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ABSTRACT
Users’ behavioral footprints online enable firms to discover behavior-

based user segments (or, segments) and deliver segment specific

messages to users. Following the discovery of segments, delivery of

messages to users through preferred media channels like Facebook

and Google can be challenging, as only a portion of users in a behav-

ior segment find match in a medium, and only a fraction of those

matched actually see the message (exposure). Even high quality

discovery becomes futile when delivery fails. Many sophisticated

algorithms exist for discovering behavioral segments; however,

these ignore the delivery component. The problem is compounded

because (i) the discovery is performed on the behavior data space

in firms’ data (e.g., user clicks), while the delivery is predicated

on the static data space (e.g., geo, age) as defined by media; and

(ii) firms work under budget constraint. We introduce a stochastic

optimization based algorithm for delivery optimized discovery of

behavioral user segments and offer new metrics to address the joint

optimization. We leverage optimization under a budget constraint

for delivery combined with a learning-based component for discov-

ery. Extensive experiments on a public dataset from Google and

a proprietary dataset show the effectiveness of our approach by

simultaneously improving delivery metrics, reducing budget spend

and achieving strong predictive performance in discovery.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Ma-
chine learning; • Information systems→ Data mining.
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1 INTRODUCTION
The ubiquitous online user behavior data afford opportunities for

behavioral user segmentation to online firms. With ever more so-

phisticated algorithms, firms leverage the data of its own users to

discover segments’ propensities, behavioral tendencies, etc. to send

messages, make predictions, offer recommendations, and improve

users’ experiences. Behavioral user segments (hereafter, segments)

are fundamental blocks for firms to target different segments with

different messages and offerings (hereafter, messages) [20]. Dis-
covery or formation of behavior segments, is only the first act and

becomes ineffective unless messages can be actually delivered to

the segments. Delivery of messages to the segment is the second

act. Increasingly, delivery occurs through media channels (here-

after, media) such as Facebook, Google and others, as exemplified

by media spend’s strong growth approaching 300 billion USD [2].

Two uncertainties facing the firms thwart delivery: (1) only a por-

tion of a behavior segment findmatch in a medium; and (2) only

a fraction of those matched actually see the message, or has ex-
posure to the message. In media parlance [3], when a message

is sent to a segment, Reach occurs provided both match and ex-

posure are realized. Yet, even advanced algorithms for discovery,

unsupervised or supervised, ignore these uncertainties of reach

inherent in delivery [10, 11, 15, 17, 19, 21, 29]. Instead, those focus

only on performance for discovery while tacitly assuming away

these delivery roadblocks. This is a problem and a research gap.

Firms perennially face the problem of segmenting its users (cus-

tomers) for effective targeting, and allocating segments thus formed

to different media within a media budget [6]. Figure 1 is a pictorial

sketch of this problem. When the discovery is done independently

of delivery consideration, suppose three behavior segments are

formed. Then, as delivery with static data is decided, a typical out-

come is that each segment gets mapped to multiple media. If the

firm wants to deliver a message specifically aimed at the red-dots

behavior segment, which is spread across two media, two problems
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arise: the budget can be exceeded, and the message is delivered to

some users in blue-dot and black-dot segments, a potential waste.

To avoid these problems it would be prudent to account for delivery,

during discovery of segments, by considering alignment with the

three media.

Figure 1: Need for Delivery Optimized Segment Discovery

The formal research problem is:

1. How to improve match across media with the goal of improv-

ing reach for delivering communication to users?

2. How to address (1) for endogenously formed audiences (as

opposed to exogenously defined audiences as in the prior art) and

multiple media?

