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ABSTRACT

Accurate traffic speed prediction is critical in modern society as it is effective
for both individuals and authorities. Due to the large scale of urban road net-
works, traffic speed exhibits complex spatio-temporal dependencies, not only
among adjacent nodes but also across the network, reflecting both local and cross-
regional simultaneous correlations. However, existing studies have not effectively
addressed these characteristics. In this context, we propose a novel framework
called Multi-view Hypergraph Spatio-Temporal Model (MvHSTM) that employs
a temporal transformer to capture temporal dependencies and utilizes hypergraph
convolutional networks to inherently model spatial relationships. Specifically, we
introduce two hypergraph construction methods, the Geographical Adjacency Hy-
pergraph (GAH) and the Feature Similarity Hypergraph (FSH), to capture spatial
correlations on neighboring and non-neighboring scales. Extensive experiments
on real-world traffic speed datasets demonstrate that our approach achieves state-
of-the-art performance compared to baseline methods.

1 INTRODUCTION

Traffic speed prediction is a critical component in modern society, with applications in urban traffic
management and intelligent transportation systems (ITS). Accurate forecasting of traffic speeds opti-
mizes route navigation, improves estimated time of arrival, and enables efficient traffic management.
Laor & Galily (2022) note that around 74 percent of smartphone users rely on navigation software,
with the real-time “recalculating route” feature being particularly useful in offering reassurance and
generating positive emotions. The significance of this predictive capability also extends to various
domains. In navigation systems, accurate predictions facilitate optimal route selection, potentially
reducing travel times and alleviating congestion. Emergency services benefit from more precise es-
timation of response times. Furthermore, improved traffic prediction contributes to environmental
sustainability by promoting more efficient transportation patterns and potentially reducing carbon
emissions.

However, the complexity of urban traffic systems necessitates sophisticated modeling approaches.
Traffic is influenced by multiple factors, including spatial dependencies between road segments,
temporal patterns such as rush hours. Correlations in the spatial dimension indicate congestion in
one area can rapidly propagate to neighboring segments, creating ripple effects throughout the net-
work. Besides, this kind of spatial similarity also far beyond simple geographical proximity. Road
networks form complex webs of interconnected segments, where the speed can significantly drop af-
ter merging on freeways or dramatically rise back after diverging. Moreover, certain road segments
may have functional relationships that are not immediately apparent from their geographical adja-
cency. For example, parallel arterial roads usually serve as alternatives, sharing traffic load during
congestion. Expressways linking urban and suburban areas often exhibit synchronized congestion
patterns during rush hours. Different areas within a city can have vastly different traffic character-
istics due to land use patterns, population density, or the presence of key destinations. Therefore,
developing comprehensive models that can capture these intricate spatial relationships along with
their temporal dynamics is crucial for accurate traffic speed prediction. Such models need to learn
and represent the different characteristics of road segments in the spatial dimension, presenting a
significant challenge in the field of traffic forecasting.
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Existing approaches to traffic prediction mainly focus on two aspects: time series methods and
graph methods, corresponding to the temporal and spatial dimensions, respectively. Classical sta-
tistical methods such as Autoregressive Integrated Moving Average (ARIMA) (Williams & Hoel,
2003) and Support Vector Regression (SVR) (Drucker et al., 1996) primarily focus on modeling
the sequential nature of traffic patterns over time. However, these approaches face limitations in
capturing complex nonlinear relationships and spatial correlations inherent in traffic data. Recently,
researchers have employed deep learning methods to address these shortcomings. Kim et al. (2017)
introduce convolutional operations into Fully Connected LSTM (FC-LSTM) (Graves, 2013), which
enables the original temporal model to perceive spatial relations. (Zhang et al., 2017) employ CNN
in residual learning blocks, effectively addressing spatio-temporal correlations in urban grid pedes-
trian data. However, RNNs (including LSTM) have difficulty in capturing long-term temporal de-
pendencies and are computationally intensive. Existing CNNs, while good at extracting grid-like
spatial feature, struggle to model irregular road systems in real cities.

