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ABSTRACT

Stochastic Gradient Descent (SGD) methods using randomly selected batches are
widely-used to train neural network (NN) models. Performing design exploration
to find the best NN for a particular task often requires extensive training with
different models on a large dataset, which is very computationally expensive. The
most straightforward method to accelerate this computation is to distribute the
batch of SGD over multiple processors. To keep the distributed processors fully
utilized requires commensurately growing the batch size; however, large batch
training often times leads to degradation in accuracy, poor generalization, and
even poor robustness to adversarial attacks. Existing solutions for large batch
training either significantly degrade accuracy or require massive hyper-parameter
tuning. To address this issue, we propose a novel large batch training method
which combines recent results in adversarial training (to regularize against “sharp
minima”) and second order optimization (to use curvature information to change
batch size adaptively during training). We extensively evaluate our method on
Cifar-10/100, SVHN, TinyImageNet, and ImageNet datasets, using multiple NNs,
including residual networks as well as smaller networks for mobile applications
such as SqueezeNext. Our new approach exceeds the performance of the existing
solutions in terms of both accuracy and the number of SGD iterations (up to 1%
and 5×, respectively). We emphasize that this is achieved without any additional
hyper-parameter tuning to tailor our proposed method in any of these experiments.

1 INTRODUCTION

Finding the right NN architecture for a particular application requires extensive hyper-parameter
tuning and architecture search, often times on a very large dataset. The delays associated with
training NNs is often the main bottleneck in the design process. One of the ways to address this
issue to use large distributed processor clusters; however, to efficiently utilize each processor, the
portion of the batch associated with each processor (sometimes called the mini-batch) must grow
correspondingly. In the ideal case, the hope is to decrease the computational time proportional to the
increase in batch size, without any drop in generalization quality. However, large batch training has
a number of well known draw backs. These include degradation of accuracy, poor generalization,
and poor robustness to adversarial perturbations (Keskar et al., 2016; Yao et al., 2018).

In order to address these drawbacks, many solutions have been proposed (Goyal et al., 2017; You
et al., 2017; Devarakonda et al., 2017; Smith et al., 2017; Jia et al., 2018). However, these meth-
ods either work only for particular models on a particular dataset, or they require massive hyper-
parameter tuning, which is often times not discussed in the presentation of results. Note that while
extensive hyper-parameter turning may result in good result tables, it is antithetical to the original
motivation of using large batch sizes to reduce training time.

One solution to reduce the brittleness of SGD to hyper-parameter tuning is to use second-order meth-
ods. Full Newton method with line search is parameter-free, and it does not require a learning rate.
This is achieved by using a second-order Taylor series approximation to the loss function, instead of
a first-order one as in SGD, to obtain curvature information. Schaul et al. (2013); Xu et al. (2017a;b)
show that Newton/quasi-Newton methods outperform SGD for training NNs. However, their re-
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sults only consider simple fully connected NNs and auto-encoders. A problem with second-order
methods is that they can exacerbate the large batch problem, as by construction they have a higher
tendency to get attracted to local minima as compared to SGD. For these reasons, early attempts at
using second-order methods for training convolutional NNs have so far not been successful.

Ideally, if we could find a regularization scheme to avoid local/bad minima during training, this could
resolve many of these issues. In the seminal works of El Ghaoui & Lebret (1997); Xu et al. (2009), a
very interesting connection was made between robust optimization and regularization. It was shown
that the solution to a robust optimization problem for least squares is the same as the solution of a
Tikhonov regularized problem (El Ghaoui & Lebret, 1997). This was also extended to the Lasso
problem in Xu et al. (2009). Adversarial learning/training methods, which are a special case of
robust optimization methods, are usually described as a min-max optimization procedure to make
the model more robust. Recent studies with NNs have empirically found that robust optimization
usually converges to points in the optimization landscape that are flatter and are more robust to
adversarial perturbation (Yao et al., 2018).

Inspired by these results, we explore whether second order information regularized by robust opti-
mization can be used to do large batch size training of NNs. We show that both classes of methods
have properties that can be exploited in the context of large batch training to help reduce the brittle-
ness of SGD with large batch size training, thereby leading to significantly improved results.

MAIN CONTRIBUTIONS

In more detail, we propose an adaptive batch size method based on curvature information extracted
from the Hessian, combined with a robust optimization method. The latter helps regularize against
sharp minima, especially during early stages of training. We show that this combination leads to
superior testing performance, as compared to the proposed methods for large batch size training.
Furthermore, in addition to achieving better testing performance, we show that the total number of
SGD updates of our method is significantly lower than state-of-the-art methods for large batch size
training. We achieve these results without any additional hyper-parameter tuning of our algorithm
(which would, of course, have helped us to tailor our solution to these experiments). Here is a more
detailed itemization of the main contributions of this work:

• We propose an Adaptive Batch Size method for SGD training that is based on second order infor-
mation, computed by backpropagating the Hessian operator. Our method automatically changes
the batch size and learning rate based on Hessian information. We state and prove a result that this
method is convergent for a convex problem. More importantly, we empirically test the algorithm
for important non-convex problems in deep learning and show that it achieves equal or better test
performance, as compared to small batch SGD (We refer to this method as ABS).

• We propose a regularization method using robust training by solving a min-max optimization
problem. We combine the second order adaptive batch size method with recent results of Yao
et al. (2018), which show that robust training can be used to regularize against sharp minima. We
show that this combination of Hessian-based adaptive batch size and robust optimization achieves
significantly better test performance with little computational overhead (we refer to this Adaptive
Batch Size Adversarial method as ABSA).

