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Abstract

Though state-of-the-art sentence representa-
tion models can perform tasks requiring sig-
nificant knowledge of grammar, it is an open
question how best to evaluate their grammat-
ical knowledge. We explore five experimen-
tal methods inspired by prior work evaluating
pretrained sentence representation models. We
use a single linguistic phenomenon, negative
polarity item (NPI) licensing, as a case study
for our experiments. NPIs like any are gram-
matical only if they appear in a licensing en-
vironment like negation (Sue doesn’t have any
cats vs. *Sue has any cats). This phenomenon
is challenging because of the variety of NPI
licensing environments that exist. We intro-
duce an artificially generated dataset that ma-
nipulates key features of NPI licensing for the
experiments. We find that BERT has signifi-
cant knowledge of these features, but its suc-
cess varies widely across different experimen-
tal methods. We conclude that a variety of
methods is necessary to reveal all relevant as-
pects of a model’s grammatical knowledge in
a given domain.

1 Introduction

Recent sentence representation models have at-
tained state-of-the-art results on language under-
standing tasks, but standard methodology for eval-
uating their knowledge of grammar has been
slower to emerge. Recent work evaluating gram-
matical knowledge of sentence encoders like
BERT (Devlin et al., 2018) has employed a vari-
ety of methods. For example, Shi et al. (2016),
Ettinger et al. (2016), and Tenney et al. (2019)
use probing tasks to target a model’s knowledge
of particular grammatical features. Marvin and
Linzen (2018) and Wilcox et al. (2019) compare
language models’ probabilities for pairs of mini-
mally different sentences differing in grammatical
acceptability. Linzen et al. (2016), Warstadt et al.

(2018), and Kann et al. (2019) use Boolean accept-
ability judgments inspired by methodologies in
generative linguistics. However, we have not yet
seen any substantial direct comparison between
these methods, and it is not yet clear whether
they tend to yield similar conclusions about what
a given model knows.

We aim to better understand the trade-offs in
task choice by comparing different methods in-
spired by previous work to evaluate sentence un-
derstanding models in a single empirical domain.
We choose negative polarity item (NPI) licensing,
an empirically rich phenomenon widely discussed
in the theoretical linguistics literature, as our case
study. NPIs are words or expressions that can only
appear in environments that are, in some sense,
negative. For example, any is an NPI because it is
acceptable in negative sentences (1) but not posi-
tive sentences (2); negation thus serves as an NPI
licensor. NPIs furthermore cannot be outside the
syntactic scope of a licensor (3). Intuitively, a li-
censor’s scope is the syntactic domain in which an
NPI is licensed, and it varies from licensor to li-
censor. A sentence with an NPI present is only
acceptable in cases where (i) there is a licensor—
as in (1) but not (2)—and (ii) the NPI is within the
scope of that licensor—as in (1) but not (3).

(D) Mary hasn’t eaten any cookies.
2) *Mary has eaten any cookies.
3) *Any cookies haven’t been eaten.

We compare five experimental methods to test
BERT’s knowledge of NPI licensing. We con-
sider: (i) a Boolean acceptability classification
task to test BERT’s knowledge of sentences in
isolation, (ii) an absolute minimal pair task eval-
uating whether the absolute Boolean outputs of
acceptability classifiers distinguish between min-
imally different pairs of sentences, (iii) a gradient



minimal pair task evaluating whether the gradient
outputs of acceptability classifiers distinguish be-
tween minimal pairs, (iv) a cloze test evaluating
the grammatical preferences of BERT’s masked
language modeling head, and (v) a probing task
evaluating BERT’s representations for knowledge
of specific grammatical features relevant to NPI li-
censing.

We find that BERT knows about NPI licens-
ing environments. However, our five methods
give meaningfully different results. In particu-
lar, the gradient minimal pair experiment leads us
to believe that BERT has systematic knowledge
about all NPI licensing environments and relevant
grammatical features, while the absolute minimal
pair and probing experiments show that BERT’s
knowledge is in fact not equal across these do-
mains. We conclude that no single method is
able to accurately depict all relevant aspects of a
model’s grammatical knowledge; comparing both
gradient and absolute measures of performance
of trained models gives a more complete picture.
We recommend that future studies would benefit
from using multiple converging methods to evalu-
ate model performance.

