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ABSTRACT

Generative Adversarial Networks (GANs) have recently emerged as powerful gen-
erative models. GANs are trained by an adversarial process between a generative
network and a discriminative network. It is theoretically guaranteed that, in the
nonparametric regime, by arriving at the unique saddle point of a minimax objec-
tive function, the generative network generates samples from the data distribution.
However, in practice, getting close to this saddle point has proven to be difficult,
resulting in the ubiquitous problem of “mode collapse”. The root of the problems
in training GANs lies on the unbalanced nature of the game being played. Here,
we propose to level the playing field and make the minimax game balanced by
“heating” the data distribution. The empirical distribution is frozen at temperature
zero; GANs are instead initialized at infinite temperature, where learning is sta-
ble. By annealing the heated data distribution, we initialized the network at each
temperature with the learnt parameters of the previous higher temperature. We
posited a conjecture that learning under continuous annealing in the nonparamet-
ric regime is stable, and proposed an algorithm in corollary. In our experiments,
the annealed GAN algorithm, dubbed β-GAN, trained with unmodified objective
function was stable and did not suffer from mode collapse.

1 INTRODUCTION

One of the most fundamental problems in machine learning is the unsupervised learning of high-
dimensional data. A class of problems in unsupervised learning is density estimation, where it is
assumed that there exist a class of probabilistic models underlying observed data x and the goal of
learning is to infer the “right” model(s). The generative adversarial network proposed in Good-
fellow et al. (2014) is an elegant framework, which transforms the problem of density estimation
to an adversarial process in a minimax game between a generative network G and a discriminative
network D. However, despite their simplicity, GANs have proven to be difficult to train. There are
different schools in diagnosing and addressing the problems with training GANs, that have resulted
in a variety of algorithms (Denton et al., 2015; Radford et al., 2015; Zhao et al., 2016; Chen et al.,
2016; Metz et al., 2016; Tolstikhin et al., 2017; Arjovsky & Bottou, 2017; Arjovsky et al., 2017).
Perhaps, the biggest challenge is that the data in the world are highly structured, lying on a very
low-dimensional manifold of their ambient space (Goodfellow et al., 2016). At the beginning of
training the generative network G is far off from this low-dimensional manifold and the generated
samples get easily rejected by the discriminative network D, causing little room to improve G . The
other challenging issue is that GANs optimal point is a saddle point. We have good understanding
and a variety of optimization methods to find local minima/maxima of objective functions, but min-
imax optimization in high-dimensional spaces have proven to be challenging. Because of these two
obstacles, i.e. the nature of high-dimensional data and the nature of the optimization, GANs suffer
from stability issues and the ubiquitous problem of mode collapse, where the generator completely
ignores parts of the low-dimensional data manifold. In this work, we address these two issues at
the same time by lifting the minimax game after defining an effective temperature1 for the data
distribution in an annealing framework.

Annealing has a rich history in statistical mechanics, with applications to combinatorial optimization
and Markov chain Monte Carlo (Kirkpatrick et al., 1983; Marinari & Parisi, 1992; Neal, 2001). In

1We will drop the word effective throughout the paper.
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addition, there are deep connections between the framework here, the nonequilibrium framework
for unsupervised learning (Sohl-Dickstein et al., 2015), and recent works on “visible hierarchies” in
natural images (Saremi & Sejnowski, 2013; 2015; 2016). We will elaborate on these connections in
the extended version of this paper.

2 ANNEALED GAN

In this section, we define the inverse temperature β for the data distribution and provide an algorithm
that is built on annealing the data distribution. The convergence of the algorithm is based on a
conjecture with stability guarantees in the nonparametric regime and the continuous annealing limit.
We will present the conjecture in detail in the extended version of the paper. We named the algorithm
β-GAN for the leading role the inverse temperature β plays.

