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Abstract—The aim of this study is to introduce a formal
framework for analysis and synthesis of driver assistance systems.
It applies formal methods to the verification of a stochastic human
driver model built using the cognitive architecture ACT-R, and
then bootstraps safety in semi-autonomous vehicles through the
design of provably correct Advanced Driver Assistance Systems.
The main contributions include the integration of probabilistic
ACT-R models in the formal analysis of semi-autonomous systems
and an abstraction technique that enables a finite representation
of a large dimensional, continuous system in the form of a Markov
model. The effectiveness of the method is illustrated in several
case studies under various conditions.

I. INTRODUCTION

When it comes to driving, the numbers do not lie; more
than 90% of road accidents in the US are caused by human
error [19]. In an effort to increase driver safety, some car
manufacturers have introduced semi-autonomous features in
the form of Advanced Driver Assistance Systems (ADAS).
Despite this, guaranteeing safety in semi-autonomous vehicles
remains a challenge, with most of the existing methods being
based on testing and simulation [5, 10, 20, 22], which do not
provide the guarantees required for a safety critical system
[11]. Some recent works use formal verification to obtain
strong guarantees about the ADAS [6, 14, 16], yet they
present engineering approaches to the problem which ignore
the cognitive process of the human driver, leading to solutions
that might perform poorly in corner cases.

This study focuses on designing an ADAS that takes into
account a stochastic model of the driver cognitive process. It
employs the cognitive architecture known as Adaptive Control
of Thought-Rational (ACT-R), a framework for specifying
computational behavioral models of human cognitive perfor-
mance which embodies both the abilities (e.g. memory storage
or perception) and constraints (e.g. limited motor performance)
of humans [1, 2, 4, 17, 18, 21]. The work builds on the
human driver model in a multi-lane highway driving scenario
presented in [18]. It also expands upon [6, 13] by applying
verification techniques to an efficient abstraction of the model
and extends it to allow the intervention of a provably correct
(up to the level of representation of the model) ADAS based
on specifications given as temporal logic statements.

The problem is defined as follows. Given the vehicle model
from [15], a human driver model represented by ACT-R [18],
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Fig. 1: State-transition representations of the Human-Vehicle (Mh)
and the Human-Vehicle-ADAS (MADAS) systems; in green are
control states (µ = 1) and in yellow are decision making and
monitoring ones (µ = 2).

a set of initial conditions S, and a temporal logic formula
ϕ [3], we are interested in (1) verification: computing the
probability that the Human-Vehicle model satisfies ϕ in S, i.e,
PS(ϕ); and (2) synthesis: designing an ADAS that optimizes
the probability of satisfying ϕ by the Human-Vehicle-ADAS
system in S, i.e., PS

./(ϕ) with ./ ∈ {max,min}.

II. METHODOLOGY

To verify the human driver model under ϕ, we first abstract
it to a Markov Chain Mh = (S,P, s0, AP, L), where S is
a finite set of states, P : S × S → [0, 1] is a transition
probability function, s0 ∈ S is the initial state, AP is a
set of atomic propositions, and L : S → 2AP is a labeling
function. We achieve this by discretizing the integrated human
driver ACT-R model in [18] through the use of a vehicle
model [15]. We can then verify it using off-the-shelf tools,
e.g. PRISM [12]. We assume a two vehicle scenario, where
the ego-vehicle interacts with a lead vehicle whose motion is
predictable [9]. The driver model presented in [18] is divided
into three sequential modules: (i) control, which manages low
level perception cues and the manipulation of the vehicle, (ii)
monitoring, which maintains awareness of the position of other
vehicles around the ego-vehicle; and (iii) decision making,
which determines the tactical decision to be taken.

Our abstraction combines decision making and monitoring
into one module for the sake of efficiency. We define Mh

which unifies both modules through the use of µ ∈ {1, 2},
where µ = 1 corresponds to the control step and µ = 2 to
the decision making and monitoring stage. A state s ∈ S is a
tuple s = (µ, x, λ, a, v, t), where x is bounded to a finite length
of the road according to the situation, v is the speed of the
vehicle, a is the acceleration and λ represents the index of the
lane of the ego, abstracting away the y variable which reduces
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