2 Related Work

Evaluating Sentence Encoders The success of
sentence encoders and broader neural network
methods in NLP has prompted significant interest
in understanding the linguistic knowledge encap-
sulated in these models.

A section of related work focuses on Boolean
classification tasks to evaluate the grammatical
knowledge encoded in these models. Linzen et al.
(2016) uses acceptability classification of sen-
tences with manipulated verbal inflection to inves-
tigate whether LSTMs can identify subject-verb
agreement violations, and therefore a (potentially
long distance) syntactic dependency. Warstadt
et al. (2018) uses sentence acceptability on a cor-
pus of judgments as a task for evaluating gram-
matical knowledge. Kann et al. (2019) introduces
methods for testing whether word and sentence
encoders represent information about verbal argu-
ment structure.

Marvin and Linzen (2018) and Wilcox et al.
(2019) employ minimally different sentences in
terms of linguistic acceptability to judge whether
the encoder is sensitive to this ungrammatically.

Another branch of work uses probing classifiers

to reveal how much information a sentence em-
bedding encodes about syntactic and surface fea-
tures such as tense and voice (Shi et al., 2016),
sentence length and word content (Adi et al.,
2016), or syntactic depth and morphological num-
ber (Conneau et al., 2018). Giulianelli et al. (2018)
use diagnostic classifiers to track the propagation
of information in RNN-based language models.
Ettinger et al. (2018) and Dasgupta et al. (2018)
use automatic data generation to evaluate compo-
sitional reasoning.

To study contextualized sentence encoders De-
vlin et al. (2018); Peters et al. (2018); Radford
et al. (2018), Tenney et al. (2019) introduce sub-
sentence level edge probing tasks derived from
NLP tasks, providing evidence that these encoders
trained on language modeling and translation en-
code more syntax than semantics.

Negative Polarity Items In the theoretical liter-
ature on NPIs, proposals have been made to unify
the properties of the diverse NPI licensing envi-
ronments. For example, a popular view states that
NPIs are licensed if they occur in downward en-
tailing environments (Fauconnier, 1975; Ladusaw,
1979), i.e. an environment that licences inferences
from sets to subsets.!

Within computational linguistics, Marvin and
Linzen (2018) find that LSTMs do not system-
atically assign a higher probability to grammat-
ical sentences like (1) than minimally different
ungrammatical sentences like (2). Wilcox et al.
(2019) use NPIs, along with filler-gap dependen-
cies, as instances of non-local grammatical depen-
dencies, to probe the effect of supervision with hi-
erarchical structure. They find that structurally-
supervised models outperform state-of-the-art se-
quential LSTM models, showing the importance
of structure in learning non-local dependencies
like NPI licensing.

Acceptability Judgments The ability of neu-
ral networks to make Boolean acceptability judg-
ments was previously studied using the Corpus of
Linguistic Acceptability (CoLLA; Warstadt et al.,
2018). CoLA consists of over 10k syntactically
diverse example sentences from the linguistics lit-
erature with expert acceptability labels. As is
conventional in theoretical linguistics, sentences

'Other prominent theories of NPI licensing are based
on notions of non-veridicality (Giannakidou, 1994, 1998;
Zwarts, 1998), domain widening and emphasis (Kadmon and
Landman, 1993; Krifka, 1995; Chierchia, 2013), a.o.



are taken to be acceptable if native speakers
judge them to be possible sentences in their lan-
guage. Such sentences are widely used in linguis-
tics publications to illustrate phenomena of inter-
est. The examples in CoLA are gathered from di-
verse sources and represent a wide array of syntac-
tic, semantic, and morphological phenomena. As
measured by the GLUE benchmark (Wang et al.,
2018), acceptability classifiers trained on top of
BERT and related models reach near-human per-
formance on CoLA.

3 Methods

We experiment with five approaches to the evalua-
tion of grammatical knowledge of sentence repre-
sentation models like BERT using our generated
NPI acceptability judgment dataset (§4). Each
data sample in the dataset contains a sentence, a
Boolean label which indicates whether the sen-
tence is grammatically acceptable or not, and three
Boolean meta-data variables (licensor, NPI, and
scope; Table 2).

