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ABSTRACT

Discovering and exploiting the causal structure in the environment is a crucial challenge
for intelligent agents. Here we explore whether modern deep reinforcement learning can
be used to train agents to perform causal reasoning. We adopt a meta-learning approach,
where the agent learns a policy for conducting experiments via causal interventions,
in order to support a subsequent task which rewards making accurate causal inferences.
We also found the agent could make sophisticated counterfactual predictions, as well
as learn to draw causal inferences from purely observational data. Though powerful
formalisms for causal reasoning have been developed, applying them in real-world
domains can be difficult because fitting to large amounts of high dimensional data
often requires making idealized assumptions. Our results suggest that causal reasoning
in complex settings may benefit from powerful learning-based approaches. More
generally, this work may offer new strategies for structured exploration in reinforcement
learning, by providing agents with the ability to perform—and interpret—experiments.

1 INTRODUCTION

Many machine learning algorithms are rooted in discovering patterns of correlation in data. While this
has been sufficient to excel in several areas (Krizhevsky et al., 2012; Cho et al., 2014), sometimes the
problems we are interested in are fundamentally causal. Answering questions such as “Does smoking
cause cancer?” or “Was this person denied a job due to racial discrimination?” or “Did this marketing
campaign cause sales to go up?” all require an ability to reason about causes and effects and cannot be
achieved by purely associative inference. Even for problems that are not obviously causal, like image
classification, it has been suggested that some failure modes emerge from lack of causal understanding.
Causal reasoning may be an essential component of natural intelligence and is present in human babies,
rats and even birds (Leslie, 1982; Gopnik et al., 2001; 2004; Blaisdell et al., 2006; Lagnado et al., 2013).
There is a rich literature on formal approaches for defining and performing causal reasoning (Pearl, 2000;
Spirtes et al., 2000; Dawid, 2007; Pearl et al., 2016).

Here we investigate whether procedures for learning and using causal structure can be produced by
meta-learning. The approach of meta-learning is to learn the learning (or inference) procedure itself,
directly from data. We adopt the specific method of Duan et al. (2016) and Wang et al. (2016), training
a recurrent neural network (RNN) through model-free reinforcement learning. We train on a large family
of tasks, each underpinned by a different causal structure.

The use of meta-learning avoids the need to manually implement explicit causal reasoning methods in an
algorithm, offers advantages of scalability by amortizing computations, and allows automatic incorporation
of complex prior knowledge (Andrychowicz et al., 2016; Wang et al., 2016; Finn et al., 2017). Additionally,
by learning end-to-end, the algorithm has the potential to find the internal representations of causal
structure best suited for the types of causal inference required.

2 PROBLEM SPECIFICATION AND APPROACH

This work probed how an agent could learn to perform causal reasoning in three distinct settings –
observational, interventional, and counterfactual – corresponding to different types of data available to
the agent during the first phase of an episode.
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In the observational setting (Experiment 1), the agent could only obtain passive observations from the
environment. This type of data allows an agent to infer associations (associative reasoning) and, when
the structure of the underlying causal model permits it, to estimate the effect that changing a variable in
the environment has on another variable, namely to estimate causal effects (cause-effect reasoning).

In the interventional setting (Experiment 2), the agent could directly set the values of some variables in the
environment. This type of data in principle allows an agent to estimate causal effects for any underlying
causal model.

In the counterfactual setting (Experiment 3), the agent first had an opportunity to learn about the causal
graph through interventions. At the last step of the episode, it was asked a counterfactual question of the
form “What would have happened if a different intervention had been made in the previous time-step?”.

Next we will formalize these three settings and patterns of reasoning possible in each, using the graphical
model framework (Pearl, 2000; Spirtes et al., 2000; Dawid, 2007)1, and introduce the meta-learning
methods that we will use to train agents that are capable of such reasoning.

2.1 CAUSALITY

Causal relationships among random variables can be expressed using causal directed acyclic graphs
(DAGs) (see Appendix). A causal DAG is a graphical model that captures both independence and causal
relations. Each node Xi corresponds to a random variable, and the joint distribution p(X1, ... ,XN)
is given by the product of conditional distributions of each node Xi given its parent nodes pa(Xi),
i.e. p(X1:N≡X1,...,XN)=

∏N
i=1p(Xi|pa(Xi)).

Edges carry causal semantics: if there exists a directed path fromXi toXj , thenXi is a potential cause
of Xj. Directed paths are also called causal paths. The causal effect of Xi on Xj is the conditional
distribution ofXj givenXi restricted to only causal paths.
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An example causal DAG G is given in the figure on the
left, where E represents hours of exercise in a week, H
cardiac health, andA age. The causal effect ofE onH is
the conditional distribution restricted to the path E→H,
i.e. excluding the path E←A→H. The variable A is
called a confounder, as it confounds the causal effect with
non-causal statistical influence.

Simply observing cardiac health conditioning on exercise level from p(H|E) (associative reasoning)
cannot answer if change in exercise levels cause changes in cardiac health (cause-effect reasoning), since
there is always the possibility that correlation between the two is because of the common confounder of age.