• We test the proposed strategies extensively on a wide range of datasets (Cifar-10/100, SVHN,
TinyImageNet, and ImageNet), using different NNs, including residual networks. Importantly,
we use the same hyper-parameters for all of the experiments, and we do not perform any kind of
tuning of our hyper-parameters to tailor our results. The empirical results show the clear benefit
of our proposed method, as compared to the state-of-the-art. The proposed algorithm achieves
equal or better test accuracy (up to 1%) and requires significantly fewer SGD updates (up to 5×).

• We empirically show that we can use a block approximation of the Hessian operator (i.e. the
Hessian of the last fewer layers) to reduce the computational overhead of backpropagating the
second order information. This approximation is especially effective for deep NNs.

While a number of recent works have discussed adaptive batch size or increasing batch size during
training (Devarakonda et al., 2017; Smith et al., 2017; Friedlander & Schmidt, 2012; Balles et al.,
2016), to the best of our knowledge this is the first paper to introduce Hessian information and
adversarial training in adaptive batch size training, with extensive testing on many datasets.
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LIMITATIONS

We believe that it is important for every work to state its limitations (in general, but in particular
in this area). We were particularly careful to perform extensive experiments and repeated all the
reported tests multiple times. We test the algorithm on models ranging from a few layers to hundreds
of layers, including residual networks as well as smaller networks such as SqueezeNext.

An important limitation is that second order methods have additional overhead for backpropagating
the Hessian. Currently, most of the existing frameworks do not support (memory) efficient backprop-
agation of the Hessian (thus providing a structural bias against these powerful methods). However,
the complexity of each Hessian matvec is the same as a gradient computation (Martens, 2010). Our
method requires Hessian spectrum, which typically needs ten Hessian matvecs (for power method
iterations to reach a tolerance of 1e-2). Thus, the benefits that we show in terms of testing accuracy
and reduced number of updates do come at a cost (see Table 3 for details). We measure this addi-
tional overhead and report it in terms of wall clock time. Furthermore, we (empirically) show that
this power iteration needs to be done only at the end of every epoch, thus significantly reducing the
additional overhead.

Another limitation is that our theory only holds for convex problems (under certain smoothness as-
sumptions). Proving convergence for non-convex setting requires more involved analysis. Recently,
Ward et al. (2018) has provided interesting theoretical guarantees for AdaGrad (Duchi et al., 2011)
in the non-convex setting. Exploring a similar direction for our method is of interest for future
work. Another point is that adaptive batch size, prevents one from utilizing all of the processes, as
compared to using large batch throughout the training. However, a large data center can handle and
accommodate a growing number of requests for processor resources, which could alleviate this.

2 RELATED WORK

Optimization methods based on SGD are currently the most effective techniques for training NNs,
and this is commonly attributed to SGD’s ability to escape saddle-points and “bad” local min-
ima (Dauphin et al., 2014).

The sequential nature of weight updates in synchronous SGD limits possibilities for parallel com-
puting. In recent years, there has been considerable effort on breaking this sequential nature, through
asynchronous methods (Zhang et al., 2015) or symbolic execution techniques (Maleki et al., 2017).
A main problem with asynchronous methods is reproducibility, which, in this case, depends on the
number of processes used (Zheng et al., 2016; Agarwal & Duchi, 2011). Due to this issue, recently
there have been attempts to increase parallelization opportunities in synchronous SGD by using large
batch size training. With large batches, it is possible to distribute more efficiently the computations
to parallel compute nodes (Gholami et al., 2018a), thus reducing the total training time. However,
large batch training often leads to sub-optimal test performance (Keskar et al., 2016; Yao et al.,
2018). This has been attributed to the observation that large batch size training tends to get attracted
to local minima or sharp curvature directions, which are not robust to (possible) mismatch between
training and testing curves (Keskar et al., 2016). A full understanding of this, however, remains
elusive.

There have been several solutions proposed for alleviating the problem with large batch size training.
The first notable work here is Goyal et al. (2017), where it was shown that by scaling the learning
rate, it is possible to achieve the same testing accuracy for large batches. In particular, ResNet-
50 model was tested on ImageNet dataset, and it was shown that the baseline accuracy could be
recovered up to a batch size of 8192. However, this approach does not generalize to other networks
such as AlexNet (You et al., 2017), or other tasks such as NLP. In You et al. (2017), an adaptive
learning rate method (called LARS) was proposed which allowed scaling training to a much larger
batch size of 32K with more hyper-parameter tuning. Another notable work is Smith et al. (2017)
(and also Devarakonda et al. (2017)), which proposed a hybrid increase of batch size and learning
rate to accelerate training. In this approach, one would select a strategy to “anneal” the batch size
during the training. This is based on the idea that large batches contain less “noise,” and that could
be used much the same way as reducing learning rate during training. More recent work Jia et al.
(2018); Puri et al. (2018) proposed mix-precision method to further explore the limit of large batch
training.
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A recent study has shown that anisotropic noise injection could also help in escaping sharp min-
ima (Zhu et al., 2018). The authors showed that the noise from SGD could be viewed as anisotropic,
with the Hessian as its covariance matrix. Injecting random noise using the Hessian as covariance
was proposed as a method to avoid sharp minima.