Boolean Acceptability We test the model’s abil-
ity to judge the grammatical acceptability of the
sentences in the NPI dataset. Following standards
in linguistics,sentences for this task are assumed to
be either totally acceptable or totally unacceptable.
We fine-tune the sentence representation models
to perform these Boolean judgments. For BERT-
based sentence representation models, we add a
classifier on top of [CLS] embedding of the last
layer. For BoW, we use a max pooling layer fol-
lowed by an MLP classifier. The performance of
the models is measured as Matthews Correlation
Coefficient (MCC; Matthews, 1975)? between the
predicted label and the gold label.

Absolute Minimal Pair We conduct a minimal
pair experiment to analyze Boolean acceptability
classifiers on minimally different sentences. Two
sentences form a minimal pair if they differ in
only one NPI-related Boolean meta-data variable
within a paradigm, but have different acceptabil-
ity. We evaluate the models trained on acceptabil-
ity judgments with the minimal pairs. In abso-
lute minimal pair evaluation, the models need to
correctly classify both sentences in the pair to be
counted as correct.

2MCC gives the correlation of two Boolean distributions
between -1 and 1. On average, a score of 0 will be given

to any two unrelated distributions, regardless of class imbal-
ance.

Gradient Minimal Pair The gradient minimal
pair evaluation is a more lenient version of ab-
solute minimal pair evaluation: Here, we count a
pair as correctly classified as long as the model
predicts that the probability of the grammatically
acceptable sentence is higher that that of the un-
grammatical sentence.

Cloze Test In the cloze test, a standard sentence-
completion task, we use the masked language
modeling (MLM) component in BERT Devlin
et al. (2018) and evaluate whether it assigns a
higher probability to the grammatical sentence in
a minimal pair, following (Linzen et al., 2016). An
MLM predicts the probability of a single masked
token based on the rest of the sentence. The min-
imal pairs tested are a subset of those in the abso-
lute and gradient minimal pair experiments, where
both sentences must be equal in length and differ
in only one token. This differing token is replaced
with [MASK], and the minimal pair is taken to be
classified correctly if the MLM assigns a higher
probability to the token from the acceptable sen-
tence. In contrast with the other minimal pair
experiments, this experiment is entirely unsuper-
vised, using BERT’s native MLM functionality.

Feature Probing We use probing classifiers as
a more fine-grained approach to the identifica-
tion of grammatical variables. We freeze the sen-
tence encoders both with and without fine-tuning
from the acceptability judgment experiments and
train lightweight classifiers on top of them to pre-
dict meta-data labels (licensor, NPI, and scope).
Crucially, each individual meta-data label by it-
self does not decide acceptability (i.e., these prob-
ing experiments test a different but related set of
knowledge from acceptability experiments).

4 Data

In order to probe BERT’s performance on sen-
tences involving NPIs, we generate a set of sen-
tences and acceptability labels for the experiments
in this paper. We use generated data so that we
can assess minimal pairs, and so that there are suf-
ficient unacceptable sentences.

Data generation We create a controlled set of
136,000 English sentences using an automated
sentence generation procedure, inspired in large
part by previous work by Ettinger et al. (2016,
2018), Marvin and Linzen (2018), Dasgupta et al.
(2018), and Kann et al. (2019). The set contains



Environment Abbrev. Example

Adverbs ADV The guests who rarely love any actors had left libraries.

Conditionals COND  If the pedestrian passes any schools, the senator will talk to the adults.
Determiner negation D-NEG  Just as the waitress said, no customers thought that any dancers bought the dish.
Sentential negation S-NEG  These drivers have not thought that any customers have lied.

Only ONLY From what the cashier heard, only the children have known any dancers.
Quantifiers QNT Every actress who was talking about any high schools criticizes the children.
Questions QUES The boys wonder whether the doctors went to any art galleries.

Simple questions SMP-Q  Has the guy worked with any teenagers?

Superlatives SUP The teenagers approach the nicest actress that any customers had criticized.

Table 1: Examples of each of the NPI licensing environments generated. The licensor is in bold, and the NPI (here
any) is in italics. All examples show cases where the NP1 is present (NPI=1), the licensor is present (Licensor=1),
and the NPI is in the scope of the licensor (Scope=1); all are acceptable to native speakers of English.

