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ABSTRACT

The reparameterization trick has become one of the most useful tools in the field of
variational inference. However, the reparameterization trick is based on the stan-
dardization transformation which restricts the scope of application of this method
to distributions that have tractable inverse cumulative distribution functions or are
expressible as deterministic transformations of such distributions. In this paper,
we generalized the reparameterization trick by allowing a general transformation.
Unlike other similar works, we develop the generalized transformation-based gra-
dient model formally and rigorously. We discover that the proposed model is a
special case of control variate indicating that the proposed model can combine
the advantages of CV and generalized reparameterization. Based on the proposed
gradient model, we propose a new polynomial-based gradient estimator which has
better theoretical performance than the reparameterization trick under certain con-
dition and can be applied to a larger class of variational distributions. In studies of
synthetic and real data, we show that our proposed gradient estimator has a signif-
icantly lower gradient variance than other state-of-the-art methods thus enabling
a faster inference procedure.

1 INTRODUCTION

Most machine learning objective function can be rewritten in the form of an expectation:

L =Eg)lfo(2)] (1)

where 0 is a parameter vector. However, due to the intractability of the expectation, it’s often impos-
sible or too expensive to calculate the exact gradient w.r.t 8, therefore it’s inevitable to estimate the
gradient Vg L in practical applications. Stochastic optmization methods such as reparameterization
trick and score function methods have been widely applied to address the stochastic gradient esti-
mation problem. Many recent advances in large-scale machine learning tasks have been brought by
these stochastic optimization tricks. Like in other stochastic optimzation related works, our paper
mainly focus on variational inference tasks.

The primary goal of variational inference (VI) task is to approximate the posterior distribution in
probabilistic models (Jordan et al. {1999; Wainwright & Jordan, [2008)). To approximate the in-
tractable posterior p(z|x) with the joint probability distribution p(x,z) over observed data x and
latent random variables z given, VI introduces a parameteric family of distribution gg(z) and find
the best parameter 6 by optimizing the Kullback-Leibler (KL) divergence Dxkr,(q(z; 0)||p(z|x)).
The performance of VI methods depends on the capacity of the parameteric family of distributions
(often measured by Rademacher complexity) and the ability of the optimizer. In this paper, our
method tries to introduce a better optimizer for a larger class of parameteric family of distributions.

The main idea of our work is to replace the parameter-independent transformation in reparame-
terization trick with generalized transformation and construct the generalized transformation-based
(G-TRANS) gradient with the velocity field which is related to the characteristic curve of the sublin-
ear partial differential equation associated with the generalized transformation. Our gradient model
further generalizes the G-REP (Ruiz et al., 2016)) and provides a more elegant and flexible way to
construct gradient estimators. We mainly make the following contributions:

1. We develop a generalized transformation-based gradient model based on the velocity field
related to the generalized transformation and explicitly propose the unbiasedness constraint
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on the G-TRANS gradient. The proposed gradient model provides a more poweful and
flexible way to construct gradient estimators.

2. We show that our model is a generalization of the score function method and the reparame-
terization trick. Our gradient model can reduce to the reparameterization trick by enforcing
a transport equation constraint on the velocity field. We also show our model’s connection
to control variate method.

3. We propose a polynomial-based gradient estimator that cannot be induced by any other
existing generalized reparameterization gradient framework, and show its superiority over
similar works on several experiments.

The rest of this paper is organized as follows. In Sec[2] we review the stochastic gradient varia-
tional inference (SGVI) and stochastic gradient estimators. In Sec[3] we propose the generalized
transformation-based gradient. In Sec] we propose the polynomial-based G-TRANS gradient esti-
mator. In Sec[5| we study the performance of our gradient estimator on synthetic and real data. In
Sec[f] we review the related works. In Sec[7] we conclude this paper and discuss future work.