Another recent work by Yao et al. (2018) has shown that adversarial training (or robust optimiza-
tion) could be used to “regularize” against these sharp minima, with preliminary results showing
superior testing performance as compared to other methods. The link between robust optimization
and regularization is a very interesting observation that has been theoretically proved in the case of
Ridge regression (El Ghaoui & Lebret, 1997), and Lasso (Bertsimas et al., 2011). Shaham et al.
(2015); Shrivastava et al. (2017) used adversarial training and showed that the model training us-
ing robust optimization is often times more robust to perturbations, as compared to normal SGD
training. Similar observations have been made by others (Szegedy et al., 2013; Goodfellow et al.,
2014).

3 OUR MAIN METHOD

We consider a supervised learning framework where the goal is to minimize a loss function L(θ):

L(θ) =
1

N

N∑
i=1

l(zi, θ), (1)

where θ are the model weight parameters, Z = X × Y is the training dataset, and l(z, θ) is the loss
for a datum z ∈ Z. Here,X is the input, Y is the corresponding label, andN = |Z| is the cardinality
of the training set. SGD is typically used to optimize Eqn. (1) by taking steps of the form:

θt+1 = θt − ηt
1

|B|
∑
z∈B

∇θl(z, θt), (2)

where B is a mini-batch of examples drawn randomly from Z, and ηt is the step size (learning rate)
at iteration t. In the case of large batch size training, the batch size is increased to large values.

Smith & Le (2018) views the learning rate and batch size as noise injected during optimization. Both
a large learning rate as well as a small batch size can be considered to be equivalent to high noise
injection. This is explained by modeling the behavior of NNs as a stochastic differential equation
(SDE) of the following form:

dθ

dt
=
dL

dθ
+ ε(t), (3)

where ε(t) is the noise injected by SGD (see Smith & Le (2018) for details). The authors then argue
that the noise magnitude is proportional to g = ηt(

|Z|
|B| − 1). For mini-batch |B| � |Z|, the noise

magnitude can be estimated as g ≈ ηt
|Z|
|B| . Hence, in order to achieve the benefits from small batch

size training, i.e., the noise generated by small batch training, the learning rate ηt should increase
proportionally to the batch size, and vice versa. That is, the same annealing behavior could be
achieved by increasing the batch size, which is the method used by Smith et al. (2017).

The need for annealing can be understood by considering a convex problem. When we get closer
to a local minimum, a more accurate descent direction with less noise is preferable to a more noisy
direction, since less noise helps converge to rather than oscillate around the local minimum. This ex-
plains the manual batch size and learning rate changes proposed in (Smith et al., 2017; Devarakonda
et al., 2017). Ideally, we would like to have an automatic method that could provide us with such
information and regularize against local minima with poor generalization. As we show next, this is
possible through the use of second order information combined with robust optimization.

3.1 ADAPTIVE BATCH SIZE (ABS) BASED ON HESSIAN INFORMATION

In this section, we propose a method for utilizing second order information to adaptively change
the batch size. We refer to this as the Adaptive Batch Size (ABS) method; see Alg. 1. Intuitively,
using a larger batch size in regions where the loss has a “flatter” landscape, and using a smaller
batch size in regions with a “sharper” loss landscape, could help to avoid attraction to local minima
with poor generalization. This information can be obtained through the lens of the Hessian operator.
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Algorithm 1 Adaptive Batch Size (ABS) and Adaptive Batch Size Adversarial (ABSA)

1: Input:
- Learning rate lr, learning rate decay steps A,

learning rate decay ratio ρ
- Initial Batch Size B, minimum batch size
Bmin, maximum batch size Bmax, input x, la-
bel y.

- Eigenvalue decreasing ratio α, eigenvalue
computation frequency n, i.e., after training n
samples compute eigenvalue, batch increasing
ratio β, duration factor κ, i.e., if we compute
κ times Hessian but eigenvalue does not de-
crease, we would increase the batch size

- If adversarial training is used, perturbation
magnitude εadv , perturbation ratio γ (γmax) of
training data, decay ratio ω, vanishing step τ

2: Initialization: Eig = None, Visiting Sample = 0
3: for t = 0, 1, . . . do
4: if γ > 0 then
5: x[: Bγ] = adversarial(x[: Bγ])

6: One step SGD updates
7: Visiting Sample + = B
8: if Visiting Sample % n is 0 then
9: Current Eigen = Computing Eigen

10: if Current Eigen < 1
2
∗Eig then

11: B = min{Bβ,Bmax}, change lr
12: γ = γ/2, Eig = Current Eigen
13: Duration Time = 0
14: else
15: Duration Time + = 1
16: if Duration Time = κ then
17: B = min{Bβ,Bmax}, change lr
18: Duration Time = 0
19: if t in A then
20: decay the learning rate by ρ
21: if t == τ then
22: γ = 0

We adaptively increase the batch size as the Hessian eigenvalue decreases or stays stable for several
epochs (fixed to be ten in all of the experiments).

The second component of our framework is robust optimization. In the seminal works of (El Ghaoui
& Lebret, 1997; Xu et al., 2009), a connection between robust optimization and regularization was
proved in the context of ridge and lasso regression. In Yao et al. (2018), the authors empirically
showed that adversarial training leads to more robust models with respect to adversarial perturbation.
An interesting corollary was that, after adversarial training, the model converges to regions that are
considerably flatter, as compared to the baseline.