In order to model real road networks, graph-structured models are applied in recent studies. STGCN
(Yu et al., 2017) applies graph convolutions and gated temporal convolutions to learn spatial and
temporal dependencies, respectively. By applying a diffusion process on graph structure with RNN,
DCRNN (Li et al., 2017) effectively model spatio-temporal network in traffic datasets. Extensive
research, such as Graph WaveNet (Wu et al., 2019), STSGCN (Song et al., 2020), AGCRN (Bai
et al., 2020) has proved that the effectiveness of graph structure in modeling real road networks.
These studies have proved the effectiveness of graph structure in modeling urban road networks,
relating segments by linking nearby nodes with edges. Nevertheless, standard graphs represent spa-
tial relationships with simple pairwise edges, limiting their ability to capture complex interactions
among multiple nodes. This structure makes it challenging to model higher-order spatial correla-
tions and transregional relationships in traffic data. Furthermore, a large number of computations
are needed to establish connections between distant nodes. In contrast, hypergraphs allow hyper-
edges to connect multiple nodes simultaneously, enabling a more comprehensive representation of
spatial dependencies. Feng et al. (2019) extends traditional graph neural networks to hypergraphs,
allowing the model to capture higher-order relationships. Wang et al. (2021) employ hypergraph on
metro system, validating the performance in extracting higher-order relationships. Hypergraph The
attention mechanism (Vaswani, 2017) also demonstrates its superiority in both spatial and temporal
features, such as ASTGCN (Guo et al., 2019), STTN (Xu et al., 2020), and GMAN (Zheng et al.,
2020). These prior works have significantly advanced the field of spatio-temporal traffic predic-
tion by demonstrating the effectiveness of graph-based and attention-enhanced models in modeling
road networks. The introduction of hypergraphs has further enriched spatial modeling by capturing
higher-order relationships, which are difficult to model using standard graphs. However, existing
hypergraph construction methods have certain limitations, as predefined rules may not fully capture
the complex nature of traffic data.

To address these limitations, we propose a novel framework, the Multi-view Hypergraph Spatio-
Temporal Model (MvHSTM), designed to capture the spatio-temporal features in traffic systems.
Our method constructs hypergraph in two separate strategies, by geographical adjacency and traffic
pattern similarity, respectively. The model utilizes a transformer module to handle temporal rela-
tionships, and two hypergraph convolution networks, Geographical Adjacency Hypergraph (GAH)
and Feature Similarity Hypergraph (FSH), to represent both neighboring spatial relationships and
non-neighboring feature similarities. This enables the capture of higher-order spatial correlations
that are often overlooked by simple graph-based models. Finally, we design a self-adaptive fusion
module to obtain the prediction result.

Our contributions can be summarized as follows:

• We propose a novel MvHSTM framework to comprehensively capture the spatio-temporal
features of traffic speed forecasting. The framework employs a temporal embedding for
temporal transformer to model temporal features, and two hypergraph convolution net-
works are utilized to capture inherent spatial relationships.

• To represent spatial feature specifically in traffic speed data, we propose two different
hypergraph construction approaches, forming the Geographical Adjacency Hypergraph
(GAH) and the Feature Similarity Hypergraph (FSH). The GAH is constructed from nodes
with their adjacencies, and the FSH is constructed from nodes with similar traffic speed
patterns.
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• We evaluate our MvHSTM in two different real-world traffic speed datasets and the results
demonstrate that MvHSTM performs better than baselines.

2 PRELIMINARIES

The network of a road system can be defined as a graph G = (V, E ,A), where V is a set of vertices
representing speed sensors on roads, E is a set of edges representing roads linking sensors, and
A ∈ RN×N is an adjacency matrix that demonstrates relationships between vertices. On the basis
of graph structure, a hypergraph consists of a set of vertices, and a set of hyperedges that link more
than two vertices. We can define a hypergraph as Gh = (Vh, Eh,H), where Vh is the set of N
vertices, Eh is the set of M hyperedges, and H ∈ RN×M is the incidence matrix. The incidence
matrix of hypergraph is defined as follows:

Hij =

{
1 if vi ∈ ej ,

0 if vi /∈ ej .