2  STOCHASTIC VARIATIONAL INFERENCE

To obtain the best variational parameter 6, rather than minimize the KL divergence
Dx1.(q(z;0)||p(z]x)), we usually choose to maximize the evidence lower bound (ELBO) (Jordan
et al.,|{1999),

L(0) = Eq(z0)[/f(2)] + Hlq(z; 0)] 2)

where f(z) = logp(x,z) and H[q(z; 0)] = Eg(,6)[—logq(z; 8)]. The entropy term Hq(z; 0)] is
often assumed to be available analytically and usually omitted in the procedure of stochastic opti-
mization. This stochastic optimization problem is the basic setting for our method and experiments.
Without extra description, we only consider the simplified version of the ELBO:

L= Eq(z;@) [f(Z)] (3)

Generally, this expectation is intractable to compute, let alone its gradient. Therefore, a common
stochastic optimization method for VI task is to construct a Monte Carlo estimator for the exact
gradient of the ELBO w.r.t 8. Among those gradient estimators, the score function method and the
reparamterization trick are most popular and widely applied.

Score function method. The score function estimator, also called log-derivative trick or reinforce
Glynn|(1990); Williams|(1992)) is a general way to obtain unbiased stochastic gradients of the ELBO
(Paisley et al.,|2012} Ranganath et al.,2014;|Mnih & Gregor},[2014). The simplest variant of the score
function gradient estimator is defined as:

VoL = By ()| f(2)Velog go(2)] @)

and then we can build the Monte Carlo estimator by drawing samples from the variational distribu-
tion gg(z) independently.

Although the score function method is very general, the resulting gradient estimator suffers from
high variance. Therefore, it’s necessary to apply variance reduction (VR) methods such as Rao-
Blackwellization (Casella & Robert,|1996) and control variates (Robert & Casellal [2013)) in practice.

Reparameterization trick. In reparameterization trick, we assume that there is an invertible and
continuously differentiable standardization function ¢(z, 0) that can transform the variational dis-
tribution ¢(z; @) into a distribution s(p) that don’t depend on the variational parameter 0 as follows,

#(z,0)=p~s0), z=ady (p)

Then the reparameterization trick can turn the computation of the gradient of the expectation into
the expectation of the gradient:
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VoE 2| f(2)] = Egp)[VoS (¢4 (p))]

Although this reparameterization can be done for many commonly used distributions, such as the
Gaussian distribution, it’s hard to find appropriate standardization functions for a number of standard
distributions, such as Gamma, Beta or Dirichlet because the standardization functions will inevitably
involve special functions. On the other hand, though the reparameterization trick is not as generally
applicable as the score function method, it does result in a gradient estimator with lower variance.

3 THE GENERALIZED TRANSFORMATION-BASED GRADIENT MODEL

Define a random variable p by an invertible differentiable transformation p = ¢(z, 8), where ¢ is
commonly called generalized standardization transformation (Ruiz et al., 2016)) since it’s dependent
on the variational parameter 6.

Theorem 3.1. Let 0 be any component of the variational parameter 0, the probability density func-
tion of p be w(p, 8) and L = Ey, ¢)[f(2)]. Then
(1) 55(P:0)lp=p(.0) = rvra@ay (554(2:0) + Vi - (a(2,0)v’(2,9)))

(2) 2% = Ey(5,0) [ 25U f(2) + LoV, - (f(2)q(2.0)v! (2, 0))]

where
dz 0¢p(z,0)
] _ Gz _ J
v?(z, 0) is often referred to as velocity field, and the Equ above is called velocity field equation.

The Monte Carlo estimator %—g for g—‘g is unbiased only when v?(z, 8) satisfy the unbiasedness

constraint:

1
qu[ivz : (fqeve)] =0 (6)
qe

The proof details of the Theorem[3.T]are included in the Appendix[A.T]

We refer to the gradient %—g with v? satisfying the unbiasedness constraint as generalized

transformation-based (G-TRANS) gradient. We can construct the G-TRANS gradient estimator
by choosing v? of specific form. In the following, we demonstrate that the score function gradient
and reparameterization gradient are special cases of our G-TRANS gradient model associating with
special velocity fields.

Remark. The score function method is a special case of the G-TRANS model when f(z)q(z, 0)v® =
const.