Thus, we can combine our ABS algorithm with adversarial training as a form of regularization
against “sharp” minima. We refer to this as the Adaptive Batch Size Adversarial (ABSA) method;
see Alg. 1. In practice, ABSA is often more stable than ABS. This corresponds to solving a min-
max problem instead of a normal minimization problem (Keskar et al., 2016; Yao et al., 2018).
Solving this min-max problem for NNs is an intractable problem, and thus we approximately solve
the maximization problem through the Fast Gradient Sign Method (FGSM) proposed by Goodfellow
et al. (2014). This basically corresponds to generating adversarial inputs using one gradient ascent
step (i.e., the perturbation is computed by ∆x = ε∇xl(z, θ)). Other possible choices are proposed
by (Thakur et al., 2005; Carlini & Wagner, 2017; Moosavi-Dezfooli et al., 2016).1

Figure 1 illustrates our ABS schedule as compared to a normal training strategy and the increasing
batch size strategy of Smith et al. (2017); Devarakonda et al. (2017). Note that our learning rate
adaptively changes based on the Hessian eigenvalue in order to keep the same noise level as in the
baseline SGD training. As we show in section 4, our combined approach (second order and robust
optimization) not only achieves better accuracy, but it also requires significantly fewer SGD updates,
as compared to Smith et al. (2017); Devarakonda et al. (2017).

3.2 CONVERGENCE RATE OF ABS

Before discussing the empirical results, an important question is whether using ABS is a convergent
algorithm for even a convex problem. Here, we show that our ABS algorithm does converge for
strongly convex problems. Based on an assumption about the loss (Assumption 2 in Appendix A),
it is not hard to prove the following theorem.

1In Yao et al. (2018), similar behavior was observed with other methods for solving the robust optimiza-
tion problem.
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Figure 1: Illustration of learning rate (left) and batch size (right) schedules of adaptive batch size as a
function of training epochs based on C2 model on Cifar-10.

Theorem 1. Under Assumption 2, let assume at step t, the batch size used for parameter update is
bt, the step size is btη0, where η0 is fixed and satisfies,

0 < η0 ≤
1

Lg(Mv +Bmax)
, (4)

where Bmax is the maximum batch size during training. Then, with θ0 as the initilization, the
expected optimality gap satisfies the following inequality,

E[L(θt+1)]− L∗ ≤
t∏

k=1

(1− bkη0cs)(L(θ0)− L∗ −
η0LgM

2cs
) +

η0LgM

2cs
. (5)

From Theorem 1, if bt ≡ 1, the convergence rate for t steps, based on equation 5, is (1 − η0cs).
However, the convergence rate of Alg. 1 becomes

∏t
k=1(1− bkη0cs), where 1 ≤ bk ≤ Bmax. With

an adaptive bt, Alg. 1 can converge faster than basic SGD. We show empirical results for a logistic
regression problem in the Appendix A, which is a simple convex problem.

4 OUR MAIN RESULTS

We evaluate the performance of our ABS and ABSA methods on different datasets (ranging from
O(1E4) to O(1E7) training examples) and multiple NN models. We compare the baseline perfor-
mance (i.e., small batch size), along with other state-of-the-art methods proposed for large batch
training (Smith et al., 2017; Goyal et al., 2017). The two main metrics for comparison are (1) the
final accuracy and (2) the total number of updates. Preferably we would want a higher testing accu-
racy along with fewer SGD updates. We emphasize that, for all of the datasets and models we tested,
we do not change any of the hyper-parameters in our algorithm. We use the exact same parameters
used in the baseline model, and we do not tailor any parameters to suit our algorithm. A detailed
explanation of the different NN models, and the datasets is given in Appendix B.

Section 4.1 shows the result of ABS (ABSA) compared to BaseLine (BL), FB (Goyal et al., 2017)
and GG (Smith et al., 2017). Section 4.2 presents the results on more challenging datasets of Tiny-
ImageNet and ImageNet. The superior performance of our method does come at the cost of back-
propagating the Hessian. Thus, in section 4.3, we discuss how approximate Hessian informatino
could be used to alleviate teh costs.

4.1 ABS AND ABSA FOR SVHN AND CIFAR

We first start by discussing the results of ABS and ABSA on SVHN and Cifar-10/100 datasets.
Notice that GG and our ABS (ABSA) have different batch sizes during training. Hence the batch
size reported in our results represents the maximum batch size during training. To allow for a direct
comparison we also report the number of weight updates in our results (lower is better). It should
be mentioned that the number of SGD updates is not necessarily the same as the wall-clock time.
Therefore, we also report a simulated training time of I3 model in Appendix C.
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Tables 1 and 4-7 (see Appendix D for Tables 4-7) report the test accuracy and the number of param-
eter updates for different datasets and models. First, note the drop in BL accuracy for large batch
confirming the accuracy degradation problem. Moreover, note that the FB strategy only works well
for moderate batch sizes (it diverges for large batch). However, the GG method has a very consistent
performance, but its number of parameter updates are usually greater than our method.

Looking at the last two major columns of Tables 1 and 4-7, the test performances ABS achieves
are similar accuracy as BL. Overall, the number of updates of ABS is 3-10 times smaller than BL
with batch size 128. However, for most cases, ABSA achieves superior results. This confirms the
effectiveness of adversarial training combined with the second order information.

Table 1: Accuracy and the number of parameter updates of C3 on Cifar-10.