Cause-effect Reasoning. The causal effect can be seen as the conditional distribution p→E=e(H|E =
e)2 on the graph G→E=e above (right), resulting from intervening on E by replacing p(E|A) with a
delta distribution δE=e (thereby removing the link from A to E) and leaving the remaining conditional
distributions p(H|E,A) and p(A) unaltered. The rules of do-calculus (Pearl, 2000; Pearl et al., 2016)
tell us how to compute p→E=e(H|E=e) using observations from G. In this case p→E=e(H|E=e)=∑

Ap(H|E=e,A)p(A)3. Therefore, do-calculus enables us to reason in the intervened graph G→E=e even
if our observations are from G. This is the scenario captured by our observational setting outlined above.

Such inferences are always possible if the confounders are observed, but in the presence of unobserved
confounders, for many DAG structures the only way to compute causal effects is by collecting observations
directly from G→E, i.e. by actively intervening on the world to fix the value of the variable E= e and
observing the remaining variables. In our interventional setting, outlined above, the agent has access to
such interventions.

1This approach typically decouples the challenges of causal induction, i.e. of inferring the structure of the causal
graph from data, and that of causal reasoning on the induced graph. The formalism we describe here assumes that the
structure of the causal graph is known. In our experiments however, our agents concurrently carry out causal induction.

2In the causality literature, this distribution would most often be indicated with p(H|do(E=e)). We prefer to use
p→E=e(H|E=e) to highlight that intervening on E results in changing the original distribution p, by structurally
altering the causal DAG.

3Notice that conditioning on E=e would instead give p(H|E=e)=
∑

Ap(H|E=e,A)p(A|E=e).
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Counterfactual Reasoning. Cause-effect reasoning can be used to correctly answer predictive questions
of the type “Does exercising improve cardiac health?” by accounting for causal structure and confounding.
However, it cannot answer retrospective questions about what would have happened. For example, given
an individual iwho has died of a heart attack, this method would not be able to answer questions of the
type “What would the cardiac health of this individual have been had they done more exercise?”. This
type of question requires estimating unobserved sources of noise and then reasoning about the effects
of this noise under a graph conditioned on a different intervention.

2.2 META-LEARNING

Meta-learning refers to a broad range of approaches in which aspects of the learning algorithm itself are
learned from the data. Many individual components of deep learning algorithms have been successfully
meta-learned, including the optimizer (Andrychowicz et al., 2016), initial parameter settings (Finn et al.,
2017), a metric space (Vinyals et al., 2016), and use of external memory (Santoro et al., 2016).

Following the approach of (Duan et al., 2016; Wang et al., 2016), we parameterize the entire learning
algorithm as a recurrent neural network (RNN), and we train the weights of the RNN with model-free
reinforcement learning (RL). The RNN is trained on a broad distribution of problems which each require
learning. When trained in this way, the RNN is able to implement a learning algorithm capable of
efficiently solving novel learning problems in or near the training distribution.

Learning the weights of the RNN by model-free RL can be thought of as the “outer loop” of learning.
The outer loop shapes the weights of the RNN into an “inner loop” learning algorithm. This inner loop
algorithm plays out in the activation dynamics of the RNN and can continue learning even when the
weights of the network are frozen. The inner loop algorithm can also have very different properties from
the outer loop algorithm used to train it. For example, in previous work this approach was used to negotiate
the exploration-exploitation tradeoff in multi-armed bandits (Duan et al., 2016) and learn algorithms which
dynamically adjust their own learning rates (Wang et al., 2016; 2018). In the present work we explore
the possibility of obtaining a causally-aware inner-loop learning algorithm. See the Appendix for a more
formal approach to meta-learning.

3 TASK SETUP AND AGENT ARCHITECTURE

In the experiments, in each episode the agent interacted with a different causal DAG G. G was drawn
randomly from the space of possible DAGs under the constraints given in the next paragraph. Each
episode consisted of T steps, and was divided into two phases: information and quiz. The information
phase, corresponding to the first T−1 steps, allowed the agent to collect information by interacting with
or passively observing samples from G. The agent could potentially use this information to infer the
connectivity and weights of G. The quiz phase, corresponding to the final step T , required the agent to
exploit the causal knowledge it collected in the information phase, to select the node with the highest value
under a random external intervention.

Causal graphs, observations, and actions. We generated all graphs onN=5 nodes, with edges only in
the upper triangular of the adjacency matrix (this guarantees that all the graphs obtained are DAGs), with
edge weights, wji∈{−1,0,1} (uniformly sampled), and removed 300 for held-out testing. The remaining
58749 (or 3N(N−1)/2−300) were used as the training set. Each node’s value, Xi ∈R, was Gaussian-
distributed. The values of parentless nodes were drawn from N (µ = 0.0,σ = 0.1). The conditional
probability of a node with parents was p(Xi|pa(Xi)) = N (µ =

∑
jwjiXj,σ = 0.1), where pa(Xi)

represents the parents of nodeXi in G. The values of the 4 observable nodes (the root node, was always
hidden), were concatenated to create vt and provided to the agent in its observation vector, ot=[vt,mt],
wheremt is a one-hot vector indicating external intervention during the quiz phase (explained below).4

In both phases, on each step, t, the agent’s action, at, was a discrete choice from the range {1...2(N−1)}.
Action choices in {1...N − 1} corresponded to information actions, and choices in {N ...2(N − 1)}
corresponded to quiz actions.