Licensor NPI  Scope Sentence
1 1 1 Those boys wonder whether [the doctors went to any art galleries.]
1 1 0 *Any boys wonder whether [the doctors went to art galleries.]
1 0 1 Those boys wonder whether [the doctors went to the art galleries.]
1 0 0 The boys wonder whether [the doctors went to art galleries.]
0 1 1 *Those boys say that [the doctors went to any art galleries.]
0 1 0 *Any boys say that [the doctors went to art galleries.]
0 0 1 Those boys say that [the doctors went to the art galleries.]
0 0 0 The boys say that [the doctors went to art galleries.]

Table 2: Example 2x2x2 paradigm using the Questions environment. The licensor (whether) or licensor replace-
ment (that) is in bold. The NPI (any) or NPI replacement (the) is in italics. When licensor=1, the licensor is present
rather than its replacement word. When NPI=1, the NPI is present rather than its replacement. The scope of the
licensor/licensor replacement is shown in square brackets (brackets, italicization, and boldface are not present in
the actual data). When scope=1, the NPI/NPI replacement is within the scope of the licensor/licensor replacement.
Unacceptable sentences are marked with *. The five minimal pairs are connected by arrows that point from the

unacceptable to the acceptable sentence.

nine NPI licensing environments (Table 1), and
two NPIs (any, ever). All but one licensor-NPI
pair follows a 2x2x2 paradigm, which manipu-
lates three variables: licensor presence, NPI pres-
ence, and the occurrence of an NPI within a licen-
sor’s scope. Each 2x2x2 paradigm forms 5 mini-
mal pairs. Table 2 shows an example paradigm.

Licensor presence indicates whether an NPI li-
censor is in the sentence. When the licensor is not
present, it is replaced by a word that does not li-
cense NPIs but has a similar structural distribu-
tion. Similarly, NPI presence indicates whether
an NPI is in the sentence or if it is replaced by a
non-NPI that has a similar structural distribution.
Scope indicates whether the NPI/NPI replacement
is within the scope of the licensor/licensor replace-
ment. The scope manipulation indicates whether
an NPI occurs within the syntactic scope of its li-
censor. As illustrated earlier in (3), a sentence con-
taining an NPI is only acceptable when the NPI
falls within the scope of the licensor.

The exception to the 2x2x2 paradigm is the

Simple Questions licensing condition, with a re-
duced 2x2 paradigm. It lacks a scope manipu-
lation because the question takes scope over the
entire clause, and in Simple Questions the clause
is the whole sentence. The paradigm for Simple
Questions is given in Table 3 in the Appendix, it
forms only 2 minimal pairs.

To generate the sentences, we create sentence
templates for each paradigm. Templates follow
the general structure illustrated in example (4),
in which the part-of-speech (auxiliary verb, deter-
miner, noun, verb), as well as the instance num-
ber is specified. For example, N2 is the second
instance of a noun in the template. We use these
labels here for illustrative purposes; in reality, the
templates also include more fine-grained specifi-
cations, such as verb tense and noun number.

“4) Aux]I DI N1 V1 any N2 ?
Has the guy seen any waitresses ?

Given the specifications encoded in the sentence
templates, words were sampled from a vocabulary
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Figure 1: Results from the acceptability judgment experiment in MCC. The columns indicate evaluation tests, and

the rows fine-tuning settings.

of over 1000 lexical items annotated with 30 syn-
tactic, morphological, and semantic features. The
annotated features allow us to encode selectional
requirements of lexical items, e.g. what types of
nouns a verb can combine with.> This avoids bla-
tantly implausible sentences.

For each environment, the training set contains
10K sentences, and the dev and test sets con-
tain 1K sentences each. Sentences from the same
paradigm are always in the same set.

In addition to our data set, we also test BERT on
a set of 104 handcrafted sentences from the NPI
sub-experiment in Wilcox et al. (2019), who use
a paradigm that partially overlaps with ours, but
has an additional condition where the NPI linearly
follows its licensor while not being in the scope of
the licensor. This is included as an additional test
set for evaluating acceptability classifiers in (6).