BL FB GG ABS ABSA

BS Acc. # Iters Acc. # Iters Acc. # Iters Acc. # Iters Acc. # Iters

128 92.02 78125 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
256 91.88 39062 91.75 39062 91.84 50700 91.7 40792 92.11 43352
512 91.68 19531 91.67 19531 91.19 37050 92.15 32428 91.61 25388
1024 89.44 9766 91.23 9766 91.12 31980 91.61 17046 91.66 23446
2048 83.17 4882 90.44 4882 89.19 30030 91.57 21579 91.61 14027
4096 73.74 2441 86.12 2441 91.83 29191 91.91 18293 92.07 21909
8192 63.71 1220 64.91 1220 91.51 28947 91.77 22802 91.81 16778
16384 47.84 610 32.57 610 90.19 28828 92.12 17485 91.97 24361

4.2 ABSA FOR TINYIMAGENET AND IMAGENET

SVHN is a very simple dataset, and Cifar-10/100 are relatively small datasets, and one might wonder
whether the improvements we reported in section 4.1 hold for more complex problems. Here, we
report the ABSA method on more challenging datasets, i.e., TinyImageNet and ImageNet. We use
the exact same hyper-parameters in our algorithm, even though tuning them could potentially be
preferable for us.

TinyImageNet is an image classification problem, with 200 classes and only 500 images per class.
Thus it is easy to overfit the training data. The results for I1 model is reported in Table 2. Note
that with fewer SGD iterations, ABSA can achieve better test accuracy than other methods. The
performance of ABSA is actually about 1% higher ( the training loss and test performance of I1 on
TinyImagenet is shown in Figure 4 in appendix).

Table 2: Accuracy and the number of parameter updates of I1 on TinyImageNet.

BL FB GG ABSA

BS Acc. # Iters Acc. # Iters Acc. # Iters Acc. # Iters

128 60.41 93750 N.A. N.A. N.A. N.A. N.A. N.A.
256 58.24 46875 59.82 46875 60.31 70290 61.28 60684
512 57.48 23437 59.28 23437 59.94 58575 60.55 51078
1024 54.14 11718 59.62 11718 59.72 52717 60.72 19011
2048 50.89 5859 59.18 5859 59.82 50667 60.43 17313
4096 40.97 2929 58.26 2929 60.09 49935 61.14 22704
8192 25.01 1464 16.48 1464 60.00 49569 60.71 22334
16384 10.21 732 0.5 732 60.37 48995 60.71 20348

ImageNet classification task is perhaps among the most challenging classification problems. Due to
the limited computational resources, we only test ABSA and BL, and report results in Figure 5 (see
Appendix D). The BL uses 450, 045 parameter updates, reaching 56.32% validation accuracy. For
ABSA, the final validation accuracy is 56.40%, with only 76, 247 parameter updates. The maximum
batch size reached by ABSA is 16, 384, with initial batch size 256.

Figure 2 shows the result of I3 model on ImageNet. The BL uses 450, 045 parameter updates,
reaching 70.46% validation accuracy. The final validation accuracy of ABS and ABSA are 70.15%
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and 70.24%, respectively, both with 66, 393 parameter updates. The maximum batch size reached
by ABS and ABSA is 16, 384 with initial batch size 256. If GG schedule is implemented, the total
number of parameter updates would have been 166, 216. (Due to the limitation of resource, we do
not run GG for I3 on ImageNet.)

Note that we do not tune the hyper-parameters, e.g., α, β, and perhaps one could close the gap
between 70.24% and 70.4% with fine tuning of our hyper-parameters. However, from a practical
point of view such tuning is antithetical to the goal of large batch size training as it would increase
the total training time, and we specifically did not want to tailor any new parameters for a particular
model/dataset.
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Figure 2: I3 model on ImageNet. Training set loss (left), and testing set accuracy (right), evaluated
as a function of epochs.

4.3 APPROXIMATE HESSIAN

One of the limitations of our ABS (ABSA) method is the additional computational cost for com-
puting the top Hessian eigenvalue. If we use the full Hessian operator, the second backpropagation
needs to be done all the way to the first layer of NN. For deep networks this could lead to high cost.
Here, we empirically explore whether we could use approximate second order information, and in
particular we test a block Hessian approximation Figure 6. The block approximation corresponds
to only analyzing the Hessian of the last few layers.

In Figure 6 (see Appendix D), we plot the trace of top eigenvalues of full Hessian and block Hes-
sian for C1 model. Although the top eigenvalue of block Hessian has more variance than that of full
Hessian, the overall trends are similar for C1. The test performance of C1 on Cifar-10 with block
Hessian is 84.82% with 4600 parameter updates (as compared to 84.42% for full Hessian ABSA).
The test performance of C4 on Cifar-100 with block Hessian is 68.01% with 12500 parameter up-
dates (as compared to 68.43% for full Hessian ABSA). These results suggest that using a block
Hessian to estimate the trend of the full Hessian might be a good choice to overcome computation
cost, but a more detailed analysis is needed.

5 CONCLUSION

We introduce an adaptive batch size algorithm based on Hessian information to speed up the training
process of NNs, and we combine this approach with adversarial training (which is a form of robust
optimization, and which could be viewed as a regularization term for large batch training). We ex-
tensively test our method on multiple datasets (SVHN, Cifar-10/100, TinyImageNet and ImageNet)
with multiple NN models (AlexNet, ResNet, Wide ResNet and SqueezeNext). As the goal of large
batch is to reduce training time, we did not perform any hyper-parameter tuning to tailor our method
for any of these tests. Our method allows one to increase batch size and learning rate automatically,
based on Hessian information. This helps significantly reduce the number of parameter updates,
and it achieves superior generalization performance, without the need to tune any of the additional
hyper-parameters. Finally, we show that a block Hessian can be used to approximate the trend of
the full Hessian to reduce the overhead of using second-order information. These improvements are
useful to reduce NN training time in practice.
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A PROOF OF THEOREM

For a finite sum objective function L(θ), i.e., equation 1, we assume that:
Assumption 2. The objective function L(θ) satisfies:

• L(θ) is continuously differentiable and the gradient function of L is Lipschitz continuous with
Lipschitz constant Lg , i.e.