4While a simple domain provides the most unencumbered test for causal reasoning, we also carried out simulations
with more complex causal graphs (graphs with non-linear connections, and larger graphs of size N = 6) and stronger
requirements for generalization (holding-out entire equivalence classes of causal graphs from training) to demonstrate
the robustness of our approach (see Appendix).
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Information phase. In the information phase, an information action, at, caused an intervention on the
at-th node, setting its value to Xat

= 5. We choose an intervention value outside the likely range of
sampled observations, to facilitate learning of the causal graph. The observation from the intervened graph,
G→Xat=5, was sampled similarly to G, except the incoming edges toXat

were severed, and its intervened
value was used for conditioning its children’s values. The node values in G→Xat=5 were distributed as
p→Xi=5(X1:N\i|Xi=5). If a quiz action was chosen during the information phase, it was ignored, the
G values were sampled as if no intervention had been made, and the agent was given a penalty of rt=−5
in order to encourage it to take quiz actions at only during quiz phase. After the action was selected, an
observation was provided to the agent. The default length of this phase was fixed to T =N =5 since
in the noise-free limit, a minimum of T−1=4 interventions are required in general to resolve the causal
structure, and score perfectly on the test phase.

Quiz phase. In the quiz phase, one non-hidden node was selected at random to be intervened on externally,
Xj, and its value was set to −5. We chose an intervention value of −5 never previously observed by
the agent in that episode, thus disallowing the agent from memorizing the results of interventions in the
information phase to perform well on the quiz phase. The agent was informed of this by the observed
mT−1 (a one-hot vector which indicated which node would be intervened on), from the final pre-quiz
phase time-step, T−1. Note, mt was set to a zero-vector for steps t<T−1. A quiz action, aT , chosen
by the agent indicated the node whose value would be given to the agent as a reward. In other words, the
agent would receive reward, rT =XaT−(N−1). Again, if a quiz action was chosen during the information
phase, the node values were not sampled and the agent was simply given a penalty of rT =−5.

Active vs passive agents. Our agents had to perform two distinct tasks during the information phase: a)
actively choose which nodes to set values on, and b) infer the causal DAG from its observations. We refer
to this setup as the “active” condition. To control for (a), we created the “passive” condition, where the
agent’s information phase actions are not learned. To provide a benchmark for how well the active agent
can perform task (a), we fixed the passive agent’s intervention policy to be an exhaustive sweep through
all observable nodes. This is close to optimal for this domain – in fact it is the optimal policy for noise-free
conditional node values. We also compared the active agent’s performance to a baseline agent whose
policy is to intervene randomly on the observable nodes in the information phase, in the Appendix.

Two kinds of learning The “inner loop” of learning (see Section 2.2) occurs within each episode where
the agent is learning from the evidence it gathers during the information phase in order to perform well
in the quiz phase. The same agent then enters a new episode, where it has to repeat the task on a different
DAG. Test performance is reported on DAGs that the agent has never previously seen, after all the weights
of the RNN have been fixed. Hence, the only transfer from training to test (or the “outer loop” of learning)
is the ability to discover causal dependencies based on observations in the information phase, and to
perform causal inference in the quiz phase.

Agent Architecture and Training

We used a long short-term memory (LSTM) network (Hochreiter & Schmidhuber, 1997) (with 96 hidden
units) that, at each time-step t, receives a concatenated vector containing [ot,at−1,rt−1] as input, where
ot is the observation5, at−1 is the previous action (as a one-hot vector) and rt−1 the reward (as a single
real-value)6. The outputs, calculated as linear projections of the LSTM’s hidden state, are a set of policy
logits (with dimensionality equal to the number of available actions), plus a scalar baseline. The policy
logits are transformed by a softmax function, and then sampled to give a selected action.

Learning was by asynchronous advantage actor-critic (Mnih et al., 2016). In this framework, the loss
function consists of three terms – the policy gradient, the baseline cost and an entropy cost. The baseline
cost was weighted by 0.05 relative to the policy gradient cost. The weighting of the entropy cost was
annealed over the course of training from 0.05 to 0. Optimization was done by RMSProp with ε=10−5,
momentum = 0.9 and decay = 0.95. Learning rate was annealed from 3×10−6 to 0. For all experiments,
after training, the agent was tested with the learning rate set to zero, on a held-out test set.

5’Observation’ ot refers to the reinforcement learning term, i.e. the input from the environment to the agent. This is
distinct from observations in the causal sense (referred to as observational data) i.e. samples from a casual structure
where there is no information about interventions that have been carried out.

6These are both set to zero for the first step in an episode.
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4 EXPERIMENTS

Our three experiments (observational, interventional, and counterfactual) differed in the properties of the
vt that was observed by the agent during the information phase, and thereby limited the extent of causal
reasoning possible within each data setting. Our measure of performance is the reward earned in the
quiz phase for held-out DAGs. Choosing a random node node in the quiz phase results in a reward of
−5/4=−1.25, since one node (the externally intervened node) always has value−5 and the others have
on average 0 value. By learning to simply avoid the externally intervened node, the agent can earn on
average 0 reward. Consistently picking the node with the highest value in the quiz phase requires the agent
to perform causal reasoning. For each agent, we take the average reward earned across 1200 episodes
(300 held-out test DAGs, with 4 possible external interventions). We train 12 copies of each agent and
report the average reward earned by these, with error bars showing 95% confidence intervals.

4.1 EXPERIMENT 1: OBSERVATIONAL SETTING

In Experiment 1, the agent could neither intervene to set the value of variables in the environment, nor ob-
serve any external interventions. In other words, it only received observations from G, not G→Xj (whereXj

is a node that has been intervened on). This limits the extent of causal inference possible. In this experiment,
we tested six agents, four of which were learned: “Observational”, “Long Observational”, “Active Condi-
tional”, “Passive Conditional”, “Observational MAP Baseline”(not learned) and the “Optimal Associative
Baseline” (not learned). We also ran two other standard RL baselines—see the Appendix for details.