The time series of traffic speed is represented as X1:τ = (X1,X2, . . . ,Xτ ) ∈ RN×T×F , where N
is the number of vertices, T is the sequence length, and F is the dimension of features.

Given traffic time series Xτ−T+1:τ = (Xτ−T+1,Xτ−T+2, . . . ,Xτ )
T ∈ RN×T×F and road system

G = (V, E , A), the problem of traffic forecasting can be formulated as follows:

X̂τ+1:τ+T = f(Xτ−T+1:τ ,G)

where T is the sequence length of the input series and the predict length.

3 METHODOLOGY

Road Network
Input
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Figure 1: The framework of the proposed Multi-view Hypergraph Spatio-Temporal Model (MvH-
STM). It consists of time-series embedding, a transformer module to handle temporal dependenci-
cies, and the construction and convolution of a Geographical Adjacency Hypergraph as well as a
Feature Similarity Hypergraph.

In this section, the components of MvHSTM are represented detailedly. As shown in Figure 1, the
input data consists of two parts, the road network input is processed to construct two hypergraphs
that demonstrate spatial correlations, and the time series input goes through temporal embedding
to represent temporal features. The embedded data is further processed by the transformer module,
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to extract temporal features from each time series. After that, time series data is associated with
the two constructed hypergraphs, and is further processed by the Geographical Adjacency Hyper-
graph Convolution Network (GAHCN) and the Feature Similarity Hypergraph Convolution Network
(FSHCN), respectively. As the two hypergraphs represent different inherent correlations, we fuse
the two results using a self-adaptive weight, and finally obtain the prediction.

3.1 TRANSFORMER MODULE

Time-series Embedding To recognize temporal feature of traffic speed data, we utilize a temporal
embedding layer to extract time-of-day feature and day-of-week feature within data. The time-of-
day feature Ttod ranging from 1 to 288, representing 288 timestamps, and the day-of-week feature
Tdow ranging from 1 to 7, corresponding to Monday to Sunday. These temporal information is
processed by the temporal embedding layer to obtain the feature embedding Ef ∈ RN×T×(F+2×df ):

Ef = [X;FCtod(Ttod);FCdow(Tdow)]

where df is the dimension of each feature embedding, and FC are fully connected layers.

Temporal Self-attention The temporal self-attention mechanism (Jiang et al., 2023) is designed
to capture the temporal dependencies within the traffic time series data. Given the tensor X ∈
RN×T×dh , where N is the number of vertices, T is the number of time frames, and dh is the hidden
dimension, the temporal self-attention layer computes the query, key, and value matrices as follows:

Qt = Xn,:,:W
Q,Kt = Xn,:,:W

K ,Vt = Xn,:,:W
V ,

where WQ,WK ,W V ∈ Rdh×dh are learnable parameters. Then, the self-attention scores are
calculated as the following equation:

A(t) = Softmax(
QtK

⊤
t√

dh
),

Finally, the output of transformer module is calculated as follows:

Z(t) = A(t)V(t).

3.2 CONSTRUCTION OF HYPERGRAPH

For a graph G = (V, E ,A), a critical step in constructing a hypergraph Gh = (Vh, Eh,H) is to
decide which vertices ∈ V should be linked by each hyperedge ∈ Eh. In this subsection, we in-
troduce two separate approaches for assembling vertices into hyperedges, to obtain a Geographical
Adjacency Hypergraph (GAH) and a Feature Similarity Hypergraph (FSH).

Construction of GAH Normally, a hypergraph is applied in traffic forecasting for its effectiveness
in gathering adjacency road segments in a complex enormous road system. The Geographical Ad-
jacency Hypergraph (GAH) uses this characteristic. In constructing the GAH, we utilize the input
adjacency matrix A ∈ RN×N , where each entry Aij represents the spatial connectivity between
vertices i and j. Each hyperedge is constructed from a vertex v ∈ V and its k-nearest neighboring
vertices based on their adjacency in the road system:

EGAH
h = {evh : evh = {v} ∪ Nk(v)}

where Nk(v) is the set of k vertices that are most strongly connected to v according to the adjacency
matrix A.

