

∑
l=1

αl
mMl (x∗ + εmsign (∇Ml(x

∗))) ,

whereml is the global average pooling of the l-th layer as defined in Section 2.2.1.

MALCOM++. We build MALCOM++ by simply extending our proposed method to use out-of-
distribution samples for the validation. It uses the weighted sum of the MALCOM scores obtained
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from multiple layers, similarly to MAHALANOBIS.

m̃l(x) := ml(x) ‖ ρl(x; s),

µ̃l,k :=
1

Nk

N∑
n=1
yn=k

m̃l(xn), Σ̃l :=
1

N

K∑
k=1

N∑
n=1
yn=k

(m̃l(xn)− µ̃l,k)(m̃l(xn)− µ̃l,k)T ,

M̃l(x) := min
k=1,...,K

(ml(x)− µ̂l,k)T Σ̂−1
l (ml(x)− µ̂l,k),

κMALCOM++(x∗;αc) =
∑
l=1

αl
cM̃l (x∗) ,

where ρl is the compressive-complexity pooling of the l-th layer as defined in Section 3.2. We
remark that MALCOM++ does not use the input preprocessing technique, so it does not need to
compute the gradients for backpropagation, which eventually reduce its computational cost for the
inference.

Experimental settings. For each method, the hyperparameters are adjusted by using 1000
in-distribution images and 1000 out-of-distribution images from the test dataset; this experimen-
tal setting is exactly the same with the setting in (Lee et al., 2018b). Specifically, for ODIN,
we uses all the 2000 images to tune the hyperparameters To ∈ {1, 10, 100, 1000} and εo ∈
{0, 0.0005, 0.001, 0.0014, 0.002, 0.0024, 0.005, 0.01, 0.05, 0.1, 0.2}. In case of MAHALANOBIS,
we split 2000 images into two groups; one of them is used to train the weights αm by lo-
gistic regression, and the other is for the validation of the input preprocessing hyperparameter
εm ∈ {0.0, 0.01, 0.005, 0.002, 0.0014, 0.001, 0.0005}. For fair comparisons, MALCOM++ uses
the 1000 images to obtain weights αc which are the same with that for αm. All experiments are
repeated three times and the averages are reported.

Results. Table 4 shows the performances of out-of-distribution detection methods when out-
of-distribution samples are used to find the optimal hyperparameter values. We observe that
MALCOM++ shows slightly better performances than MAHALANOBIS when ResNet is used, even
though MALCOM++ does not utilize the additional technique (i.e., input preprocessing). Our pro-
posed method, MALCOM, does not use out-of-distribution samples for the validation, but it con-
sistently outperforms ODIN that utilizes out-of-distibution samples; sometimes it even performs
the best. Specifically, in case of CIFAR-10 for in-distribution and the cropped TinyImageNet for
out-of-distribution, MALCOM achieves the best performance among all the other methods with
DenseNet.

C VALIDATION ON ADVERSARIAL SAMPLES

In this section, we report the performance of out-of-distribution detection methods, validated by
generated adversarial examples. The adversarial examples refer to the images that are hard to be
distinguished with the original images by human eyes but misclassified by a classifier. Lee et al.
(2018b) suggested to tune the hyperparameters by using generated adversarial examples rather than
out-of-distribution samples. Although its generation process takes much cost, the validation on the
adversarial examples generated from the training dataset also satisfies our constraints in Section 2.1.

Adversarial examples. We generate adversarial examples by using FGSM (Goodfellow et al.,
2015). It generates adversarial examples by adding noise to the input images in the direction of
the loss gradient. Given a loss function L(f ; y) and data with labels (xi, yi) ∈ Dtrain, the FGSM
constructs adversarial examples as follows.

x̃i := xi + εf sign (∇L(f (xi) ; yi)) , (1)

where εf is the magnitude of noise. As in (Lee et al., 2018b), we set εf = 0.0525 for DenseNet
and εf = 0.0625 for ResNet. The images that are still correctly classified after applying FGSM are
excluded. The generated images are assumed to be out-of-distribution samples and the images from
the training set are used for in-distribution samples.

Experimental settings. We use the same competing methods defined in Appendix B: ODIN (Liang
et al., 2018) and MAHALANOBIS (Lee et al., 2018b). Since we do not assume any test distributions
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Table 5: Performance of different out-of-distribution detection methods that utilize adversarial
samples for the validation. For out-of-distribution datasets, ‘C’ and ‘R’ are the abbreviations for
‘cropped’ and ‘resized’, respectively. The best result is highlighted in boldface.

ID OOD TNR at TPR 95% AUROC Detection Acc.