3. How to address (1) and (2) within a budget?

4. How to also obtain high accuracy on predicting conversion?

Achieving the dual goals of high conversion accuracy and reach
maximization, embedded in the research problem, is compounded

by two other factors. (a) the discovery of behavior segments is

performed on the firm’s behavior data space (e.g. users’ click, page
visit, product viewed), all of which exist in users’ data the firm

possesses, but do not exist in the data of users themedia possess. The

media have users’ static data (e.g. geo, age, interests) on which the

delivery is predicated. (b) Firmswork under tight budget constraints

since media are costly. Elaborating on (a), users’ visits to a firm’s

site or app generate a user behavior log of pageurls, analyzing
which users are clustered into behavior segments, in a supervised

or unsupervised manner. Behaviors are dynamic data. For the same

users, static data such as geo, age, and interests are available to the

firm. When a firm ports over a behavior segment to a medium for

sending messages to the segment, the firm defines a set of static

characteristics (e.g. country-us, age-35-40, interests-jazz) that "best"
represents the behavior segment. Then this set, along with the

message, are passed along to a medium, which does the delivery.

The medium relies on static data to find users with (country-us,
age-35-40, interests-jazz) from among the medium’s vast user base.

A question may arise that the firm can bypass the behavior

segmentation step and instead form segments in the static data

space. However, behavior data are much more predictive of a user’s

decision (e.g. whether to convert, whether to renew a subscription)

than static data [20], reinforcing the premium put on behavior

segments. For effectiveness, it is necessary to maintain the primacy

of behavior segmentation in the discovery phase and map to the

static data for delivery.

Coming to (b), the firm can spend the media budget on various

combinations of different behavior segments and different media.

Different behavior segments, defined by their sets of static charac-

teristics, result in different proportions of match and exposure, and

these proportions differ across different media. Further, the cost of

sending a message to a user varies by media. Thus, a firm’s spend

depends on the composition of users in each behavior segment,

those users’ representation in static data (which determines match

and the exposure proportions), and the cost per medium. It follows

that the discovery of behavior segments is intrinsically linked to the

delivery and the spend; however, the prior art misses this linkage.

To address these limitations, we propose joint optimization of

discovery and delivery for behavioral segmentation and optimize

subject to the media spend budget constraint. We address Reach,

a common currency for media spend [3], which maps to pay-per-
click. We focus on Direct [4] media spend and not on programmatic

ad-bidding spend. For reach maximization subject to a budget, two

different forms are modeled - one, based on mean squared error

(MSE); and two, based on optimization under constraint [14]. In each

form we present multiple models; totaling five proposed models.

Moreover, since the space of behavior segments is different from

that of static data, a separate network learns a mapping function

Beh2Stat such that a behavior segment can be expressed in terms

of reach, through the match and exposure rates, to make stochastic

assignments to themedia. Five performancemetrics are used to span

conversion prediction, spend and reach efficiency and effectiveness.

We find that our proposed Delivery Aware Discovery (DAD) models

produce predictive conversion accuracy, AUROC, comparable to

models focused only on discovery (DISC), and yet reduces Spend

and increases Reach. In addition, within our five proposed models,

the Augmented Lagrangian stochastic optimization model has the

best performance in closeness of spend to the budget, and better

than that of the MSE based models.

Summary of Main Contributions. Focusing on firm’s direct me-

dia spend [4], not programmatic spend, our key contributions are:

• A new research problem of delivery aware discovery in be-

havioral user segmentation.

• A newmodel for joint optimization of discovery and delivery,

under budget constraint.

• Recognizing the mapping from firm’s behavioral data space

to the media’s static data space since behavioral segments

are not realizable on media platforms.

• Performing stochastic optimization for the dual goals of (a)

predictive segmentation and (b) optimizing reach.

• Introducing two new metrics for spend and reach efficacy.

2 RELATEDWORK
Segmentation of users is a well-studied problem. Clustering ap-

proaches are commonly used for segmentation, emanating from

statistical cluster analysis in an influential 1963 paper [32]. As on-

line data have evolved, so have clustering algorithms [10, 11, 15, 17].