‖∇L(θ1)−∇L(θ2)‖ ≤ Lg‖θ1 − θ2‖, for all θ1 and θ2. (6)
• L(θ) is strongly convex, i.e., there exists a constant cs > 0 s.t.

L(θ2) ≥ L(θ1) +∇L(θ1)T (θ2 − θ1) +
1

2
cs‖θ1 − θ2‖2, for all θ1 and θ2. (7)

Also, the global minima of L(θ) is achieved at θ∗ and L(θ∗) = L∗.
• Each gradient of each individual li(zi) is an unbiased estimation of the true gradient, i.e.

E[∇li(zi, θ)] = ∇L(θ), for all i. (8)
• There exist scalars M ≥ 0 and Mv ≥ 0 s.t.

V(∇li(zi, θ)) ≤M +Mv‖∇L(θ)‖, for all i, (9)
where V(·) is the variance operator, i.e.

V(∇li(zi, θ)) = E[‖∇li(zi, θ)‖2]− ‖E[∇li(zi, θ)]‖2.

From the Assumption 2, it is not hard to get,
E[‖∇li(zi, θ)‖2] ≤M +Mg‖∇L(θ)‖2, (10)

with Mg = Mv + 1.

With Assumption 2, the following two lemmas could be found in any optimization reference, e.g.
Bottou et al. (2018). We give the proofs here for completeness.
Lemma 3. Under Assumption 2, after one iteration of stochastic gradient update with step size ηt
at θt, we have

E[L(θt+1)]− L(θt) ≤ −(1− 1

2
ηtLgMg)ηt‖∇L(θt)‖2 +

1

2
η2tLgM, (11)

where θt+1 = θt − ηt∇li(θ, zi) for some i.

Proof. With the Lg smooth of L(θ), we have

E[L(θt+1)]− L(θt) ≤ −ηt∇L(θt)E[∇li(θ, zi)] +
1

2
η2tLgE[‖∇li(θ, zi)‖2]

≤ −ηt‖∇L(θt)‖2 +
1

2
η2tLg(M +Mg‖∇L(θt)‖2).

From above, the result follows.

Lemma 4. Under Assumption 2, for any θ, we have
2cs(L(θ)− L∗) ≤ ‖∇L(θ)‖2. (12)

Proof. Let

h(θ̄) = L(θ) +∇L(θ)T (θ̄ − θ) +
1

2
cs‖θ̄ − θ‖2.

Then h(θ̄) has a unique global minima at θ̄∗ = θ − 1
cs
∇L(θ) with h(θ̄∗) = L(θ) − 1

2cs
‖∇L(θ)‖2.

Using the strong convexity of L(θ), it follows

L(θ∗) ≥ L(θ) +∇L(θ)T (θ∗ − θ) +
1

2
cs‖θ − θ∗‖22 = h(θ̄∗) = L(θ)− 1

2cs
‖∇L(θ)‖2.

The following lemma is trivial, we omit the proof here.
Lemma 5. Let LB(θ) = 1

|B|
∑

zi∈B li(θ, zi). Then the variance of∇LB(θ) is bounded by

V(∇LB(θ)) ≤M/|B|+Mv‖∇L(θ)‖/|B|, for all B. (13)
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PROOF OF THEOREM 1

Given these lemmas, we now proceed with the proof of Theorem 1.

Proof. Assume the batch used at step t is bt, according to Lemma 3 and 5,

E[L(θt+1)]− L(θt) ≤ −(1− 1

2
btη0Lg(

Mv

bt
+ 1))btη0‖∇L(θt)‖2 +

1

2
(btη0)2Lg

M

bt

≤ −(1− 1

2
η0Lg(Mv + bt))btη0‖∇L(θt)‖2 +

1

2
btη

2
0LgM

≤ −(1− 1

2
η0Lg(Mv +Bmax))btη0‖∇L(θt)‖2 +

1

2
btη

2
0LgM

≤ −1

2
btη0‖∇L(θt)‖2 +

1

2
btη

2
0LgM

≤ −btη0cs(L(θt)− L∗) +
1

2
btη

2
0LgM,

where the last inequality is from Lemma 4. This yields

E[L(θt+1)]− L∗ ≤ L(θt)− btη0cs(L(θt)− L∗) +
1

2
btη

2
0LgM − L∗

= (1− btη0cs)(L(θt)− L∗) +
1

2
btη

2
0LgM.

It is not hard to see,

E[L(θt+1)]− L∗ −
η0LgM

2cs
≤ (1− btη0cs)(L(θt)− L∗ −

η0LgM

2cs
),

which concludes

E[L(θt+1)]− L∗ −
η0LgM

2cs
≤

t∏
k=1

(1− bkη0cs)(L(θ0)− L∗ −
η0LgM

2cs
).

Therefore,

E[L(θt+1)]− L∗ ≤
t∏

k=1

(1− bkη0cs)(L(θ0)− L∗ −
η0LgM

2cs
) +

η0LgM

2cs
.

We show a toy example of binary logistic regression on mushroom classification dataset2. We split
the whole dataset to 6905 for training and 1819 for validation. η0 = 1.2 for SGD with batch size
100 and full gradient descent. We set 100 ≤ bt ≤ 3200 for our algorithm, i.e. ABS. Here we mainly
focus on the training losses of different optimization algorithms. The results are shown in Figure 3.
In order to see if η0 is not an optimal step size of full gradient descent, we vary η0 for full gradient
descent; see results in Figure 3.