Let us assume networks G and D have enough capacity, parameterized by deep neural networks
G(z; θG) and D(x; θD). The heated data distribution at inverse temperature β is given by:

pdata(x;β) =
1

N

(
β

2π

)D/2∑
i

exp

(
−β(x− x

(i))2

2

)
,

where the empirical distribution for N observations {x(1), x(2), · · · , x(N)} ∈ RD is recovered in
the limit β →∞. The minimax optimization task at each β is:

θ∗G(β) = argmin
θG

max
θD

f(θD, θG;β),

f(θD, θG;β) = E
x∼pdata(x;β)

log (D(x; θD)) + E
z∼p(z)

log(1−D(G(z; θG); θD)).

Note that the optimal parameters θ∗G and θ∗D are both functions of β. With this setup, annealed GAN
algorithm is given below:

Algorithm 1 Minibatch stochastic gradient descent training of annealed generative adversarial networks.

• Receive β0, β∞, and K, which correspond to inverse infinite temperature, inverse zero temper-
ature, and the number of cooling steps respectively.
• Compute α > 1 as the geometric cooling factor:

α =

(
β∞
β0

) 1
K

=

(
Temperature∞
Temperature0

) 1
K

.

• Initialize β: β ← β0

for number of cooling steps (K) do
for number of training steps (n) do
• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior p(z).
• Sample minibatch of m examples {x(1), . . . , x(m)} from data generating distribution
pdata(x;β).
• Update the discriminator by ascending its stochastic gradient:

∇θd,β
1

m

m∑
i=1

[
logD

(
x(i); θd,β

)
+ log

(
1−D

(
G
(
z(i); θg,β

)
; θd,β

))]
.

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior p(z).
• Update the generator by descending its stochastic gradient:

∇θg,β
1

m

m∑
i=1

log
(
1−D

(
G
(
z(i); θg,β

)
; θd,β

))
.

end for
• Increase β geometrically: β ← β ∗ α

end for
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3 EXPERIMENTS

To check the stability of β-GAN, we ran experiments on mixtures of 1D, 2D, and 3D Gaussians.
The results reported here for vanilla GAN was the best among many runs; in most of them it only
captured one mode or failed to capture any mode. However, β-GAN consistently produced similar
results. Vanilla GAN requires the modification of the generator loss to log(D(G(z; θG))) to avoid
saturation of discriminator (Goodfellow et al., 2014), while in β-GAN we did not make any mod-
ification, staying with the generator loss log(1 − D(G(z; θG); θD)). In the experiments, the total
number of training iterations in β-GAN was the same as vanilla GAN, but distributed over many
intermediate temperatures, thus curbing the computational cost. Despite its low computational cost,
the algorithm was stable during training and did not suffer from mode collapse (see Fig. 1). We
should also emphasize that other GAN architectures can be easily augmented with β-GAN as the
outer loop. In this paper, we chose the original generative adversarial network of Goodfellow et al.
(2014) as the inner loop (see Algorithm 1).
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Figure 1: Top row: performance of vanilla GAN on a mixture of 4 Gaussian components in 3 dimensions. Bottom row: performance of
β-GAN on the same dataset. Blue/red dots are real/generated data. To compare the computational cost, we report Λ, which is the total number
of gradient evaluations from the start.

4 DISCUSSIONS

This work fits in a larger picture of approaches that have recently emerged in stabilizing the train-
ing of GANs by either “better” distance measures (Nowozin et al., 2016; Arjovsky et al., 2017)
or adding noise during training, including “label noise” (Salimans et al., 2016) and “instance
noise” (Kaae Sønderby et al., 2016). Instead of adding noise, we defined a more general concept
called inverse temperature, which we annealed geometrically (Neal, 2001). We thus avoided adding
any extra noise to the generator or the discriminator. Geometric annealing also gave us the flexibility
to quickly zoom in on the data distribution at small temperatures. Our approach is especially appeal-
ing because we start the training at infinite temperature (high-entropy/uniform distribution), where
the data distribution fills the ambient space, guaranteeing that the generator output always remains a
subspace of the heated data manifold. This work opens up a new space for exploring GAN stability
both theoretically and for rich datasets occupying arbitrarily complex manifolds.
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Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial
networks. In International Conference on Learning Representations, 2017.
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