Both unsupervised and supervised clustering methods dot the litera-

ture [19, 21, 29]. In particular, a recent paper [24] performs temporal

predictive clustering on dynamic user data. The outcome, conver-

sion, is our prediction objective, for which segments are formed

from event-level-behavior-sequence data (logs). That is, our goal is

not to cluster based on the behavior sequence per se, as papers [31]

on unsupervised sequence clustering do. A large literature of deep

clustering [26, 33, 35], time series clustering [9, 27], and progres-

sion of diseases [25, 28] do not address the research questions we
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Table 1: Statistics for the datasets used

Dataset I Dataset II

#Train Users 1664 26292

#Test Users 416 6572

#Sessions per user:

Min 1 3

Max 8 8

#Pages per session:

Min 2 5

Max 40 40

tackle. All these works address only the discovery of user segments,

but none incorporates the delivery. On the discovery side of the

equation, the state of the art (SOTA) is the paper [24]. Without any

prior art for delivery aware discovery and our context of predictive

clustering with users’ dynamic, behavior data, we use [24] as the

baseline SOTA model.

The problem of advertising (message) delivery under budget

constraint occupies an early prominent role in search [18, 22]. Opti-

mization of message spend rate with budget is well attended [8, 23].

An area of research emphasis is budget pacing, whereby a given bud-

get from a firm is dynamically allocated over a time horizon, based

on anticipated traffic with specified characteristics, as exemplified

by the empirical and theoretical contributions [12, 13, 16, 30, 34],

to name a few. This important body of research makes strong con-

tributions toward managing delivery of messages to users within

budget and addresses the context of ad bidding. None of these works

considers the discovery or formation of segments; they start with

a given set of users. We model discovery and delivery jointly. Our

work does not address the ad bidding based media spend; instead

we address the direct media spend, whereby the cost of a message

to a user is known and is not an outcome of bidding. We also do

not perform pacing of messages.

3 DATA
3.1 Firm data
The two datasets contain time stamped behavioral activity of users,

for each user. Dataset I is proprietary, from a provider of SaaS

services to individual users. Dataset II is public, from Google Ana-

lytics [1]. For each dataset, we work with the site’s pages (hereafter,

page-urls), where the behaviors are captured in the format of page-

urls. A user visits the site on multiple sessions, and in each session

(visit) browses multiple pages. The logs show the time-stamped

sequence of page-urls for each user as they click on pages, and are

mapped to the user with an anonymized code. Additionally, each

dataset has a binary target label for conversion, corresponding to

each session. Statistics for the datasets are shown in Table 1. These

statistics are quite comparable to the industry standard average
number of pages per user, per session, ranging from 10 to 31 [5].

For the data at hand, behaviors are page-names in the form of

page-urls, common for online browsing data. In other examples,

such as campaign, behaviors can be open email, click email, un-

subscribe, etc. Other target variables of interest to any firm can be

used, including target variables with more than two classes.

Processed public data are available [here].

3.2 Media data
Data of match rate and exposure rate are media dependent (e.g. dif-
ferent across Facebook, Google-YouTube, TikTok), and specific to

the combination of static characteristics. In our proprietary data,

there are 5 static characteristics, (country, source, member-type,
browser, os(operating system)). As an illustration, the 5-tuple, static

characteristic set (country-us, source-bookmarked, member-frequent,
browser-chrome, os-windows) has a match rate 0.56 and exposure

rate 0.47 for a medium 𝑗 ; while for another 5-tuple (country-uk,
source-bookmarked, member-infrequent, browser-edge, os-iOS) those
values are 0.39 and 0.61 for the same medium 𝑗 . However, in an-

other medium 𝑗′, the former 5-tuple (country-us, source-bookmarked,
member-frequent, browser-chrome, os-windows) has values 0.45 and
0.69. The match and exposure rates vary across the combinatorial

set of static characteristics, for each medium. These data are avail-

able from a medium to the firm which advertises on the medium

through reporting APIs but are not publicly disclosed. To overcome

this, we move to generate a match rate and exposure rate from a

joint distribution over the support of the combinatorial set of static

characteristics, which implies that for every combination (tuple)

of the 5 static features, a match rate and an exposure rate, lying

between 0.25 and 0.75 are drawn, for a medium. This is repeated

for each medium. The match and exposure rates are held fixed for

all the models. The cardinality of the set of 5-tuple static character-

istics in our data is 1, 296. We thus have a table of pairs of (match

rate, exposure rate) for each 1, 296 five tuples and three media.