The standardization function ¢ doesn’t depend on the parameter & when v’ = 0 according to the
velocity field equation (Equ)S). Conversely, for any ¢ that doesn’t depend on 6, we have v/ =
—(Vz¢(z, 0))% = 0, thus the resulting gradient estimator has a same variance as the score
function estimator.

Remark. The reparameterization trick is a special case when % (P, 0)|p=¢(2,6) = 0, that’s to say

o 4(2,0) Vs - (402, 0%") = 0 g
The detailed computation to obtain the transport equation (Equ[7) is included in the Appendix[A.T]
The transport equation is firstly introduced by (Jankowiak & Obermeyer; |2018), however, their
work derive this equation by an analog to the optimal transport theory. In 1-dimensional case, for
any standardization distributions w(p) that doesn’t depend on the parameter 8, the variance of the
resulting gradient estimator is some constant (for fixed #) determined by the unique 1-dimensional
solution of the transport equation.
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Remark. Let g(z,0) = —V, - (f(2)q(2,0)v(2,0)), then 25 = E,(, 0)[2E4=0) f(5) _

q(zﬁ)g(z,e)]. C(z,0) = mg(z,@) can be viewed as a control variable with pc =
E[C(z,0)] = 0.

For the existence of the velocity field v? and the generalized standardization transformation ¢(z, ),
9(z,0) must satisfy some strong differential constraints (Evansl 2010). We can see that the G-
TRANS model is a special case of the control variate method with a complex differential structure.
This connection to CV means our gradient model can combine the advantages of CV and generalized
reparameterization.

Theorem[3.1] transforms the generalized unbiased reparameterization procedure into finding the ap-
propriate velocity field that satisfy the unbiasedness constraint. It’s possible to apply variational
optimization theory to find the velocity field with the least estimate variance, however, the solution
to the Euler-Lagrange equation contains f(z) in the integrand which makes it impractical to use in
real-world model (See Appendix[A.2]for details).

By introducing the notion of velocity field, we provide a more elegant and flexible way to construct
gradient estimator without the need to compute the Jacobian matrix for a specific transformation.
In the next section, we introduce a polynomial-based G-TRANS gradient estimator that cannot be
incorporated into any other existing generalized reparameterized gradient framework and is better
than the reparameterization gradient estimator theoretically.

4 THE POLYNOMIAL-BASED G-TRANS GRADIENT ESTIMATOR
In this section, we always assume that the base distribution ¢(z, 8) can be factorized as H q:i(2:,0;)

where N is the dimension of the random variable z, 6; is a slice of @ and 8; share no component
with 6, if 7 # j. We consider an ad-hoc velocity field family:

hz,0) 6:(0) [* 0q(z',6)
] - (_ .
viale0) = (SRR | e ®
with
__J1 0isacomponent of 8;
%(0) = {O otherwise ©

We always assume VZ ;, to be continuous which guarantees the existence of the solution to the veloc-
ity field equation. We verify in the Appendix that VZ 1 (2, 0) satisfy the unbiasedness constraint
if h(z, @) is bounded.

0

It’s easy to see that the gradient estimator that results from v, is more general than the score
function method or reparameterization trick since they are two special cases when h(z,0) = 0
or h(z,0) = f(z) respectively. In this paper, we mainly consider a more special family of the

vi (z,0

“hate0) = (HEGEOLE [ 0GRy o
k

where Py (z,0) = ) ST Ci(@)2]" - 2] is an polynomial of degree k. A dual form of
i=0 1+ Fin=i

V01, (2,0) is that vi (2,0) = (— Pr ((zz,)e) qg('iz(%)) [~ aq(z’,o) dz!), but their properties are similar (we
present some theoretical results of v? ap in the Appendlx . Therefore we only consider vpol Y (z,0)

here. We refer to vpol as polynomial velocity field.