Constructing Hyperedges by DTW Dynamic Time Warping (DTW) (Berndt & Clifford, 1994) is
an algorithm designed to measure the similarity between two temporal sequences. Unlike simple Eu-
clidean distance, DTW aligns time series flexibly by permitting shifts in the time dimension, thereby
offering a more accurate similarity measure even when the sequences are not perfectly synchronized.
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Figure 2: The DTW algorithm measures the similarity between two time series by aligning them.
This algorithm can effectively cluster time series with similar patterns.

Given two sequences x = (x1, x2, . . . , xN ) and y = (y1, y2, . . . , yM ), the objective is to find
the warping path w = (w1, w2, . . . , wL), where each element wl = (i, j) represents an optimal
alignment between the i-th point of x and the j-th point of y. This path minimizes the cumulative
alignment cost, which can be expressed as follows.

DTW(x,y) = min
W

L∑
l=1

d(wl)

where d(wl) is the Euclidean distance between aligned points in the sequences.

Hypergraphs are an extension of traditional graphs, where an edge (namely a hyperedge) can connect
multiple vertices, allowing for a more expressive representation of detailed variation patterns among
the vertices. By applying DTW, stations with similar temporal patterns are grouped into the same
hyperedge. In a real traffic speed datasets, factors like rush hour and daily routines cause non-linear
variations, and two cyclical patterns are particularly significant: the daily cycle and the weekly cycle.

Taking a week period from Jan 9, 2017 to January 16, 2017 in the PEMS-BAY dataset as an example,
we utilize the DTW algorithm to cluster 325 vertices into 16 different patterns. As shown in Figure 3,
three typical cases of hyperedges represent three different traffic speed patterns, and vertices with
the same patterns are distributed to throughout the city. The traffic speeds on sensors in Hyperedge
A exhibits a clear drop in morning and evening peak hours on weekdays (Monday to Friday). These
sensor stations are heavily influenced by daily commuting patterns and speeds drop to about 35
mph (half of free flow speed, reaching capacity of freeway segments). In contrast, the traffic speeds
of sensors in Hyperedge B are relatively stable throughout the week, with minimal fluctuations.
Hyperedge B is a typical case of vertices with consistent traffic flow, potentially unaffected by typical
rush hour variations. Traffic speeds in Hyperedge C dip once per day to about 15 mph in weekdays,
indicating they have only one peak hour but effect capacity seriously. This indicates that same
pattern can happen in different region of the city. By employing DTW, these correlations can be
discerned, contributing to more precise traffic speed prediction.

Construction of FSH The FSH is constructed by clustering vertices based on their traffic speed
patterns. Traffic speed data exhibits different patterns across various scenarios, such as commut-
ing, tourism, and holidays, while also demonstrating periodicity over different cycles (e.g., daily,
weekly). We use a seven-days period covering the cycles to recognize traffic variation patterns
among the vertices. To achieve this, we apply the DTW algorithm, which measures the similarity
between two temporal sequences by aligning them in a way that minimizes the difference.

EFSH
h = {ech : ech = Clusterc(V ), c = 1, . . . , k}

where Clusterc(V ) is the set of vertices grouped into cluster c based on their speed sequence simi-
larity using the DTW algorithm.
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Hyperedge A

Hyperedge A

Hyperedge B

Hyperedge B

Hyperedge C

Hyperedge C

Figure 3: Temporal speed patterns and spatial distribution for hypergraph construction. The top
three panels illustrate the traffic speed variations for three hyperedges (A, B, and C) over the week.
Hyperedge A exhibits high-speed fluctuations throughout weekdays. Hyperedge B displays more
stable speed trends throughout the entire week. Hyperedge C shows distinct speed drops during
peak hours, especially on weekdays. The bottom panels show the spatial distribution of the nodes
forming each hyperedge.