From the Google data, we use 6 static features, each categorized

as follows: (medium [organic, referral/cpc/cpm, others]; deviceCate-
gory [desktop, mobile/tablet]; operatingSystem [Macintosh/iOS, Win-
dows, others]; categorized-geo [North America, Asia, Europe, others];
browser [Chrome, Safari and others]; source [direct, Google, others]).
Match and exposure rates for the Google data are generated in the

manner described in the above paragraph. These static character-

istics and their categories yield a table of 432 six tuples and three

media, giving us pairs of (match rate, exposure rate) for each of 432

six tuples, for each of three media.

4 JOINT DISCOVERY-DELIVERY MODEL
ARCHITECTURE

To achieve the dual goals of (i) conversion prediction and (ii) reach

maximization subject to a budget, we introduce a two-part network.

Figure 2 summarizes the notation and depicts the model architec-

ture. In the Figure, green colored network is for goal (i), and black

for goal (ii). Additionally, as a necessity to map behavioral data of

users to static characteristics required by media, we introduce a

mapping function Beh2Stat. The match rate and exposure rate vary

by static characteristics and medium. The cost varies by medium.

The Beh2Stat function’s mapping to the static space, allows compu-

tation of cost of reach, which is then taken to the budget constraint.

Training the whole network in three steps as shown in Figure 2

achieves the joint optimization. The SOTA in discovery [24] is

preserved by green network.
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Figure 2: Overview of approach.

4.1 HAN Encoder
Encoder 𝑓𝜃 :

∏𝑡
𝑖=1
X → H . The encoder takes user behavior till

time 𝑡 as input represented by x1:𝑡 = {𝑥1, 𝑥2, . . . , 𝑥𝑡 } for x𝑡∈X, and
learns to produce an intermediate user-level representation z𝑡∈H ,

by predicting each user’s target label, as in, 𝑦𝑡 . Note z𝑡 , a hidden
vector in the latent spaceH , is a representation that embodies the

latent tendency of a user, and is used for the clustering task. The

encoder used here is a Hierarchical Attention Network (HAN) [36].

We choose HAN since it better encapsulates the two-level sequence

of user behaviors - one, multiple pages browsed in each session and

two, multiple sessions of each user. The first level encodes activities

within each session to a session-level vector and the second level

encodes the session-vectors to a user-level vector.

4.2 Predictor, Selector, Embedding Dictionary
Predictor 𝑔𝜙 :H → [0, 1] is a fully connected network that takes

an embedding 𝑧 as input and predicts the target, i.e., conversion

probability 𝑦.

Selector ℎ𝜓 :H → Δ𝐾−1
is a fully connected network that takes

a user embedding 𝑧 as input and computes a distribution 𝜋 where

𝜋 (𝑘) is the probability of the embedding 𝑧 being assigned to the

𝑘-th cluster.

Embedding Dictionary E: This is a dictionary of the centroids of

𝐾 clusters. Given a sampled cluster assignment 𝑐𝑡 , it outputs the

centroid embedding e(𝑐𝑡 ) ∈ H .