Proposition 4.1. For distributions with analytical high order moments such as Gamma, Beta or
Dirichlet distribution, the expectation E(; ¢\ Px(z, 0) % log q] has an analytical expression.
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Proof. Bg[Py(2,0) 2 logq] = ZE,[Pi] — Eg[2 Py]. Both Py(z,6) and 2 Py, (z,0) are polyno-
mials of random variable z. Therefore, for distribution with analytical high order moments, E, [Px]
and Eq[%Pk] both have analytical expressions, thus so does E,, ¢ [Pk (z, €) % log q]. O

With Proposition 4.1 we can write the G-TRANS gradient for the polynomial velocity field as:

oL dlogq(z, 0 1
55 = Eatn | A 1) 4 L (12002, 6) Vi (2,6))|
v (11)
B 1 0(f—P % 9g(2,0)
=Ey(z,0) [Pk(z,e)aglogq} —Ey(0) 55 %@(9)/ Q(;G)dzll

Thus we can construct a G-TRANS gradient estimator based upon the polynomial velocity field with
a sample z drawn from ¢(z, 8):

o _ O e PN e g
89 - ]E‘Z(Z,G) [Pk(z7 0) 80 log Q}(Z) - Z 8Zi 57(9) q(z, 0) dZi (12)

%

The polynomial-based G-TRANS gradient estimator has a form close to control variate, thus cannot
be induced by any other existing generalized reparameterized gradient framework. In the following,
we show that the polynomial-based G-TRANS gradient estimator performs better than the reparam-
eterization gradient estimator under some condition.

Proposition 4.2. If Cov(mz\(z, 0) - Vi(Py), ﬁA(z, 0) - Vu(2f — P.)) > 0 where
A(z,0) = (61(0) [, %é’g)dz{, N (0) [ %(;’e)dzf\,), then the gradient estimator re-
sulted from polynomial velocity field has a smaller variance than the reparameterization gradient
estimator.

Proof. Since E,[Py(z, 0) % log g] can be resolved analytically, we have

dlogq 1 0. of — P [T qi(2),0;)dz,
V 7Vz . @ — V _ [ 7
a5/ + . (fqv™)) = Var(= =7~ PERN )
then by reorganizing the expression Var(— 52 %W) — Var(—2L-L% A ;_i((j,_’i ’g_i))dzi ), we
can prove this proposition. O

Remark. As an example about how to choose a good polynomial, for Pi(z,0) = Cy(0) +

S 2Cov("bzi 9i(2},0:)d=] oy [%ia;(2].0;)dz]
> Ci(0)z, by choosing C;(60) € (0,
i=1

4;(24,0;) 9z 9 (24,84)
J7i a5 (=f.05)d=]  [%i q;(=].0,)d=]
Cov( 4;(2;,0;) b 4i(24,0;)
polynomial-based G-TRANS gradient estimator that is better than the reparameterization gradi-
ent estimator according to the Proposition. And we can adjust the value of C;(0) to obtain

better performance.

), we can obtain a

According to the approximation theory, we can always find a polynomial Py (z,8) that is close
enough to f(z), and in this case, we can dramatically reduce the variance of the resulting gradient
estimator. For example, within the convergence radius, we can choose Pj(z,6) to be the k-th
degree Taylor polynomial of f(z) with the remainder | f(z) — Px(z, 0)| being small. In the practical
situation, however, it’s often difficult to estimate the coefficients of the polynomial Py (z,8). And
when £ is large, we need to estimate O(N*) coefficients which is almost impossible in real-world
applications. Therefore in the following experiments, we only consider k& < 2.
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5 EXPERIMENT

5.1 SYNTHETIC EXPERIMENT

In this section, we use a Dirichlet distribution to approximate the posterior distribution for a pro-
bilistic model which has a multinomial likelihood with a Dirichlet prior. We use Gamma distri-

butions to simulate Dirichlet distributions. If z; ~ Gamma(c;, 1), then (E 2 ..., > ZI ~
j=17%i j=17%i

Dirichlet(c, . . ., ak). Then the problem we study here can be written as:

” K
Bytwe @) = [ 1) [] Gamma(zssan. 1)z (13)

P k=1

with f(z) being the multinomial log-likelihood.