ODIN / MAHALANOBIS / MALCOM (ours) / MALCOM++(ours)

D
en

se
N

et

C
IF

A
R

-1
0

SVHN 38.68 / 82.66 / 94.03 / 95.65 88.71 / 96.55 / 98.56 / 98.93 82.72 / 91.02 / 94.54 / 95.43
TinyIm(C) 88.78 / 99.08 / 99.98 / 99.49 98.14 / 99.73 / 99.91 / 99.86 93.01 / 98.51 / 99.17 / 99.13
TinyIm(R) 85.20 / 92.23 / 93.90 / 95.59 97.44 / 98.38 / 98.61 / 99.05 91.75 / 94.32 / 94.49 / 95.38
LSUN(C) 78.19 / 97.76 / 99.87 / 99.16 96.58 / 99.38 / 99.83 / 99.77 90.84 / 97.36 / 98.70 / 98.72
LSUN(R) 91.20 / 95.47 / 95.43 / 96.71 98.53 / 98.89 / 98.95 / 99.26 93.87 / 95.48 / 95.25 / 96.09

iSUN 87.76 / 92.40 / 94.01 / 95.65 97.99 / 98.46 / 98.66 / 99.11 92.53 / 94.34 / 94.59 / 95.51

C
IF

A
R

-1
00

SVHN 39.49 / 66.31 / 63.31 / 82.65 88.21 / 92.48 / 93.09 / 95.47 80.72 / 85.48 / 86.32 / 89.73
TinyIm(C) 71.70 / 96.68 / 97.93 / 97.01 94.15 / 98.85 / 98.81 / 98.96 86.73 / 96.70 / 96.52 / 97.11
TinyIm(R) 43.14 / 81.30 / 85.79 / 88.65 85.34 / 96.39 / 97.12 / 97.57 77.19 / 90.74 / 91.33 / 92.23
LSUN(C) 80.10 / 94.61 / 94.96 / 95.95 96.31 / 98.11 / 98.30 / 98.51 89.82 / 95.26 / 95.49 / 96.28
LSUN(R) 41.54 / 86.75 / 88.43 / 91.70 85.71 / 97.04 / 97.59 / 97.94 77.36 / 92.05 / 92.68 / 93.48

iSUN 37.92 / 81.25 / 85.65 / 90.04 84.29 / 96.37 / 97.27 / 97.75 76.16 / 90.67 / 91.65 / 92.66

SV
H

N

CIFAR-10 69.14 / 96.02 / 96.04 / 94.99 91.83 / 98.78 / 98.63 / 98.51 86.54 / 96.00 / 95.62 / 95.23
TinyIm(C) 79.03 / 100.0 / 100.0 / 100.0 94.79 / 100.0 / 100.0 / 100.0 89.89 / 99.97 / 99.98 / 99.97
TinyIm(R) 79.73 / 99.50 / 99.96 / 99.44 94.76 / 99.86 / 99.87 / 99.85 90.21 / 98.89 / 98.94 / 98.83
LSUN(C) 76.71 / 100.0 / 100.0 / 100.0 93.76 / 100.0 / 100.0 / 100.0 88.76 / 99.97 / 99.98 / 99.97
LSUN(R) 77.07 / 99.59 / 100.0 / 99.49 94.07 / 99.88 / 99.89 / 99.85 89.16 / 99.18 / 99.23 / 99.07

iSUN 78.33 / 99.57 / 99.99 / 99.48 94.39 / 99.88 / 99.88 / 99.85 89.69 / 99.16 / 99.20 / 99.06

R
es

N
et

C
IF

A
R

-1
0

SVHN 34.04 / 73.54 / 80.54 / 94.47 86.17 / 93.92 / 96.80 / 98.84 78.43 / 86.94 / 91.37 / 94.79
TinyIm(C) 69.88 / 99.57 / 98.88 / 99.82 94.41 / 99.90 / 99.58 / 99.96 87.65 / 98.68 / 97.18 / 99.44
TinyIm(R) 67.43 / 90.98 / 89.62 / 96.74 93.68 / 98.27 / 98.25 / 99.31 86.52 / 93.52 / 93.12 / 96.03
LSUN(C) 66.28 / 98.93 / 98.04 / 99.71 93.58 / 99.79 / 99.48 / 99.94 86.73 / 97.88 / 96.69 / 99.22
LSUN(R) 68.63 / 94.91 / 91.56 / 97.84 93.77 / 98.87 / 98.51 / 99.48 86.70 / 95.03 / 93.75 / 96.75

iSUN 67.96 / 92.24 / 91.16 / 97.02 93.71 / 98.43 / 98.44 / 99.33 86.64 / 93.91 / 93.66 / 96.21