4.3 Beh2Stat
𝐵𝑒ℎ2𝑆𝑡𝑎𝑡 . 𝑏𝜔 : H → S is a fully connected network that learns

the function mapping user behavioral embedding 𝑧𝑡 to the user

static characteristics vector 𝑆 ∈ S. Note that, by definition, static
characteristics of a user do not depend upon 𝑡 . Once trained, this

function projects the 𝑖-th behavioral segment-specific centroid em-

bedding e(𝑐𝑡 ) ∈ H to the 𝑖-th segment-specific static characteristics

𝑆𝑖 ∈ S. The projection is necessary to assign match rate 𝜌𝑖 𝑗 and

exposure 𝜂𝑖 𝑗 to the 𝑖-th segment, since for any medium 𝑗 , 𝜌𝑖 𝑗 and

𝜂𝑖 𝑗 are defined in terms of static characteristics 𝑆𝑖 , but not in terms

of behavioral embedding. The 𝜌𝑖 𝑗 and 𝜂𝑖 𝑗 are used in the reach

computation, defined later. Specifically, to preserve an important

property, that the behavioral segment contains users with a vari-

ety of static characteristics, we project a probability distribution

𝑝 over the support of S and use that probability distribution to

compute expected reach. This affords stochastic optimization of

the objective, reach. The loss associated with Beh2Stat is given by

LB (𝜔) = −
∑
𝑆 log𝑝 (𝑆).

5 OBJECTIVE FUNCTION AND CONSTRAINTS
5.1 Behavioral Segmentation Objective
The input x1:𝑡 are user behaviors present in the sequence of page

urls clicked. The output 𝑦𝑡 of a user denotes whether a conversion

was observed or not. The objective of behavioral segmentation is

to cluster users into segments based on users’ embeddings z𝑡 such
that segment-wise average prediction of conversion performs well.

The following describes the training.

5.2 Reach Maximization Objective
We assume that each segment is assigned to only one medium

(i.e. one media channel), but multiple segments can be communi-

cated through the same medium. During training, an MLP 𝑣𝛿 (S)
learns to map static features to mediums. For 𝑖-th segment’s static

characteristics 𝑆 , given a medium 𝑗 , match rate and exposure rate

coming from a table of match and exposure rates, as stated in Sec-

tion 3.2. The reach objective is denoted by L𝑅 and is calculated as

follows.

The loss, L4, for the joint optimization of discovery and delivery

is,

L4 (𝜃, 𝜙,𝜓, 𝜔, 𝛿) = L𝐴 (𝜃,𝜓, 𝜙) + L𝐶 (𝜙) + L𝑅 (𝛿) (1)

where, L𝑅 is the loss for the reach maximization. Note that L𝑅
changes with the specific formulation of the optimization’s objec-

tive function. L𝐴 denotes Actor loss and L𝐶 denotes Critic loss,

both of which are defined in Section 6.

Since each segment is activated on only one channel, the channel

should be selected to maximize the reach of that segment. Hence,

𝑖-th segment’s reach 𝑅𝑖 = max𝑗 (𝐴𝑖 𝑗𝜌𝑖 𝑗𝜂𝑖 𝑗 ). Expected total reach 𝑅
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is the sum of the reaches of individual segments and is given by

𝑅 =
∑︁
𝑖

𝑅𝑖 =
∑︁
𝑖

max

𝑗
(𝐴𝑖 𝑗𝜌𝑖 𝑗𝜂𝑖 𝑗 )𝑛𝑖 (2)

5.2.1 Mean Squared Error (MSE). The first form of reach maximiza-

tion is based on MSE. The total budget is split among the different

media proportionate to the number of people it contains, which is

the sum of the number of people in all segments assigned to that

media. Depending upon match rate 𝜌𝑖 𝑗 , and exposure rate 𝜂𝑖 𝑗 of the

static characteristic tuple of the segment to which the user belongs,

the spend for reach differs across users in different segments and

across different media. Note that (𝜌𝑖 𝑗 , 𝜂𝑖 𝑗 ) vary by static character-

istic tuples and by media. Segments formed through the Selector

yield the size 𝑛𝑖 , for the 𝑖-th segment, where 𝑖 = 1, ..., 𝐾 , and 𝐾 is

the number of segments. The Selector yields the group of users in

segment 𝑖 , whose latent, segment-centroid embedding E𝑖 is passed
to the Beh2Stat, which outputs 𝑖-th segment’s static characteristics