We use shape parameter « = (o, ...,ax) to parameterize the variational Dirichlet distribu-

tion. To construct polynomial-based G-TRANS gradient estimator for the factorized distribution

H,f:l Gamma(zy; o, 1), we need an accurate and fast way to approximate the derivative of the
lower incomplete gamma function (part of the gamma CDF) w.r.t the shape parameter.

The lower incomplete gamma function v(«, z) is a special function and does not admit analytical
expression for derivative w.r.t. the shape parameter. However, for small « and z, we have

v(a, 2 = (=1)kzkte Inz -1
" ):Z( )k! (oz—|—k+(oz(—|—k))2)

(14)

In practice, we take the first 200 terms from this power series. And the approximation error is smaller
than 1072 when o < 5 and z < 20 with double precision floating point number. For large o, we
use central finite difference to approximate the derivative. This approximation scheme for lower
incomplete gamma function can also be used to construct polynomial-based G-TRANS gradient
estimator for distributions that can be simulated by the Gamma distribution such as Beta distribution
and Dirichlet distribution.

We follow the experiment setting in Naesseth et al.| (2017). Fig[l] shows the resulting variance of
the first component of the gradient based on samples simulated from a Dirichlet distribution with
K = 100 components, and gradients are computed with N = 100 trials. We use P;(z) = ¢ - z to
construct the G-TRANS gradient estimator, and we assign 0.2,0 and —0.1 to c successively as o
increases.

Results. From Fig{I] , we can see that the IRG (Figurnov et al., 2018)) method and our G-TRANS
gradient estimator has obviously lower gradient variance than the RSVI (even with the shape aug-
mentation trick (Naesseth et al.,[2017))) or G-REP (Ruiz et al.,[2016) method. Further, our G-TRANS
gradient estimator outperforms the IRG method when «; is large though there is no obvious differ-
ence between these two methods when «; is small.

5.2 REAL WORLD DATASET

In this section, we study the performance of our G-TRANS gradient estimator on the Sparse Gamma
deep exponential family (DEF) model (Ranganath et al., 2015) with the Olivetti faces dataset that
consists of 64 x 64 gray-scale images of human faces in 8 bits. We follow the Sparse Gamma DEF
setting in|Naesseth et al.|(2017)) where the DEF model is specified by:

o
thk ~ Gamma | o, ﬁ
Dk W k' Zn, k!
Poi 0 1
Zp,q ~ Poisson Wi d%n k

k

15)
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10° . ——-- G-REP

RSVI (B=0)

RSVI (B =10)

G-TRANS (C=0.2,0, = 0.1)

Figure 1: Polynomial-bsaed G-TRANS gradi-
ent estimator (this paper) obtains lower variance
compared to IRG, RSVI and G-REP. The es-
timated variance is for the first component of
Dirichlet approximation to a multinomial like-
lihood with uniform Dirichlet prior (Naesseth
et al, 2017). C is the polynomial coefficient,

1e7

ELBO
a

G —TRANS(c= —10)

10° 10' 10 10° 10*
Time [s]

Figure 2: Polynomial-bsaed G-TRANS gradient
estimator (this paper) achieves better accuracy
than ADVI, BBVI (Ranganath et al.l 2014)), G-
REP, RSVI. G-TRANS is faster than the IRG
method with comparable accuracy. This exper-
iment apply the sparse gamma DEF model to the
Olivetti faces dataset. dataset

B denotes shape augmentation (Figurnov et al.,
2018)) and optimal concentration is o = 2.

Here n is the number of observations, ¢ is the layer number, k denotes the k-th component in a
specific layer and d is the dimension of the output layer (layer 0). zfl’ ;. 18 local random variable,

wi « 1s global weight that connects different layers like deep neural networks, and x,, 4 denotes the
set of observations.