3.3 HYPERGRAPH CONVOLUTION

Hypergraph Convolution After constructing the hypergraph, we proceed to define the hypergraph
convolution operation. The convolution process is utilized on both GAH and FSH, namely Geo-
graphical Adjacency Hypergraph Convolutional Network (GAHCN) and Feature Similarity Hyper-
graph Convolutional Network (FSHCN). This operation is crucial for processing and propagating
information across the hyperedges and vertices. The hypergraph convolution can be expressed as
follows:

X(l+1)
i = D

− 1
2

v HWD−1
e H⊤D

− 1
2

v Xl
iΘ

where Dv is the vertex degree matrix, De is the hyperedge degree matrix, W is the importance of
each hyperedge, and Θ is the parameter to be learned in the model.

Self-adaptive Fusion To effectively integrate features extracted from two different hypergraphs, a
self-adaptive fusion strategy is employed. This mechanism adaptively learns the importance of each
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feature set based on their contributions to the overall task, and computing the weight of each feature.
After that, the two results X1 and X2 are fused using the calculated weights to predict the future
series of traffic speeds:

[W1;W2] = Softmax (FC (ReLU (FC([X1;X2]))))

Xfused =

2∏
i=1

(XiWi)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

In this section, we employed two widely-used traffic datasets, METR-LA and PEMS-BAY (Li et al.,
2017), to validate our proposed model. Both datasets divide the traffic speed data into 5-minute
intervals. METR-LA contains traffic data from March to June 2012, and PEMS-BAY ranges from
January to May 2017. The two datasets are divided into training, validation, and test sets with a ratio
of 7:1:2, respectively. The descriptions of datasets are shown in Table 1:

Table 1: Dataset description.
Dataset Sensors Time Steps Missingness

METR-LA 207 34272 8.11%
PEMS-BAY 325 52116 0.003%

The input and prediction lengths are set to 12 time steps, corresponding to one hour. For temporal
transformer, the feature embedding dimension of time-of-day and day-of-week are set to 24, and the
adjusted embedding dimension is configured to 80. The number of layers for temporal transformer
is set to 3, and each equipped with 4 attention heads. In terms of hypergraph construction, the
number of nearest k vertices in GAH is set to 4, and the number of hyperedges in FSH is set to 16.
The number of layers for GAHCN and FSHCN are both set to 3. We utilize Adam as the optimizer,
initialize a learning rate of 0.001 with learning rate decaying during the training. The batch size is set
to 16, and early stop is employed to halt the training if the validation loss shows no improvement for
30 consecutive epochs. Early stopping is employed to halt the training if the validation loss showed
no improvement for 30 consecutive epochs, and the maximum epoch is set to 100. The performance
is evaluated on horizon 3, 6, and 12 by three metrics in time-series forecasting tasks: Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE).

In this experiment, we compared our proposed MvHSTM model against multiple baselines, ranging
from classic models to recent state-of-the-art approaches: HI (Historical Inertia), ARIMA (Auto
Regressive Integrated Moving Average) (Makridakis & Hibon, 1997), FC-GAGA (Fully Connected
Gated Graph Architecture) (Oreshkin et al., 2021), Graph Wavenet (Wu et al., 2019), DCRNN (Dif-
fusion Convolutional Recurrent Neural Network) (Li et al., 2017), AGCRN (Adaptive Graph Convo-
lutional Recurrent Network) (Bai et al., 2020), STGCN (Spatio-temporal Graph Convolutional Net-
work) (Yu et al., 2017), STSGCN (Spatial-Temporal Synchronous Graph Convolutional Networks)
(Song et al., 2020), GTS (Shang et al., 2021), MTGNN (Wu et al., 2020), STNorm (Spatial and Tem-
poral Normalization) (Deng et al., 2021), GMAN (Graph Multi-Attention Network) (Zheng et al.,
2020), STID (Spatial and Temporal IDentity) (Shao et al., 2022), PDFormer (Jiang et al., 2023).