Data validation We use Amazon Mechanical
Turk (MTurk) to validate a subset of our sentences
to assure that the generated sentences represent a
real contrast in acceptability. We randomly sam-
ple five-hundred sentences from the dataset, sam-
pling approximately equally from each environ-
ment, NPI and paradigm. Each sentence is rated
by 20 different participants on a Likert scale of 1-
6, with 1 being “the sentence is not possible in En-
glish” and 6 being “the sentence is possible in En-
glish”. A Wilcoxon signed-rank test (Wilcoxon,
1945) shows that within each environment and
for each NPI, the acceptable sentences are more
often rated as acceptable by our MTurk valida-
tors than the unacceptable sentences (all p-values
< 0.001). This contrast holds considering both
the raw Likert-scale responses and the responses
transformed to a Boolean judgment. Table 4 in
the Appendix shows the participants’ scores trans-

3 All data and code used in sentence generation is available
on GitHub, and will be linked to upon acceptance.

formed into a Boolean judgment of O (unaccept-
able, score < 3) or 1 (acceptable, score > 4) and
presented as the percentage of ‘acceptable’ ratings
assigned to the sentences in a given condition.

5 Experimental Settings

We conduct our experiments with the jiant 0.9
(Wang et al., 2019) multitask learning and transfer
learning toolkit, the AllenNLP platform (Gardner
et al., 2018), and the BERT implementation from
HuggingFace.*

Models We study the following sentence under-
standing models: (i) GloVe BoW: a bag-of-words
baseline obtained by max-pooling of 840B tokens
300-dimensional GloVe word embeddings (Pen-
nington et al., 2014) and (ii) BERT (Devlin et al.,
2018): we use the cased version of BERT-large
model, which works the best for our tasks in pi-
lot experiments. In addition, since recent work
(Liu et al., 2019; Stickland and Murray, 2019) has
shown that intermediate training on related tasks
can meaningfully impact BERT’s performance on
downstream tasks, we also explore two additional
BERT-based models—(iii) BERT—MNLI: BERT
fine-tuned on the Multi-Genre Natural Language
Inference corpus (Williams et al., 2018), mo-
tivated both by prior work on pretraining sen-
tence encoders on MNLI (Conneau et al., 2017)
as well as work showing significant improve-
ments to BERT on downstream semantic tasks
(Phang et al., 2018; Bowman et al., 2018) (iv)
BERT—CCG: BERT fine-tuned on Combinatory
Categorial Grammar Bank corpus (Hockenmaier
and Steedman, 2007), motivated by Wilcox et al.’s
(2019) finding that structural supervision may im-
prove a LSTM-based sentence encoders knowl-
edge on non-local syntactic dependencies.

*https://github.com/huggingface/
pytorch-pretrained-BERT


https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
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Figure 2: Results from the minimal pair test. The top section shows the average accuracy for NPI detection, the
middle section shows average accuracy for licensor detection, and the bottom shows average accuracy of minimal
pair contrasts that differ scope. Within each section, we show performance of GloVe BoW and BERT models under
both absolute preference and gradient preference evaluation methods. The rows represent the training-evaluation
configuration, while the columns represent different licensing environments.

Training-Evaluation Configurations We are
interested in whether sentence representation
models learn NPI licensing as a unified property.
Can the models generalize from trained environ-
ments to previously unseen environments? To an-
swer these questions, for each NPI environment,
we extensively test the performance of the models
in the following configurations: (i) CoLA: train-
ing on CoLA, evaluating on the environment. (ii)
1 NPI: training and evaluating on the same NPI
environment. (iii) Avg Other NPI: training inde-
pendently on every NPI environment except one,
averaged over the evaluation results on that envi-

ronment. (iv) All-but-1 NPI: training on all envi-
ronments except for one environment, evaluating
on that environment. (v) A/l NPI: training on all
environments, evaluating on the environment.

6 Results

Acceptability Judgments The results in Fig. 1
show that BERT outperforms the BoW baseline on
all test data with all fine-tuning settings. Within
each BERT variants, MCC reaches 1.0 on all test
data in the I NPI setting. When the All-but-1
NPI training-evaluation configuration is used, the
performance on all NPI environments for BERT



drops. While the MCC value on environments
like conditionals and sentential negation remains
above 0.9, on the simple question environment
it drops to 0.58. Compared with NPI data fine-
tuning, CoL A fine-tuning results in BERT’s lower
performance on most of the NPI environments
but better performance on data from Wilcox et al.
(2019).