We use the experiment setting in |Naesseth et al.| (2017). «, is set to 0.1, all priors on the weights
are set to Gamma(0.1,0.3), and the top-layer local variables priors are set to Gamma(0.1,0.1).
The model consists of 3 layers, with 100, 40, and 15 components in each. All variational Gamma
distributions are parameterized by the shape and mean. For non-negative variational parameters 6,
the transfomration @ = log(1 + exp(1#)) is applied to avoid constrained optimization.

In this experiment, we use the step-size sequence p™ proposed by Kucukelbir et al.| (2017):

Pt =1 n~1/2+5 (1 + /S")_l

16
§" =t (gn)Q + (1 _ t)sn_l ( )

§ = 10716t = 0.1,7 = 0.75 is used in this experiment. The best result of RSVI is reproduced
with B = 4 (Naesseth et al.,2017). We still use P;(z) = c - z to construct the G-TRANS gradient
estimator and we use ¢ = —10.0 for all time.

Results. From Fig[?] We can see that G-TRANS achieves significant improvements in the first 1000
runs and exceeds RSVI though with a slower initial improvement. G-TRANS achieves obviously
better accuracy than ADVI, BBVI, G-REP and RSVI, and keeps improving the ELBO even after
75000 runs. G-TRANS is faster than the IRG in early training stage which means G-TRANS has
a lower gradient variance. However, this speed advantage of G-TRANS gradually decreases as the
step size goes down in the later training stage.

6 RELATED WORK

There are already some lines of research focusing on extending the reparameterization trick to a
larger class of distributions. The G-REP (Ruiz et al.| 2016)) generalizes the reparameterization gra-
dient by using a standardization transformation that allows the standardization distribution to depend
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weakly on variational parameters. Our gradient model gives a more elegant expression of the gen-
eralized reparameterized gradient than that of G-REP which decomposes the gradient as grep + geor-
Different from G-REP, our model hides the transformation behind the velocity field thus the expen-
sive computation of the Jacobian matrix of the transformation is evaded. And it’s more flexible to
construct gradient estimator with the velocity field than the very detailed transformation. The RSVI
(Naesseth et al.,[2017) develops a similar generalized reparameterized gradient model with the tools
from rejection sampling literatures. RSVI introduces a score function gradient term to compensate
the gap that is caused by employing the proposal distribution of a rejection sampler as a surrogate
distribution for reparameterization gradient, although the score function gradient term can often be
ignored in practice to reduce the gradient variance at the cost of small bias. Unlike RSVI, our gradi-
ent estimator can be constructed with deterministic procedure which avoids the additional stochas-
ticity introduced by the accept-reject steps thus lower gradient variance. The path-wise derivative
(Jankowiak & Obermeyer;, 2018)) is closely related to our model. They obtain the transport equation
by an analog to the displacement of particles, while we derive the transport euqation for reparam-
eterization gradient by rigorous mathematical deduction.The path-wise gradient model can be seen
as a special case of our G-TRANS gradient model. Their work only focus on standard reparameter-
ization gradient while our model can admit generalized transformation-based gradient. The velocity
field used in their work must conform to the transport equation while we only require the velocity
field to satisfy the unbiasedness constraint. The implicit reparameterization gradient (IRG) (Fig-
urnov et al., 2018) differentiates from the path-wise derivative only by adopting a different method
for multivariate distributions.

There are also some other works trying to address the limitations of standard reparameterization.
Graves| (2016) applies implicit reparameterization for mixture distributions and |[Knowles| (2015
uses approximations to the inverse CDF to derive gradient estimators. Both work involve expensive
computation that cannot be extended to large-scale variational inference. [Schulman et al.| (2015
expressed the gradient in a similar way to G-REP and automatically estimate the gradient in the
context of stochastic computation graphs, but their work is short of necessary details therefore cannot
be applied to general variational inference task directly. ADVI (Kucukelbir et al.,[2017) transforms
the random variables such that their support are on the reals and then approximates transformed
random variables with Gaussian variational posteriors. However, ADVI struggles to approximate
probability densities with singularities as noted by Ruiz et al.| (2016).