4.2 EXPERIMENT RESULTS

Table 2 presents the performance comparison of various traffic prediction models on two bench-
mark datasets. MvHSTM outperforms baseline models on both METR-LA and PEMS-BAY
datasets. Other transformer-based models such as PDFormer, GMAN and graph-based model such
as DCRNN also perform competitively. These results demonstrate the efficacy of our model’s multi-
view hypergraph structure, which adeptly models both neighboring and non-neighboring traffic pat-
terns, addressing the limitations of former graph-based models. This capability enables MvHSTM to
outperform its counterparts by capturing higher-order relationships and intricate interactions within
the traffic network, which are often elusive to conventional graph-based models.
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Table 2: Performance on METR-LA and PEMS-BAY

Datasets Models 15 min 30 min 60 min
MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

M
E

T
R

-L
A

HI 6.80 14.21 16.72 6.80 14.21 16.72 6.80 14.20 10.15
ARIMA 3.99 8.21 9.60 5.11 10.45 12.70 6.90 13.23 17.40

FC-GAGA 2.75 5.34 7.25 3.10 6.30 8.57 3.51 7.31 10.14
GWNet 2.69 5.15 6.99 3.08 6.20 8.47 3.51 7.28 9.96
DCRNN 2.67 5.16 6.86 3.12 6.27 8.42 3.54 7.47 10.32
AGCRN 2.85 5.53 7.63 3.20 6.52 9.00 3.59 7.45 10.47
STGCN 2.75 5.29 7.10 3.15 6.35 8.62 3.60 7.43 10.35

STSGCN 3.31 7.62 8.06 4.13 9.77 10.29 5.06 11.66 12.91
GTS 2.75 5.27 7.12 3.14 6.33 8.62 3.59 7.44 10.25

MTGNN 2.69 5.16 6.89 3.05 6.13 8.16 3.47 7.21 9.70
STNorm 2.81 5.57 7.40 3.18 6.59 8.47 3.57 7.51 10.24
GMAN 2.80 5.55 7.41 3.12 6.49 8.73 3.44 7.35 10.07
STID 2.82 5.53 7.75 3.19 6.57 9.39 3.55 7.55 10.95

PDFormer 2.83 5.45 7.77 3.20 6.46 9.19 3.62 7.47 10.91
MvHSTM 2.62 5.03 6.72 2.96 6.00 8.11 3.40 7.15 9.95

PE
M

S-
BA

Y

HI 3.06 7.05 6.85 3.06 7.04 6.84 3.05 7.03 6.83
ARIMA 1.62 3.30 3.50 2.30 4.76 5.40 3.38 6.50 8.30

FC-GAGA 1.36 2.86 2.87 1.80 3.80 3.80 3.51 7.31 10.14
GWNet 1.30 2.73 2.71 1.63 3.73 3.73 1.99 4.60 4.71
DCRNN 1.31 2.76 2.73 1.65 3.75 3.71 1.97 4.60 4.68
AGCRN 1.35 2.88 2.91 1.67 3.82 3.81 1.94 4.50 4.55
STGCN 1.36 2.88 2.86 1.70 3.84 3.79 2.02 4.63 4.72

STSGCN 1.44 3.01 3.01 1.83 4.18 4.17 2.26 5.21 5.40
GTS 1.37 2.92 2.85 1.72 3.86 3.88 2.06 4.60 4.88

MTGNN 1.33 2.80 2.81 1.66 3.77 3.75 1.95 4.50 4.62
STNorm 1.33 2.82 2.76 1.65 3.77 3.66 1.92 4.45 4.46
GMAN 1.35 2.90 2.87 1.65 3.82 3.74 1.92 4.49 4.52
STID 1.31 2.79 2.78 1.64 3.73 3.73 1.91 4.42 4.55

PDFormer 1.32 2.83 2.78 1.64 3.79 3.71 1.91 4.43 4.51
MvHSTM 1.30 2.73 2.74 1.61 3.64 3.64 1.90 4.35 4.49

4.3 ABLATION STUDY

To further evaluate the effectiveness of each component proposed in MvHSTM, we conduct experi-
ments using four variations of original MvHSTM on the METR-LA dataset:

• w/o Et: This configuration removes the temporal embedding Et.

• w/o GAH: This excludes the Geographical Adjacency Hypergraph component.

• w/o FSH: This excludes the Feature Similarity Hypergraph component.

• w/o FSH & GAH: Both GAH and FSH are excluded in this configuration.

• MvHSTM: The complete version of the MvHSTM.