In comparing the three BERT variants (see full
results in Figure 5 in the Appendix), the Avg
Other NPI shows that on 7 out of 9 NPI environ-
ments, plain BERT outperforms BERT—MNLI
and BERT—CCG. Even in the remaining two en-
vironments, plain BERT yields about as good per-
formance as BERT—MNLI and BERT—CCG, in-
dicating that MNLI and CCG fine-tuning brings no
obvious gain to acceptability judgments.

Absolute and Gradient Minimal Pairs The
results (Fig.2) show that models’ performance
hinges on how minimal pairs differ. When tested
on minimal pairs differing by the presence of an
NPI, BoW and plain BERT obtain (nearly) per-
fect accuracy on both absolute and gradient mea-
sures across all settings. For minimal pairs differ-
ing by licensor and scope, BERT again achieves
near perfect performance on the gradient measure,
while BoW does not. On the absolute measure,
both BERT and BoW perform worse. Overall, it
shows that absolute judgment is more challenging
when targeting licensor, which involves a larger
pool of lexical items and syntactic configurations
than NPIs, and scope, which requires nontrivial
syntactic knowledge about NPI licensing.

As in the acceptability experiment, we find that
intermediate fine-tuning on MNLI and CCG does
not improve performance (see full results in Fig-
ures 6-8 in Appendix).

Cloze Test The results (Fig.3) show that even
without supervision on NPI data, the BERT MLM
can distinguish between acceptable and unaccept-
able sentences in the NPI domain. Performance
is highly dependent on the NPI environment and
type of minimal pair. Accuracy for NPI-detection
falls between 0.76 and 0.93 for all environments.
Accuracy for licensor-detection is much more
variable, with the BERT MLM achieving espe-
cially high performance in conditional, sentential
negation, and only environments; and low perfor-
mance in quantifier and superlative environments.
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Figure 3: Results of BERT MLM performance in the
cloze test. The top section shows the average accuracy
for NPI detection; the bottom section show the accu-
racy for licensor detection. The columns represent dif-
ferent licensing environments

Feature Probing Results (Fig.4) show that
plain BERT outperforms the BoW baseline in de-
tecting scope. As expected, BoW is nearly perfect
in detecting presence of NPI and licensor, as these
tasks do not require knowledge of syntax or word
order. Consistent with results from previous ex-
periments, licensor detection is slightly more chal-
lenging for models fine-tuned with CoLA or NPI
data. However, the overall lower performances in
scope detection compared with licensor detection
is not found in the minimal-pair experiments.

CoLA fine-tuning improves the performance for
BERT, especially for NPI presence. Fine-tuning
on NPI data improves scope detection. Inspection
of environment-specific results shows that models
struggle when the superlative, quantifiers, and ad-
verb environments are the held-out test sets in the
All-but-1 NPI fine-tuning setting.

Different from other experiments, BERT
and BERT—MNLI have comparable perfor-
mance across many settings and tasks, beating
BERT—CCG especially in scope detection (see
full results in Figure 9 in the Appendix).

7 Discussion

We find that BERT systematically represents all
features relevant to NPI licensing across most en-
vironments according to certain evaluation meth-
ods. However, these results vary widely across
the different methods we compare. In particular,
BERT performs nearly perfectly on the gradient
minimal pairs task (at ceiling) across all of mini-
mal pair configurations and nearly all licensing en-
vironments. Based on this method alone, we might
conclude that BERT’s knowledge of this domain is
near perfect. However, the other methods show a
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more nuanced picture.

BERT’s knowledge of which expressions are
NPIs and NPI licensors is generally stronger than
its knowledge of the licensors’ scope. This is es-
pecially apparent from the probing results (Fig. 4).
BERT without acceptability fine-tuning performs
close to ceiling on the licensor-detection prob-
ing task, but is inconsistent at scope-detection.
Tellingly, the BoW baseline is also able to per-
form at ceiling on the and licensor-detection prob-
ing task. For BoW to succeed at this task, the
GloVe embeddings for NPI-licensors must share
some common property, most likely the fact that
licensors co-occur with NPIs. It is possible that
BERT is able to succeed using a similar strategy.
By contrast, identifying whether an NPI is in the
scope of a licensor requires at the very least word
order information and not just co-occurrences.