7 CONCLUSION

We proposed a generalized transformation-based (G-TRANS) gradient model which extends the
reparameterization trick to a larger class of variational distributions. Our gradient model hides the
details of transformation by introducing the velocity field and provides a flexible way to construct
gradient estimators. Based on the proposed gradient model, we introduced a polynomial-based
G-TRANS gradient estimator that cannot be induced by any other existing generalized reparameter-
ization gradient framework. In practice, our gradient estimator provides a lower gradient variance
than other state-of-the-art methods, leading to a fast converging process. For future work, We can
consider how to construct G-TRANS gradient estimators for distributions that don’t have analyt-
ical high-order moments. We can also utilize the results from the approximation theory to find
certain kinds of high-order polynomial functions that can approximate the test function effectively
with cheap computations for the coefficients. Constructing velocity fields with the optimal transport
theory is also a promising direction.
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A APPENDIX

A.l1 PROOF OF THEOREM[3.]]

We assume that transformed random variable p = ¢(z, 0) is of the same dimension as z. And we

assume that there exists ¥ (p, 0) that satisfy the constraint z = ¥ (¢(z, 0), 9).

Firstly, by the change-of-variable technique, we have

’U)(p, 0) = Q(Za 0)|det(vp¢(p7 0))'

Take derivative w.r.t # (any component of ) at both sizes, we have

B w(p.0) = 9|det<va<p,e>>|*q<z7e>+%q<z 0) * |det(V (p.0)|

+(Vaq(2,0) - ) *|det(Vp3h(p, )]

00

With the rule of determinant derivation, we have

AV, 0))] = [t (V (0, 0))] = (Vb (,0)) " 29 b (. 0))

Substitute the Equ[T9)into Equ[T8] we have

sow(p,8) = |det(V,p1p(p,0))|(tr((Vp1h(p,0) ™" 55V o1 (p, 0)) * 4(2, 6)
+ 554(2,0) + (Vza(2,0) - 32))

= |det(Vp9(p, 0))[(tr((V p@b(pﬁ))’la%vplﬂ(f),@))*q(zae)

+ 550(2,0) + (V2a(2,0) - 559(p, 0))

= [det(V 3 (p, 0 ))I(tr(V ®(2,0) 5V o (p,0)) * (2,0)
+ 554(2,0) + (V24(2,0) - 54(p, 0))

Since we have V,9(¢(z,0),0) = V,h(p, 0)| p—¢(2,6)V20(2, 0), then

%w((ﬁ(z, 0)7 0) = m(tr(vz(b(za 0)%Vp¢(pa 0)|p=¢(z,0)) * Q(Zv 0)
+ %54(2,0) + (V44(2,0) - Z9(p,0)|p=p(2.0))
W( (@ ;ﬂ/’(Pv9)|p:¢>(z,9)vz¢(279))*CI(Z79)
+ £54(2,0) + (V24(2,0) - 54(p,0)|p=gp(2.0))
= W( (ae( p’l/f(Pv 9)‘P:¢(Z,0)Vz¢(z70))) *q(z, 0)
+ 250(2,0) + (V44(2,0) - Z59(0,0)| p=p(2.0))
= m(tr(%vzw(qﬁ(z, 0),0)) * q(z,0)
+ 554(2,0) + (V2a(2.0) - 559(p,0)| p—p(2.0))
W( r(V z%¢(p,9)|p:¢(z,9))*q(Z,G)
+ QQQ( ) ( ZQ(Z 0) %¢(pa0)|p=¢(z,0))
= rmicvgmon (1(Va(a(2,0) 9 (0,0) | p=p(z.0))) + 554(2,6))
= mioagamon (2542 0) + Vi - (4(2,0) 59 (p,0) | p=p(s.0)))

Then let v (z, 8) = Bew( P,0)|p—(2,6), We obtain the first conclusion of the Theorem.