B OUTLINE OF TRAINING

In this section, we give the detailed outline of our training datasets, models, strategy as well as
hyper-parameter used in Alg 1.

Dataset. We consider the following datasets.

• SVHN. The original SVHN (Netzer et al., 2011) dataset is small. However, in this paper, we
choose the additional dataset, which contains more than 500k samples, as our training dataset.

2https://www.kaggle.com/uciml/mushroom-classification
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Figure 3: Logistic regression model result. The left figure shows the training loss as a function of
iterations for full gradient, SGD, ABS and ABSA. The right figure shows the result of ABS/ABSA
compared to full gradient with different learning rate.

• Cifar. The two Cifar (i.e., Cifar-10 and Cifar-100) datasets (Krizhevsky & Hinton, 2009) have
same number of images but different number of classes.

• TinyImageNet. TinyImageNet consists of a subset of ImangeNet images (Deng et al., 2009),
which contains 200 classes. Each of the class has 500 training and 50 validation images.3 The
size of each image is 64× 64.

• ImageNet. The ILSVRC 2012 classification dataset (Deng et al., 2009) consists of 1000 images
classes, with a total of 1.2 million training images and 50,000 validation images. During training,
we crop the image to 224× 224.

Model Architecture. We implement the following convolution NNs. When we use data augmenta-
tion, it is exactly same the standard data augmentation scheme as in the corresponding model.

• S1. AlexNet like model on SVHN as same as Yao et al. (2018)[C1]. We training it for 20 epochs
with initial learning rate 0.01, and decay a factor of 5 at epoch 5, 10 and 15. There is no data
augmentation.

• C1. ResNet18 on Cifar-10 dataset (He et al., 2016). We training it for 90 epochs with initial
learning rate 0.1, and decay a factor of 5 at epoch 30, 60, 80. There is no data augmentation.

• C2. WResNet 16-4 on Cifar-10 dataset (Zagoruyko & Komodakis, 2016). We training it for 90
epochs with initial learning rate 0.1, and decay a factor of 5 at epoch 30, 60, 80. There is no data
augmentation.

• C3. SqueezeNext on Cifar-10 dataset (Gholami et al., 2018b). We training it for 200 epochs with
initial learning rate 0.1, and decay a factor of 5 at epoch 60, 120, 160. Data augmentation is
implemented.

• C4. ResNet18 on Cifar-100 dataset (He et al., 2016). We training it for 160 epochs with initial
learning rate 0.1, and decay a factor of 10 at epoch 80, 120. Data augmentation is implemented.

• I1. ResNet50 on TinyImageNet dataset (He et al., 2016). We training it for 120 epochs with initial
learning rate 0.1, and decay a factor of 10 at epoch 60, 90. Data augmentation is implemented.

• I2. AlexNet on ImageNet dataset (Krizhevsky et al., 2012). We training it for 90 epochs with
initial learning rate 0.01, and decay it to 0.0001 quadratically at epoch 60, then keeps it as 0.0001
for the rest 30 epochs. Data augmentation is implemented.

• I3 ResNet18 on ImageNet dataset (He et al., 2016). We training it for 90 epochs with initial learn-
ing rate 0.1, and decay a factor of 10 at epoch 30, 60 and 80. Data augmentation is implemented.

Training Strategy. We use the following training strategies

• BL. Use the standard training procedure.
• FB. Use linear scaling rule (Goyal et al., 2017) with warm-up stage.
• GG. Use increasing batch size instead of decay learning rate (Smith et al., 2017).
• ABS. Use our adaptive batch size strategy without adversarial training.
• ABSA. Use our adaptive batch size strategy with adversarial training.

3In some papers. this validation set is sometimes referred to as a test set.
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For adversarial training, the adversarial data are generated using Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2014). The hyper-parameters in Alg. 1 (α and β) are chosen to be
2, κ = 10, εadv = 0.005, γ = 20%, and ω = 2 for all the experiments. The only change is that for
SVHN, the frequency to compute Hessian information is 65536 training examples as compared to
one epoch, due to the small number of total training epochs (only 20).

C SIMULATED TRAINING TIME

As discussed above, the number of SGD updates does not necessarily correlate with wall-clock time,
and this is particularly the case because our method require Hessian backpropagation. Here, we use
the method suggested in Gholami et al. (2018a), to approximate the wall-clock time of our algorithm
when utilizing p parallel processes. For the ring algorithm Thakur et al. (2005), the communication
time per SGD iteration for p processes is:

Tcomm = 2(αlatency log(p) + βbandwidth
p− 1

p
|θ|), (14)

where αlatency is the network latency, βbandwidth is the inverse bandwidth, and |θ| is the size num-
ber of model parameters measured in terms of Bits. Moreover, we manually measure the wall-clock
time of computing the Hessian information using our in-house code, as well as the cost of for-
ward/backward calculations on a V100 GPU. The total time will consists of this computation time
and the communication one along with Hessian computation overhead (if any). Therefore we have:

Ttotal = Tcomp + Tcomm + THess, (15)

where Tcompute is the time to compute forward and backward propagation, Tcommunication is the
time to communicate between different machine, and THessian is the time to compute top eigenval-
ues.