The contrast in BERT’s performance on the gra-
dient and absolute tasks tells us that these evalu-
ations reveal different aspects of BERT’s knowl-
edge. The gradient task is strictly easier than the
absolute task. On the one hand, BERT’s high per-
formance on the gradient task reveals the presence
of systematic knowledge in the NPI domain. On
the other hand, due to ceiling effects, the gradi-
ent task fails to reveal actual differences between
environments that we clearly observe based on ab-
solute, cloze, and probing tasks.

While BERT has systematic knowledge of ac-
ceptability contrasts, this knowledge varies across
environments and is not categorical. Current lin-
guistic theory models human knowledge of natu-
ral language as categorical: In that sense BERT
fails at attaining human performance. However,
it is unclear whether humans themselves achieve

categorical performance. Results from an MTurk
study on human acceptability of our generated
dataset show non-categorical agreement with the
judgments in our dataset.

Supplementing BERT with additional pretrain-
ing on CCG and MNLI does not improve per-
formance, and even lowers performance in some
cases. While results from Phang et al. (2018)
lead us to hypothesize that intermediate pretrain-
ing might help, this is not what we observe on our
data. This result is in direct contrast with the re-
sults from Wilcox et al. (2019), who find that syn-
tactic pretraining does improve performance in the
NPI domain. This difference in findings is likely
due to differences in models and training proce-
dure, as their model is an RNN jointly trained
on language modeling and parsing over the much
smaller Penn Treebank (Marcus et al., 1993).

Future studies would benefit from employing
a variety of different methodologies for assessing
model performance withing a specified domain. In
particular, a result showing generally good perfor-
mance for a model should be regarded as possi-
bly hiding actual differences in performance that
a different task would reveal. Similarly, generally
poor performance for a model does not necessar-
ily mean that the model does not have systematic
knowledge in a given domain; it may be that an
easier task would reveal systematicity.

8 Conclusion

We have shown that within a well-defined domain
of English grammar, evaluation of sentence en-
coders using different tasks will reveal different
aspects of the encoder’s knowledge in that domain.
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Appendix

Lic. NPI Sentence

Has the guy worked with any teenagers?
Has the guy worked with the teenagers?
*The guy has worked with any teenagers.
The guy has worked with the teenagers.

OO~ —
S = O =

Table 3: Reduced paradigm for Simple questions.
“Lic.” is abbreviated from “Licensor”. The licensor
and licensor replacement are shown in bold (has in both
cases). The NPI (any) and NPI replacement (the) are
shown in italics. There is no scope manipulation be-
cause it is not possible to place an NPI or NPI replace-
ment outside of the scope of an interrogative or declar-
ative phrase. The 2 minimal pairs are shown by arrows,
pointing from unacceptable to acceptable sentence.

Environment Label % accept Diff

Adverb ; 7?)(3)8 61.67
Conditionals y a2 50.00
mgion v ov00 T8
desions v oy 8917
Only y ooy 8444
egation ¢ s 22
queions ¢ asn 0297
Superlatives ‘j 7288 66.67
Quantifiers Y on 5083

Table 4: Results from MTurk validation. ‘Environ-
ment’ is the name of the licensing environment and ‘la-
bel’ is whether the sentence was intended as acceptable
(v') or unacceptable (*). The results of the validation
ratings is in ‘% accept’ and represents the majority vote
for each sentence as acceptable/unacceptable and then
averaged to give the percentage of times a sentence in a
given condition was rated as acceptable by the MTurk
raters. ‘Diff’ is calculated from the % of acceptable
sentences rated acceptable minus the % of unaccept-
able sentences rated acceptable (100 is a perfect score,
0 means there is no difference).
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Figure 5: Results from the acceptability judgment experiment in MCC. The columns indicate evaluation tests, and
the rows fine-tuning settings.
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Figure 7: Results from minimal pair test for the licensor-presence contrast. The smaller diagrams of each sector
show performance of BoW and BERT variants under two different minimal pair evaluation methods. The rows
represent training-evaluation configuration, while the columns represent different licensing environments.
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Figure 8: Results from minimal pair test for the scope contrast. The smaller diagrams of each sector show
performance of BoW and BERT variants under two different minimal pair evaluation methods. The rows represent
training-evaluation configuration, while the columns represent different licensing environments.
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