Observational Agents: In the information phase, the actions of the agent were ignored7, and the obser-
vational agent always received the values of the observable nodes as sampled from the joint distribution
associated with G. In addition to the default T=5 episode length, we also trained this agent with 4× longer
episode length (Long Observational Agent), to measure performance increase with more observational data.

Conditional Agents: The information phase actions corresponded to observing a world in which the
selected nodeXj is equal toXj=5, and the remaining nodes are sampled from the conditional distribution
p(X1:N\j|Xj=5), whereX1:N\j indicates the set of all nodes exceptXj. This differs from intervening
on the variableXj by setting it to the valueXj=5, since here we take a conditional sample from G rather
than from G→Xj=5 (i.e. from p→Xj=5(X1:N\j|Xj=5)), and inference about the corresponding node’s
parents is possible. Therefore, this agent still has access to only observational data, as with the observational
agents. However, on average it receives more diagnostic information about the relation between the
random variables in G, since it can observe samples where a node takes a value far outside the likely range
of sampled observations. We run active and passive versions of this agent as described in Section 3

Optimal Associative Baseline: This baseline receives the true joint distribution p(X1:N) implied by the
DAG in that episode, therefore it has full knowledge of the correlation structure of the environment8. It
can therefore do exact associative reasoning of the form p(Xj|Xi=x), but cannot do any cause-effect
reasoning of the form p→Xi=x(Xj|Xi=x). In the quiz phase, this baseline chooses the node that has
the maximum value according to the true p(Xj|Xi=x) in that episode, whereXi is the node externally
intervened upon, and x=−5.

Observational MAP Baseline: This baseline follows the traditional method of separating causal induction
and causal inference. We first carry out exact maximum a posteriori (MAP) inference over the space
of DAGs in each episode (i.e. causal induction) by selecting the DAG (GMAP) of the 59049 unique
possibilities that maximizes the likelihood of the data observed, v1:T , by the Observational Agent in that
episode. This is equivalent to maximizing the posterior probability since the prior over graphs is uniform.

RESULTS

We focus on three key questions in this experiment: (i) Can our agents learn to do associative reasoning
with observational data?, (ii) Can they learn to do cause-effect reasoning from observational data?, and
(iii) In addition to making causal inferences, can our agent also choose good actions in the information
phase to generate the data it observes?

7These agents also did not receive the out-of-phase action penalties during the information phase since their actions
are totally ignored.

8Notice that the agent does not know the graphical structure, i.e. it does not know which nodes are parents of which
other nodes
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Figure 2: Experiment 1. Agents do associative and cause-effect reasoning from observational data. a) Aver-
age reward earned by the agents tested in this experiment. See main text for details. b) Performance split by
the presence or absence of at least one parent (Parent and Orphan respectively) on the externally intervened
node. c) Quiz phase for a test DAG. Green (red) edges indicate a weight of +1 (−1). Black represents the
intervened node, green (red) nodes indicate a positive (negative) value at that node, white indicates a zero
value. The blue circles indicate the agent’s choice. Left panel: G and the nodes taking the mean values
prescribed by p(X1:N\j|Xj =−5), including backward inference to the intervened node’s parent. The
Optimal Associative Baseline’s choice is consistent with maximizing these (incorrect) node values. Right
panel: G→Xj=−5 and the nodes taking the mean values prescribed by p→Xj=−5(X1:N\j|Xj=−5). We
see that the Passive-Conditional Agent’s choice is consistent with maximizing these (correct) node values.

For (i), we see that the Observational Agents achieve reward above the random baseline (see the Appendix),
and that more observations (Long Observational Agent) lead to better performance (Fig. 2a), indicating that
the agent is indeed learning the statistical dependencies between the nodes. We see that the performance of
the Passive-Conditional Agent is better than either of the Observational Agents, since the data it observes
is very informative about the statistical dependencies in the environment. Finally, we see that the Passive-
Conditional Agent’s performance is comparable (in fact surpasses as discussed below) the performance
of the Optimal Associative Baseline, indicating that it is able to do perfect associative inference.

0.0 0.2 0.4 0.6 0.8 1.0

Passive

Active

Figure 1: Active and Passive
Conditional Agents

For (ii), we see the crucial result that the Passive-Conditional Agent’s
performance is significantly above the Optimal Associative Baseline,
i.e. it performs better than what is possible using only correlations.
We compare their performances, split by whether or the node that was
intervened on in the quiz phase of the episode has a parent (Fig. 2b). If
the intervened nodeXj has no parents, then G=G→Xj

, and there is no
advantage to being able to do cause-effect reasoning. We see indeed

that the Passive-Conditional agent performs better than the Optimal Associative Baseline only when the
intervened node has parents (denoted by hatched bars in Fig. 2b), indicating that this agent is able to
carry out some cause-effect reasoning, despite access to only observational data – i.e. it learns some form
of do-calculus. We show the quiz phase for an example test DAG in Fig. 2c, seeing that the Optimal
Associative Baseline chooses according to the node values predicted by G whereas the Passive-Conditional
Agent chooses according the node values predicted by G→Xj .