Table 3 demonstrates the results of each variation. Et is designed to represent time-of-day and day-
of-week within traffic data, which mainly contribute to temporal dimension of traffic prediction.
Specifically, after removal Et, the mean of three errors in 15 minutes, 30 minutes, and 60 minutes
increases by 3.7%, 4.6% and 3.7%, respectively. GAH and FSH are designed to capture spatial
correlations at a neighboring scale and similar but non-neighboring scale, respectively. The results
indicate that model without either FSH or GAH performs the worst. GAH component contributes
to spatial contributes significantly to capturing spatial correlation, and FSH can further increase the
accuracy. Specifically, the worst performance can be seen in the model without FSH & GAH, with
errors increasing by 9.9%, 9.5%, 3.6% on three horizons. Without GAH, the average increase in the
three errors across the 15, 30, and 60-minute horizons is 8.5%, 7.7%, and 4.6%, respectively, indi-
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cating that GAH plays a significant role in improving model performance by capturing the spatial
dependencies effectively. While FSH has a noticeable effect on reducing errors, its impact is less
pronounced than GAH. However, it still enhances the model’s capability to learn feature similarities
among nodes, particularly for shorter horizons. This indicates that adjacency correlations are im-
portant for the spatial dimension in traffic prediction, and the combination of GAH and FSH benefit
the model to capture spatial correlation the most. Therefore, all the components are necessary for
temporal or spatial features.

Table 3: Ablation Study on METR-LA.

Configuration 15min 30min 60min
MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

w/o Et 2.72 5.17 7.03 3.09 6.20 8.61 3.52 7.24 10.60
w/o GAH 2.78 5.49 7.40 3.13 6.47 8.89 3.53 7.44 10.53
w/o FSH 2.66 5.08 6.87 2.99 6.02 8.15 3.42 7.20 10.05

w/o FSH & GAH 2.82 5.57 7.48 3.06 6.78 9.10 3.34 7.57 10.63
MvHSTM 2.62 5.03 6.72 2.96 6.00 8.11 3.40 7.15 9.95

4.4 PARAMETER SENSITIVITY ANALYSIS

A crucial parameter in MvHSTM is the number of hyperedges used for constructing the FSH. The
choice of this parameter directly impacts how many different patterns are discerned in capturing
spatial correlations in the traffic network. To analyze the sensitivity of MvHSTM to the number of
hyperedges, we vary this parameter and evaluate the model’s performance on the METR-LA dataset,
focusing on metrics as the number of hyperedges ranges from 8 to 20.

Table 4: Parameter Sensitivity Analysis on METR-LA.

Number of Hyperedge 15min 30min 60min
MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

8 2.67 5.08 6.86 3.01 6.06 8.24 3.45 7.17 10.06
12 2.64 5.05 6.80 2.98 6.01 8.13 3.42 7.16 10.01
16 2.62 5.03 6.72 2.96 6.00 8.11 3.40 7.15 9.95
20 2.66 5.20 6.90 3.07 6.10 8.23 3.48 7.27 10.10

As shown in Table 4, setting the number of hyperedges to 16 is optimal for achieving high pre-
dictive accuracy in MvHSTM, providing a balance between capturing detailed spatial correlations
and maintaining model efficiency across all prediction intervals. Fewer hyperedges may not cap-
ture spatial correlations precisely, but a greater number of hyperedges can also lead to decreased
performance. Therefore, in this study, we use 16 hyperedges to model the traffic network.

5 CONCLUSION

In this study, we introduce the Multi-view Hypergraph Spatio-Temporal Model (MvHSTM) for
traffic speed forecasting. By integrating a temporal transformer and two hypergraphs, the Geo-
graphical Adjacency Hypergraph (GAH) and the Feature Similarity Hypergraph (FSH), our model
effectively captures complex spatio-temporal dependencies. Experiments indicate that applying the
hypergraph construction method based on feature similarity is effective in traffic predicting. Tests on
the METR-LA and the PEMS-BAY datasets show that MvHSTM outperforms state-of-the-art mod-
els, demonstrating its potential for improving traffic management and route planning in intelligent
transportation systems.
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