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Abstract—The aim of this study is to introduce a formal
framework for analysis and synthesis of driver assistance systems.
It applies formal methods to the verification of a stochastic human
driver model built using the cognitive architecture ACT-R, and
then bootstraps safety in semi-autonomous vehicles through the
design of provably correct Advanced Driver Assistance Systems.
The main contributions include the integration of probabilistic
ACT-R models in the formal analysis of semi-autonomous systems
and an abstraction technique that enables a finite representation
of a large dimensional, continuous system in the form of a Markov
model. The effectiveness of the method is illustrated in several
case studies under various conditions.

I. INTRODUCTION

When it comes to driving, the numbers do not lie; more
than 90% of road accidents in the US are caused by human
error [19]. In an effort to increase driver safety, some car
manufacturers have introduced semi-autonomous features in
the form of Advanced Driver Assistance Systems (ADAS).
Despite this, guaranteeing safety in semi-autonomous vehicles
remains a challenge, with most of the existing methods being
based on testing and simulation [5, 10, 20, 22], which do not
provide the guarantees required for a safety critical system
[11]. Some recent works use formal verification to obtain
strong guarantees about the ADAS [6, 14, 16], yet they
present engineering approaches to the problem which ignore
the cognitive process of the human driver, leading to solutions
that might perform poorly in corner cases.

This study focuses on designing an ADAS that takes into
account a stochastic model of the driver cognitive process. It
employs the cognitive architecture known as Adaptive Control
of Thought-Rational (ACT-R), a framework for specifying
computational behavioral models of human cognitive perfor-
mance which embodies both the abilities (e.g. memory storage
or perception) and constraints (e.g. limited motor performance)
of humans [1, 2, 4, 17, 18, 21]. The work builds on the
human driver model in a multi-lane highway driving scenario
presented in [18]. It also expands upon [6, 13] by applying
verification techniques to an efficient abstraction of the model
and extends it to allow the intervention of a provably correct
(up to the level of representation of the model) ADAS based
on specifications given as temporal logic statements.

The problem is defined as follows. Given the vehicle model
from [15], a human driver model represented by ACT-R [18],
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Fig. 1: State-transition representations of the Human-Vehicle (Mh)
and the Human-Vehicle-ADAS (MADAS) systems; in green are
control states (µ = 1) and in yellow are decision making and
monitoring ones (µ = 2).

a set of initial conditions S, and a temporal logic formula
ϕ [3], we are interested in (1) verification: computing the
probability that the Human-Vehicle model satisfies ϕ in S, i.e,
PS(ϕ); and (2) synthesis: designing an ADAS that optimizes
the probability of satisfying ϕ by the Human-Vehicle-ADAS
system in S, i.e., PS

./(ϕ) with ./ ∈ {max,min}.

II. METHODOLOGY

To verify the human driver model under ϕ, we first abstract
it to a Markov Chain Mh = (S,P, s0, AP, L), where S is
a finite set of states, P : S × S → [0, 1] is a transition
probability function, s0 ∈ S is the initial state, AP is a
set of atomic propositions, and L : S → 2AP is a labeling
function. We achieve this by discretizing the integrated human
driver ACT-R model in [18] through the use of a vehicle
model [15]. We can then verify it using off-the-shelf tools,
e.g. PRISM [12]. We assume a two vehicle scenario, where
the ego-vehicle interacts with a lead vehicle whose motion is
predictable [9]. The driver model presented in [18] is divided
into three sequential modules: (i) control, which manages low
level perception cues and the manipulation of the vehicle, (ii)
monitoring, which maintains awareness of the position of other
vehicles around the ego-vehicle; and (iii) decision making,
which determines the tactical decision to be taken.