For (iii), we see (Fig. 2) that the Active-Conditional Agent’s performance is only marginally below the
performance of the Passive-Conditional Agent, indicating that when the agent is allowed to choose its
actions, it makes reasonable choices that allow good performance.

4.2 EXPERIMENT 2: INTERVENTIONAL SETTING

In Experiment 2, the agent receives interventional data in the information phase – it can choose to intervene
on any observable node, Xj, and observe a sample from the resulting graph G→Xj

. As discussed in
Section 2.1, access to intervention data permits cause-effect reasoning even in the presence of unobserved
confounders, a feat which is in general impossible with access only to observational data. In this experiment,
we test four new agents, two of which were learned: “Active Interventional”, “Passive Interventional”,
“Interventional MAP Baseline”(not learned), and “Optimal Cause-Effect Baseline” (not learned).

Interventional Agents: The information phase actions correspond to performing an intervention on the
selected nodeXj and sampling from G→Xj

(see Section 3 for details). We run active and passive versions
of this agent as described in Section 3.

Interventional MAP Baseline: This baseline infers a DAG by maximizing the likelihood of the data
observed by the Passive Interventional Agent in that episode. In the quiz phase, we predict the values of
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Passive-Int.

Int. MAP

Optimal C-E

Passive-Cond.

0.0 1.0
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Cond. (Conf.)

Int. (Conf.)

0.0 1.0

(a) (b) (c)

Passive-Cond. Agent Passive-Int. AgentAvg. Reward Avg. Reward

Figure 4: Experiment 2. Agents do cause-effect reasoning from interventional data. a) Average reward
earned by the agents tested in this experiment. See main text for details. b) Performance split by the
presence or absence of unobserved confounders (abbreviated as Conf. and Unconf. respectively) on the
externally intervened node. c) Quiz phase for a test DAG. See Fig. 2 for a legend. Here, the left panel
shows the full G and the nodes taking the mean values prescribed by p(X1:N\j|Xj=−5). We see that the
Passive-Cond Agent’s choice is consistent with choosing based on these (incorrect) node values. The right
panel shows G→Xj=−5 and the nodes taking the mean values prescribed by p→Xj=−5(X1:N\j|Xj=−5).
We see that the Passive-Int. Agent’s choice is consistent with maximizing on these (correct) node value.

each node according to GMAP
→Xj

whereXj is the node externally intervened upon (i.e. causal inference), and
choose the node with the highest value.

Optimal Cause-Effect Baseline: This baseline receives the true DAG, G. In the quiz phase, it chooses the
node that has the maximum value according to G→Xj , whereXj is the node externally intervened upon.

RESULTS

0.0 0.2 0.4 0.6 0.8 1.0

Passive

Active

Figure 3: Active and Passive In-
terventional Agents

We focus on three key questions in this experiment: (i) Can our agents
learn to do cause-effect reasoning from interventional data?, (ii) How
does the cause-effect reasoning in our agents which have access to
interventional data differ from the cause-effect reasoning measured in
Experiment 1 (in agents that have access only to observational data)?
(iii) In addition to making causal inferences, can our agent also choose
good actions in the information phase to generate the data it observes?

For (i) we see in Fig. 4a that the Passive-Interventional Agent’s performance is comparable to the Optimal
Cause-Effect Baseline, indicating that it is able to do close to perfect cause-effect reasoning in this domain.

For (ii) we see in Fig. 4a the crucial result that the Passive-Interventional Agent’s performance is signif-
icantly better than the Passive-Conditional Agent. We compare the performances of these two agents,
split by whether the node that was intervened on in the quiz phase of the episode had unobserved con-
founders with other variables in the graph (Fig. 4b). In confounded cases, as described in Section 2.1,
cause-effect reasoning is impossible with only observational data. We see that the performance of the
Passive-Interventional Agent does not vary significantly with confoundedness, whereas the performance
of the Passive-Conditional Agent is significantly lower in the confounded cases. This indicates that the
improvement in the performance of the agent that has access to interventional data (as compared to the
agents that had access to only observational data) is largely driven by its ability to also do cause-effect
reasoning in the presence of confounders. This is highlighted by Fig. 4c, which shows the quiz phase
for an example DAG, where the Passive-Conditional agent is unable to resolve the confounder, but the
Passive-Interventional agent can.

For (iii), we see in Fig. 3 that the Active-Interventional Agent’s performance is only marginally below the
performance of the near optimal Passive-Interventional Agent, indicating that when the agent is allowed to
choose its actions, it makes reasonable choices that allow good performance.

4.3 EXPERIMENT 3: COUNTERFACTUAL SETTING

In Experiment 3, the agent was again allowed to make interventions as in Experiment 2, but in this case
the quiz phase task entailed answering a counterfactual question. We explain here what a counterfactual
question in this domain looks like. Consider the conditional distribution p(Xi|pa(Xi))=N (

∑
jwjiXj,0.1)

as described in Section 3 asXi=
∑

jwjiXj+ε where ε is distributed asN (0.0,0.1), and represents the
specific randomness introduced when taking one sample from the DAG. After observing the nodesX1:N
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0.0 1.0 2.0

Passive-CF

Optimal C-E

0.0 1.0
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Int. (Dist.)

CF (Deg.)

Int. (Deg.)