C
IF

A
R

-1
00

SVHN 11.63 / 41.49 / 63.22 / 82.49 72.48 / 81.01 / 93.01 / 96.29 68.44 / 73.38 / 85.02 / 89.95
TinyIm(C) 24.12 / 94.14 / 89.34 / 98.73 78.48 / 98.08 / 97.96 / 99.30 71.98 / 94.72 / 92.37 / 97.83
TinyIm(R) 32.45 / 56.17 / 64.04 / 80.46 82.25 / 91.28 / 92.44 / 96.26 74.24 / 84.70 / 83.80 / 90.86
LSUN(C) 11.47 / 88.15 / 89.53 / 98.23 64.61 / 97.07 / 97.98 / 99.38 62.51 / 91.86 / 92.44 / 97.22
LSUN(R) 30.00 / 46.47 / 60.57 / 75.78 80.57 / 88.07 / 91.51 / 95.13 73.02 / 81.76 / 82.60 / 89.31

iSUN 29.52 / 47.18 / 61.04 / 74.96 80.77 / 88.79 / 91.37 / 95.23 73.31 / 82.25 / 82.40 / 89.39

SV
H

N

CIFAR-10 78.28 / 97.80 / 90.42 / 97.21 92.95 / 99.38 / 98.02 / 99.29 90.05 / 97.21 / 94.46 / 96.73
TinyIm(C) 82.52 / 99.97 / 100.0 / 99.97 94.03 / 99.98 / 99.96 / 99.98 91.42 / 99.95 / 99.11 / 99.96
TinyIm(R) 79.05 / 99.70 / 97.69 / 99.69 93.53 / 99.90 / 99.23 / 99.90 90.42 / 99.08 / 96.39 / 99.09
LSUN(C) 79.63 / 99.95 / 100.0 / 99.96 93.06 / 99.98 / 99.90 / 99.98 90.53 / 99.94 / 98.57 / 99.95
LSUN(R) 74.45 / 99.72 / 97.13 / 99.72 91.53 / 99.91 / 99.06 / 99.91 88.94 / 99.29 / 96.23 / 99.27

iSUN 77.05 / 99.71 / 97.42 / 99.71 92.25 / 99.91 / 99.16 / 99.91 89.73 / 99.25 / 96.34 / 99.18

in this experiment, we use the whole training samples and adversarial examples for the validation.
The only difference of the experimental setup from Appendix B is that we split the validation dataset
into 80:20 for training the weights αc (or αm) and determining the hyperparameter εm, respectively.
All experiments are repeated three times and the averages are reported.

Results. Table 5 shows the detection performances of MALCOM, MALCOM++ and the other
competing methods when the generated adversarial samples are used for the validation. Our methods
(i.e., MALCOM and MALCOM++) beat both ODIN and MAHALANOBIS in most cases, except
for the case that SVHN is set to in-distribution. This result strongly indicates that the compressive-
complexity pooling is still helpful and complements the limitation of the global average pooling,
even in the situation where adversarial samples are available. In addition, we perform an abla-
tion study to see how much each component affects the final detection performance. In order to
control the effect of the input preprocessing, we exclude MAHALANOBIS and instead consider the
method using the weighted sum of the scores computed based on global average pooling. As pre-
sented in Table 6, the method using all of the components consistently performs the best, similarly
to the results of the previous ablation study (Table 2). From this observation, we conclude that
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Table 6: Ablation results on analyzing the effect of each component: the weighted sum of the scores
obtained from all layers (denoted by weighted sum), global average pooling, and compressive-
complexity pooling. AUROC is used as an evaluation metric. The best results are marked in bold-
face.

Method Weighted
sum

Global average
pooling

Compressive
complexity pooling

CIFAR-10 CIFAR-100

TinyIm LSUN TinyIm LSUN

BASELINE - - - 94.14 95.47 71.62 70.84

MAHALANOBIS-vanilla - X - 96.27 97.06 95.69 96.60

MALCOM++
(ours)

- - X 93.26 94.42 92.29 92.28
- X X 95.47 96.14 95.92 96.78
X X - 98.83 99.17 97.43 97.91
X - X 95.09 94.61 94.21 93.39
X X X 99.05 99.26 97.57 97.94

the compressive-complexity pooling is effective to detect out-of-distribution samples based on the
Mahalanobis distance.

D MORE RESULTS

Table 7 shows the detailed results for out-of-distribution detection. To perform further analysis, we
test on the synthetic noise datasets which as in Liang et al. (2018).
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