Our abstraction combines decision making and monitoring
into one module for the sake of efficiency. We define Mh

which unifies both modules through the use of µ ∈ {1, 2},
where µ = 1 corresponds to the control step and µ = 2 to
the decision making and monitoring stage. A state s ∈ S is a
tuple s = (µ, x, λ, a, v, t), where x is bounded to a finite length
of the road according to the situation, v is the speed of the
vehicle, a is the acceleration and λ represents the index of the
lane of the ego, abstracting away the y variable which reduces



Fig. 2: Example of a trajectory under ϕ1 for a given set of initial conditions S. Top in red: human-vehicle system (no ADAS - PS(ϕ1) =
0.489). Bottom in blue: human-vehicle system with ADAS (PS

min(ϕ1) = 0.242). Gray: the other vehicle. For readability purposes, the
opacity of the cars decreases with time. The red ‘x’ marks a collision between the vehicles.
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Fig. 3: PS
./(ϕ)− PS(ϕ) for a randomly sampled population of 100

different initial conditions S for (a) ϕ = ϕ1, ./= min and (b) ϕ =
ϕ2, ./= max.

the size of the model. A time discretization is induced for all
the continuous variables. For a given set of initial conditions
S, the state space S is automatically generated. The transition
probabilities for all s, s′ ∈ S are given by:

P(s, s′) =


1 if µs = 1 ∧ s′ = CONTROL(s),

DMM(s, s′) if µs = 2,

0 otherwise,

where CONTROL is a deterministic transition table resulting
from the simulation of the control laws from [18] and DMM
is a table of transition probabilities based on the introduction
of (1) Gaussian noise to the decision making and monitoring
processes presented in [18] as a way to model the uncertainty
of perception; and (2) stochastic uncertainty in terms of the
lane changing decision based on driver variability.

To obtain the Human-Vehicle-ADAS system, we augment
Mh with possible realistic interventions by the ADAS, as
presented in Fig. 1. These interventions can be of two types:
passive suggestions (PS) and active control (AC). In passive
suggestions, we assume that the assistance system cannot
change the decision making directly, as it is a human cognitive
process, but it can influence it to a certain degree through
suggestions [8], i.e. an action at this level, aPS

i , induces
the probability distribution DMMi(s, s

′), which is biased
towards the desired outcome. In active control, the actions
available to the ADAS, aAC

i , can have corrective control-based
interventions at the level of acceleration and steering (with
ADAS variables constrained to ensure incremental interven-
tions), deterministically leading to different states according
to CONTROLi(s). The optimal ADAS design is reduced to
finding an optimal policy over MADAS for a certain specifi-
cation given as a temporal logic formula ϕ defined over AP .
Off-the-shelf tools, such as PRISM [12], can be employed for
this computation.

0.03 0.04 0.05
PS(ϕ1)

0.4

0.6

PS
(ϕ

2
)

Fig. 4: Pareto frontier resulting of the multi-objective optimization
of minimizing ϕ1 and maximizing ϕ2 in MADAS .

III. EXPERIMENTAL RESULTS

The framework was implemented in Python using PRISM
and the code is available on Github1. To study its applications,
we considered a simplified two lane scenario of length xmax

where the lead vehicle is assumed to be moving at a constant
speed. We also considered two interesting properties:

ϕ1 = ♦ CRASH, and ϕ2 = ♦
(
(x = xmax) ∧ (t ≤ T )

)
,

which we want to minimize and maximize, respectively.
Intuitively, ϕ1 refers to how unsafe the system is, while ϕ2

corresponds to the time efficiency of it.
Fig. 2 shows an example of a trajectory under ϕ1 for a

given highly unsafe initial situation S, in which the ADAS ef-
fectively leads the system to a safer situation. Fig. 3 showcases
the difference in probabilities of satisfying (a) ϕ1 and (b) ϕ2,
assuming each specification to be optimized individually. In
both cases, all randomly generated scenarios tested lead to a
decrease in the case of ϕ1 and an increase in the case of ϕ2,
i.e. improved satisfaction of the desired properties.

These results refer to optimizing each of the properties
individually and do not offer any insight into how optimizing
one influences the satisfaction of the other. Through our frame-
work, we are also able to study the relationships between prop-
erties using multi-objective optimization techniques. Fig. 4
presents the Pareto frontier of optimizing ϕ1 and ϕ2 for a
given S in a multi-objective setting, showing that, as expected,
there is a trade-off between the two properties.

A more in-depth analysis can be found in [7], including
situations with more vehicles and complex specifications.

IV. FINAL REMARKS

The approach proposed in this paper enables the study of
safety of semi-autonomous vehicles in various conditions and
the design of ADAS that are robust with formal guarantees.
In the future, the specifications passed to the ADAS could be
learnt so as to match the behavior of expert drivers.

1https://github.com/fgirbal/cbc adas

https://github.com/fgirbal/cbc_adas
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