(a) (b) (c)

Passive-Int. Agent Passive-CF AgentAvg. RewardAvg. Reward

Optimal CF

Figure 5: Experiment 3. Agents do counterfactual reasoning. a) Average reward earned by the agents
tested in this experiment. See main text for details. b) Performance split by if the maximum node value in
the quiz phase is degenerate (Deg.) or distinct (Dist.). c) Quiz phase for an example test-DAG. See Fig. 2
for a legend. Here, the left panel shows G→Xj=−5 and the nodes taking the mean values prescribed by
p→Xj=−5(X1:N\j|Xj=−5). We see that the Passive-Int. Agent’s choice is consistent with maximizing
on these node values, where it makes a random choice between two nodes with the same value. The
right panel panel shows G→Xj=−5 and the nodes taking the exact values prescribed by the means of
p→Xj=−5(X1:N\j|Xj=−5), combined with the specific randomness inferred from the previous time step.
As a result of accounting for the randomness, the two previously degenerate maximum values are now
distinct. We see that the Passive-CF. agent’s choice is consistent with maximizing on these node values.

in the DAG in one sample, we can infer this specific randomness εi for each nodeXi (i.e. abduction as
described in the Appendix) and answer counterfactual questions like “What would the values of the nodes
be, hadXj in that particular sample taken on a different value than what we observed?”, for any of the
nodesXj. We test 2 new learned agents: “Active Counterfactual” and “Passive Counterfactual”.

Counterfactual Agents: This agent is exactly analogous to the Interventional agent, with the addition that
the exogenous noise in the last information phase step t=T−1 (where sayXp=+5), is stored and the
same noise is used in the quiz phase step t=T (where sayXf =−5). While the question our agents have
had to answer correctly so far in order to maximize their reward in the quiz phase was “Which of the nodes
X1:N\j will have the highest value whenXf is set to−5?”, in this setting, we ask “Which of the nodes
X1:N\j would have had the highest value in the last step of the information phase, if instead of having
Xp=+5, we hadXf =−5?”. We run active and passive versions of this agent as described in Section 3.

Optimal Counterfactual Baseline: This baseline receives the true DAG and does exact abduction based
on the exogenous noise observed in the penultimate step of the information phase, and combines this
correctly with the appropriate interventional inference on the true DAG in the quiz phase.

RESULTS

We focus on two key questions in this experiment: (i) Can our agents learn to do counterfactual reasoning?,
(ii) In addition to making causal inferences, can our agent also choose good actions in the information
phase to generate the data it observes?

For (i), we see that the Passive-Counterfactual Agent achieves higher reward than the Passive-Interventional
Agent and the Optimal Cause-Effect Baseline. To evaluate whether this difference results from the agent’s
use of abduction (see the Appendix for details), we split the test set into two groups, depending on whether
or not the decision for which node will have the highest value in the quiz phase is affected by exogenous
noise, i.e. whether or not the node with the maximum value in the quiz phase changes if the noise is

0.0 0.2 0.4 0.6 0.8 1.0

Passive

Active

Figure 6: Active and Passive
Counterfactual Agents

resampled. This is most prevalent in cases where the maximum expected
reward is degenerate, i.e. where several nodes give the same maximum
reward (denoted by hatched bars in Figure 5b). Here, agents with no
access to the noise have no basis for choosing one over the other, but
different noise samples can give rise to significant differences in the
actual values that these degenerate nodes have. We see indeed that there
is no difference in the rewards received by the Passive-Counterfactual

and Passive-Interventional Agents in the cases where the maximum values are distinct, however the
Passive-Counterfactual Agent significantly outperforms the Passive-Interventional Agent in cases where
there are degenerate maximum values.

For (ii), we see in Fig. 6 that the Active-Counterfactual Agent’s performance is only marginally below the
performance of the Passive-Counterfactual agent, indicating that when the agent is allowed to choose its
actions, it makes reasonable choices that allow good performance.
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5 SUMMARY OF RESULTS

We introduced and tested a framework for learning causal reasoning in various data settings—observational,
interventional, and counterfactual—using deep meta-RL. Crucially, our approach did not require explicit
encoding of formal principles of causal inference. Rather, by optimizing an agent to perform a task that
depended on causal structure, the agent learned implicit strategies to use the available data for causal
reasoning, including drawing inferences from passive observation, actively intervening, and making
counterfactual predictions. Below, we summarize the keys results from each of the three experiments.

In Section 4.1 and Fig. 2, we show that the agent learns to perform do-calculus. In Fig. 2(a) we see that,
compared to the highest possible reward achievable without causal knowledge, the trained agent received
more reward. This observation is corroborated by Fig. 2(b) which shows that performance increased
selectively in cases where do-calculus made a prediction distinguishable from the predictions based on
correlations. These are situations where the externally intervened node had a parent – meaning that the
intervention resulted in a different graph.

In Section 4.2 and Fig. 4, we show that the agent learns to resolve unobserved confounders using
interventions (a feat impossible with only observational data). In Fig. 4(a) we see that the agent with access
to interventional data performs better than an agent with access to only observational data. Fig. 4(b) shows
that the performance increase is greater in cases where the intervened node shared an unobserved parent (a
confounder) with other variables in the graph. In this section we also compare the agent’s performance to a
MAP estimate of the causal structure and find that the agent’s performance matches it, indicating that the
agent is indeed doing close to optimal causal inference.