We use the latency and bandwidth values of αlatency = 2 µs, and βbandwidth = 1
6 Gb/s based

on NERSC’s Cori2 supercomputing platform. Based on above formulas, we give an example of
simulated computation time cost of I3 on ImageNet. Note that for large processes and small latency
terms, the communication time formula is simplified as,

Tcomm = 2βbandwidth|θ|. (16)

In Table 3 we report the simulation time of I3 on ImageNet on 512 processes. For GG, we assume
it increases batch size by a factor of 10 at epoch 30, 60 and 80. The batch size per GPU core
is set to 16 for SGD (and 8 for Hessian computation due to memory limit) and the total batch
size used for Hessian computation is set to 4096 images. The Tcomp and Tcomm is for one SGD
update and THessian is for one complete Hessian eigenvalue computation (including communication
for Hessian computation). Note that the total Hessian computation time for ABS/ABSA is only
1.15 × 90 = 103.5 s even though the Hessian computation is not efficiently implemented in the
existing frameworks. Note that even with the additional Hessian overhead ABS/ABSA is still much
faster than BL (and these numbers are with an in-house and not highly optimized code for Hessian
computations). We furthermore note that we have added the additional computational overhead of
adversarial computations to the ABSA method.

Table 3: Below we present the breakdown of one SGD update training time in terms of for-
ward/backwards computation (Tcomp), one step communication time (Tcomm), one total Hessian
spectrum computation (if any THess), and the total training time. The results correspond to I3
model on ImageNet (for accuracy results please see Figure 2).

Method Tcomp Tcomm THess Total Time
BL 2.2E-2 1.5E-2 0. 16666
GG 2.2E-2 1.5E-2 0. 6150 (2.71× faster)
ABS 2.2E-2 1.5E-2 1.15 2666 (6.25× faster)
ABSA 3.6E-2 1.5E-2 1.15 3467 (4.80× faster)
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D ADDITIONAL EMPIRICAL RESULTS

In this section, we present additional empirical results.

Table 4: Accuracy and the number of parameter updates of S1 on SVHN.

BL FB GG ABS ABSA

BS Acc. # Iters Acc. # Iters Acc. # Iters Acc. # Iters Acc. # Iters

128 94.90 81986 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
512 94.76 20747 95.24 20747 95.49 51862 95.65 25353 95.72 24329
2048 95.17 5186 95.00 5186 95.59 45935 95.51 10562 95.82 16578
8192 93.73 1296 19.58 1296 95.70 44407 95.56 14400 95.61 7776
32768 91.03 324 10.0 324 95.60 42867 95.60 7996 95.90 12616
131072 84.75 81 10.0 81 95.58 42158 95.61 11927 95.92 11267

Table 5: Accuracy and the number of parameter updates of C1 on Cifar-10.

BL FB GG ABS ABSA

BS Acc. # Iters Acc. # Iters Acc. # Iters Acc. # Iters Acc. # Iters

128 83.05 35156 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
640 81.01 7031 84.59 7031 83.99 16380 83.30 10578 84.52 9631
3200 74.54 1406 78.70 1406 84.27 14508 83.33 6375 84.42 5168
5120 70.64 878 74.65 878 83.47 14449 83.83 6575 85.01 6265
10240 68.75 439 30.99 439 83.68 14400 83.56 5709 84.29 7491
16000 67.88 281 10.00 281 84.00 14383 83.50 5739 84.24 5357

Table 6: Accuracy and the number of parameter updates of C2 on Cifar-10.

BL FB GG ABS ABSA

BS Acc. # Iters Acc. # Iters Acc. # Iters Acc. # Iters Acc. # Iters

128 87.64 35156 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
640 86.20 7031 87.9 7031 87.84 16380 87.86 10399 89.05 10245
3200 82.59 1406 73.2 1406 87.59 14508 88.02 5869 89.04 4525
5120 81.40 878 63.27 878 87.85 14449 87.92 7479 88.64 5863
10240 79.85 439 10.00 439 87.52 14400 87.84 5619 89.03 3929
16000 81.06 281 10.00 281 88.28 14383 87.58 9321 89.19 4610

Table 7: Accuracy and the number of parameter updates of C4 on Cifar-100.

BL FB GG ABS ABSA

BS Acc. # Iters Acc. # Iters Acc. # Iters Acc. # Iters Acc. # Iters

128 67.67 62500 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A
256 67.12 31250 67.89 31250 66.79 46800 67.71 33504 67.32 33760
512 66.47 15625 67.83 15625 67.74 39000 67.68 32240 67.87 24688
1024 64.7 7812 67.72 7812 67.17 35100 65.31 22712 68.03 13688
2048 62.91 3906 67.93 3906 67.76 33735 64.69 25180 68.43 12103
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Figure 4: I1 model on TinyImageNet. Training set loss (left), and testing set accuracy (right),
evaluated as a function of epochs. All results correspond to batch size 16384 (please see Table 2 for
details). As one can see, from epoch 60 to 80, the test performance drops due to overfitting. However,
ABSA achieves the best performance with apparently less overfitting (it has higher training loss).
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Figure 5: I2 model on ImageNet. Training set loss (a), and testing set accuracy (b), evaluated as a
function of epochs.
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Figure 6: Illustration of block Hessian (left). Instead computing the top eigenvalue of whole Hes-
sian, we just compute the eigenvalue of the green block. .Top eigenvalues of Block of C1 (right) on
Cifar-10. The block Hessian is computed by the last two layers of C1. The maximum batch size of
C1 is 16000. The full Hessian is based on BL with batch size of 128.

17


	Introduction
	Related Work
	Our Main Method
	Adaptive Batch Size (ABS) based on Hessian Information
	Convergence Rate of ABS

	Our Main Results
	ABS and ABSA for SVHN and Cifar
	ABSA for TinyImageNet and ImageNet
	Approximate Hessian

	Conclusion
	Proof of Theorem 
	Outline of training
	Simulated Training Time
	Additional empirical results