As for the second part, we have
Ewp.0)[f(¥(p,0))] = Ey(z,0)[f(2)]

Then
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0 0
%E‘I(Z,B) [f(Z)] = %]Ew(l’vg) [f(,l’b(p7 0))] (20)
B 9 0
= %Ew(p,ﬂ) [vzf(z)|z:¢(p,9)%w(pa 0) + f(’l/f( ))69 logw(p7 0)}
Since -2; logw(p, 8) = grw(p) _ za1(0:0)
5g ‘ogw(p, — w(p,) T q(z,0)[det(V,o(p,0))]

Then we have

5B(2.0)[f (2)] = Eu(.0) [V S (2) s=yp(p.0) 25 ¥ (0. ) + [ (%(p, 0)) &5 log w(p, 6)]
= Ey(2.0) [V f (2) 590, 0)| peop(n,0) + [(2) 55 1og w(p, 0)| p=p(2.0)] e
f >§’ 0) - o

( P(P,0)lp=pa0) + [ (2) 267V (0(2,0) 559 (p, )| o—p(n.0)) +/ (2) 25
= Eyn0)[f(2) (; 9) il Va - (F(@)a(2,0) 5% (0,0)| o))

= Eqy(z0)lf (Z) oy t+ qway Ve (f(2)a(z,0)v")]

Thus we obtain the second part of the Theorem[3.T] Proof ends.

_Eq(ZB[ z

As a by-product, if we make %w((ﬁ(z, 6),0) = 0, we can obtain the transport equation for the
reparameterization trick:

q(2,0) + V.- (¢(z,0)=-v") =0 Q1)

2 2
00 00

And 89w(¢)(z7 0),6) = 0 also means that the standardization distribution is independent with 6
which is the core of the reparameterization trick.

A.2 VARIANCE VARIATIONAL OPTIMIZATION

For the simplicity of the proof, we only consider the 1-dimensional here. @ And denote
Ologq(z,0

020 () 4 L9 (f(2)q(=, 010" (2, 6)) as 7= 6).

The variance of the G-TRANS gradient with [V independent samples is defined as:

Var(32) = L Var(r(z.6)) = & (By(e)[((2.0))%] — (Eyeplr(z.0)?)

9q(z,6)

where with the unbiased constraint, we have Eq(. 9)[r(2,0)] = Eq(. 0 [f(z)%] = const, S0 we
need to consider the term E,(, ¢)[(r? (2, 6))?] only.
p “+o0 9q 1d
Byl 000 = [ (P2 42 () Pads @2)

According to the Euler-Lagrange equation, we have

d . % 14 d d % 14
WW% + Eg(fqve))%] = T 30 [(f% + §£(fqvg))2q] (23)

Simplify it, we have

9q
0B g Ly = L ® 1 ey @9

Then we have

11
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which means

Thus we have

: )
_ %/ aC(6) — f 5k

which is usually intractable in real world practice.

A.3 UNBIASEDNESS CONSTRAINT VERIFICATION

(25)

(26)

27)

Here we verify that v?, (z, 0) satisfy the unbiasedness constraint if h(z, 0) is bounded. Let 6; be

any component of 8;, then

1 0 _[10 % 0q(2',0)
/qu (qfvah)qdz—/qazz_( h(z,H)/ 789 dz;)qdz

0 afb(
8Zi(fh(z,H)/ 39 2)dz; Hq] 2j,0;)dz;
J#i
= aqi('zz{’ 01) /
/qu 25,0;)dz; / z, / ————dz;)dz;
oy 0z 00;
If h(z, ) is bounded, we have
+oo

=0

9 7 0qi(2,0i) 7 0qi(2,0:)
5o (~h(z.0) / o) dl)dzs = ~(h(2.) / o))

Therefore, qu[ (fqev?)] f V. - (¢fvY )qdz = 0.

— 00

A.4 DUAL POLYNOMIAL VELOCITY FIELD

(28)

(29)

If we take the dual polynomial velocity field Vzp in the G-TRANS framework, we can reach a dual

result to the Proposition 4.2}

Proposition A.1. If Cov(Pk%W, (2f — Py) Bl()ga#e(z,e)) > 0, then the gradient estimator
resulted from dual polynomial velocity field has a smaller gradient variance than the score function

gradient estimator.

The proof is similar to that of Proposition[4.2]
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