In Section 4.3 and Fig. 5, we show that the agent learns to use counterfactuals. In Fig. 5(a) we see that the
agent with additional access to the specific randomness in the test phase performs better than an agent with
access to only interventional data. In Fig. 5(b), we find that the increased performance is observed only in
cases where the maximum mean value in the graph is degenerate, and optimal choice is affected by the
exogenous noise – i.e. where multiple nodes have the same value on average and the specific randomness
can be used to distinguish their actual values in that specific case.

6 DISCUSSION AND FUTURE WORK

This work is the first demonstration that causal reasoning can arise out of model-free reinforcement
learning. This opens up the possibility of leveraging powerful learning-based methods for causal inference
in complex settings. Traditional formal approaches usually decouple the two problems of causal induction
(i.e. inferring the structure of the underlying model) and causal inference (i.e. estimating causal effects
and answering counterfactual questions), and despite advances in both (Ortega & Stocker, 2015; Bramley
et al., 2017; Parida et al., 2018; Sen et al., 2017; Forney et al., 2017; Lattimore et al., 2016), inducing
models often requires assumptions that are difficult to fit to complex real-world conditions. By learning
these end-to-end, our method can potentially find representations of causal structure best tuned to the
specific causal inferences required. Another key advantage of our meta-RL approach is that it allows the
agent to learn to interact with the environment in order to acquire necessary observations in the service
of its task—i.e. to perform active learning. In our experimental domain, our agents’ active intervention
policy was close to optimal, which demonstrates the promise of agents that can learn to experiment on their
environment and perform rich causal reasoning on the observations.

Future work should explore agents that perform experiments to support structured exploration in RL, and
optimal experiment design in complex domains where large numbers of blind interventions are prohibitive.
To this end, follow-up work should focus on scaling up our approach to larger environments, with more
complex causal structure and a more diverse range of tasks. Though the results here are a first step in this
direction which use relatively standard deep RL components, our approach will likely benefit from more
advanced architectures (e.g. Espeholt et al., 2018; Hessel et al., 2018; Hester et al., 2017) that allow longer
more complex episodes, as well as models which are more explicitly compositional (e.g. Battaglia et al.,
2018; Andreas et al., 2016) or have richer semantics (e.g. Ganin et al., 2018), that more explicitly leverage
symmetries like equivalance classes in the environment.
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A ADDITIONAL BASELINES
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Figure 7: Reward distribution

We can also compare the performance of these agents
to two standard model-free RL baselines. The Q-total
agent learns a Q-value for each action across all steps for
all the episodes. The Q-episode agent learns a Q-value
for each action conditioned on the input at each time
step [ot,at−1,rt−1], but with no LSTM memory to store
previous actions and observations. Since the relationship
between action and reward is random between episodes,
Q-total was equivalent to selecting actions randomly, re-
sulting in a considerably negative reward. The Q-episode
agent essentially makes sure to not choose the arm that
is indicated bymt to be the external intervention (which
is assured to be equal to −5), and essentially chooses
randomly otherwise, giving an average reward of 0.

B FORMAL DESCRIPTION OF META-LEARNING

Consider a distributionD over Markov Decision Processes (MDPs). We train an agent with memory (in
our case an RNN-based agent) on this distribution. In each episode, we sample a task m∼D. At each
step t within an episode, the agent sees an observation ot, executes an action at, and receives a reward rt.
Both at−1 and rt−1 are given as additional inputs to the network. Thus, via the recurrence of the network,
each action is a function of the entire trajectory Ht = {o0,a0,r0,...,ot−1,at−1,rt−1,ot} of the episode.
Because this function is parameterized by the neural network, its complexity is limited only by the size of
the network.

C ABDUCTION-ACTION-PREDICTION METHOD FOR COUNTERFACTUAL
REASONING

Pearl et al. (2016)’s “abduction-action-prediction” method prescribes one method for answering counter-
factual queries, by estimating the specific unobserved makeup of individual i and by transferring it to the
counterfactual world. Assume, for example, the following model for G of Section 2.1: E=wAEA+η,
H=wAHA+wEHE+ε, where the weights wij represent the known causal effects in G and ε and η are
terms of (e.g.) Gaussian noise that represent the unobserved randomness in the makeup of each individual9.
Suppose that for individual i we observe: A= ai, E= ei, H = hi. We can answer the counterfactual
question of “What if individual i had done more exercise, i.e.E=e′, instead?” by: a) Abduction: estimate
the individual’s specific makeup with εi=hi−wAHa

i−wEHe
i, b) Action: setE to more exercise e′, c)

Prediction: predict a new value for cardiac health as h′=wAHa
i+wEHe

′+εi.

D EXPERIMENT 4: NON-LINEAR CAUSAL GRAPHS
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Figure 8: Experiment 4 results

The purview of the previous experiments was to
show a proof of concept on a simple tractable
system, demonstrating that causal induction and
inference can be learned and implemented via a
meta-learned agent. In this experiment, we general-
ize some of the results to nonlinear, non-Gaussian
causal graphs which are more typical of real-world
causal graphs and to demonstrate that our results
hold without loss of generality on such systems.

Here we investigate causal DAGs with a quadratic dependence on the parents by changing the conditional
distribution to p(Xi|pa(Xi)) = N ( 1

Ni

∑
j wji(Xj+X

2
j ),σ). Here, although each node is normally

9These are zero in expectation, so without access to their value for an individual we simply use G: E=wAEA,
H=wAHA+wEHE to make causal predictions.
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distributed given its parents, the joint distribution is not multivariate Gaussian due to the non-linearity
in how the means are determined. We find that the Long-Observational achieves more reward than the
Observational agent indicating that the agent is in fact learning the statistical dependencies between the
nodes, within an episode. We also find that although the Active-Interventional agent is not far behind the
performance of the MAP baseline, and achieves reward well above the Long-Observational10 The fact that
the MAP baseline gets so close to the Optimal Cause-Effect baseline indicates that the Active agent is
choosing close to optimal actions.

E EXPERIMENT 5: LARGER CAUSAL GRAPHS WITH GENERALIZATION TO NEW
EQUIVALENCE CLASSES
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Figure 9: (a) Comparing agent performances with different data.
(b) Comparing information phase intervention policies.

In the experiments reported in the main
paper, the test set was a random sub-
set of all graphs, and training examples
were generated randomly subject to the
constraint that they not be in the test set.
However, this raised the possibility that
any test graph might have an equivalent
graph in the training set, which could
result in a type of overfitting. We there-
fore ran a new set of experiments where

the entire equivalence class of each test graph was held out from the training set11. Performance on the test
set therefore indicates generalization of the inference procedures learned to previously unseen equivalence
classes of causal DAGs. For these experiments, we used graphs withN=6 nodes, because 5-node graphs
have too few equivalence classes to partition in this way. All other details were the same as in the main
paper.

We see in Fig. 9a that the agents learn to generalize well to these held out examples, and we find the same
pattern of behavior noted in the main text where the rewards earned are ordered such that Observational
agent< Passive-Conditional agent< Passive-Interventional agent< Passive-Counterfactual agent. We see
additionally in Fig. 9b that the Active-Interventional agent performs at par with the Passive-Interventional
agent (which is allowed to see the results of interventions on all nodes) and significantly better than an
additional baseline we use here of the Random-Interventional agent whose information phase policy is to
intervene on nodes at random, indicating that the intervention policy learned by the Active agent is good.

F GRAPHICAL MODELS AND BELIEF NETWORKS

Graphical models (Pearl, 1988; Bishop, 2006; Koller & Friedman, 2009; Barber, 2012; Murphy, 2012) are
a marriage between graph and probability theory that allows to graphically represent and assess statistical
dependence. In the following sections, we give some basic definitions and describe a method (d-separation)
for graphically assessing statistical independence in belief networks.

BASIC DEFINITIONS

X2X1 X3

X4

(a)

X2X1 X3

X4

(b)

Figure 10: (a): Directed acyclic graph. The nodeX3 is a
collider on the pathX1→X3←X2 and a non-collider on
the pathX2→X3→X4. (b): Cyclic graph obtained from
(a) by adding a link fromX4 toX1.

A graph is a collection of nodes and links
connecting pairs of nodes. The links may be
directed or undirected, giving rise to directed
or undirected graphs respectively.

A path from node Xi to node Xj is a se-
quence of linked nodes starting at Xi and
ending at Xj. A directed path is a path
whose links are directed and pointing from
preceding towards following nodes in the se-
quence.

10The conditional distribution p(X1:N\j|Xj=5), and therefore Conditional agents, were non-trivial to calculate for
the quadratic case.

11The hidden node was guaranteed to be a root node by rejecting all DAGs where the hidden node has parents
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A directed acyclic graph (DAG) is a directed graph with no directed paths starting and ending at the same
node. For example, the directed graph in Fig. 10(a) is acyclic. The addition of a link fromX4 toX1 gives
rise to a cyclic graph (Fig. 10(b)).

A nodeXi with a directed link toXj is called parent ofXj. In this case,Xj is called child ofXi.

A node is a collider on a specified path if it has (at least) two parents on that path. Notice that a node can
be a collider on a path and a non-collider on another path. For example, in Fig. 10(a)X3 is a collider on
the pathX1→X3←X2 and a non-collider on the pathX2→X3→X4.

A nodeXi is an ancestor of a nodeXj if there exists a directed path fromXi toXj. In this case,Xj is a
descendant ofXi.

A graphical model is a graph in which nodes represent random variables and links express statistical
relationships between the variables.

A belief network is a directed acyclic graphical model in which each node Xi is associated with the
conditional distribution p(Xi|pa(Xi)), where pa(Xi) indicates the parents ofXi. The joint distribution of
all nodes in the graph, p(X1:N), is given by the product of all conditional distributions, i.e.

p(X1:N)=

N∏
i=1

p(Xi|pa(Xi)).

ASSESSING STATISTICAL INDEPENDENCE IN BELIEF NETWORKS

Given the sets of random variables X ,Y and Z, X and Y are statistically independent given Z (X ⊥⊥Y|Z)
if all paths from any element of X to any element of Y are closed (or blocked). A path is closed if at least
one of the following conditions is satisfied:

(Ia) There is a non-collider on the path which belongs to the conditioning set Z.
(Ib) There is a collider on the path such that neither the collider nor any of its descendants belong to

the conditioning set Z.

14


	Introduction
	Problem specification and approach
	Causality
	Meta-learning

	Task setup and agent architecture
	Experiments
	Experiment 1: Observational Setting
	Experiment 2: Interventional Setting
	Experiment 3: Counterfactual Setting

	Summary of results
	Discussion and future work
	Additional baselines
	Formal description of Meta-learning
	Abduction-action-prediction method for counterfactual reasoning
	Experiment 4: Non-linear causal graphs
	Experiment 5: Larger causal graphs with generalization to new equivalence classes
	Graphical models and Belief Networks