tuple. Given this tuple, corresponding (𝜌𝑖 𝑗 , 𝜂𝑖 𝑗 ) for each medium 𝑗

are read from a table for segment 𝑖 . For MSE, per individual user in

segment 𝑖 , medium 𝑗 , the expected reach = 𝜌𝑖 𝑗𝜂𝑖 𝑗 . Per individual

user assigned to medium 𝑗 , the reach goal = 𝐵/𝑁 𝜒 𝑗 . The intuition
is that with 𝑁 users, and cost per user reached 𝜒 𝑗 , the budget 𝐵

is divided into a reach goal per user. Two variations of MSE are

modeled as loss functions and described below.

Cluster Specific Reach MSE: A loss is defined per cluster and

the back propagation is per cluster. The loss for 𝑖-th cluster is,

L𝑅 =
∑︁
𝑗

𝐴𝑖 𝑗

(
𝜌𝑖 𝑗𝜂𝑖 𝑗 − 𝐵/𝑁 𝜒 𝑗

)
2

(3)

Cluster Agnostic Reach MSE: Here the loss is averaged across
all clusters, and the back propagation is across all clusters. The MSE

is,

L𝑅 =

∑
𝑖

∑
𝑗 𝐴𝑖 𝑗𝑛𝑖 ∗

(
𝜌𝑠𝑖 𝑗𝜂𝑠𝑖 𝑗 − 𝐵/𝑁 𝜒 𝑗

)
2

∑
𝑖 𝑛𝑖

(4)

5.3 Budget Constraint
Let 𝑗 ′ ≜ arg max𝑗 (𝐴𝑖 𝑗𝜌𝑖 𝑗𝜂𝑖 𝑗 ) be the channel which maximizes 𝑅𝑖
for any given segment 𝑖 . The budget constraint for total reach is

𝑇𝑅 = 𝐵 −
∑︁
𝑖

(𝐴𝑖 𝑗 ′𝜌𝑖 𝑗 ′𝜂𝑖 𝑗 ′ )𝜒 𝑗 ′𝑛𝑖 ≥ 0 (5)

where the second term in equation (5) is the Spend.

6 TRAINING
Pseudo-code of the model is given in Algorithm 2, and the joint

optimization in Algorithm 3. Top left of Figure 2 mentions the

ordered sequence of steps needed for initialization and training.

Pre-training and Initialization consists of doing the following

(Algorithm 1).

(1) Pre-train the Encoder and the Predictor using the loss

L1 (𝜃, 𝜙) = Ex,𝑦∼𝑝𝑋𝑌

[
−
∑︁
𝑡 ∈T

𝑙1 (𝑦𝑡 , 𝑦𝑡 )
]

(6)

where 𝑦𝑡 = 𝑔𝜙 (𝑓𝜃 (x𝑡 )) is the predicted conversion probabil-

ity of a user and 𝑙1 (𝑦𝑡 , 𝑦𝑡 ) = −
∑

𝑐∈{0,1}
𝑦𝑐𝑡 log(𝑦𝑐𝑡 ).

(2) Initialize the cluster embeddings using K-means on the rep-

resentations 𝑧
(𝑛)
𝑡 for all 𝑛 users and for all 𝑡 that are obtained

after pre-training the encoder.

(3) Pre-train the Selector on all 𝑧
(𝑛)
𝑡 and corresponding cluster

assignments obtained from K-means.

Subsequently, we train as follows. Lines 1-8 in Algorithm 2 use

an alternating minimization approach to alternate between training

an Actor-Critic network and updating the embedding dictionary.

Here the Actor is the (Encoder, Selector) pair of networks and the

Critic is the Predictor network. Lines 9-13 in Algorithm 2 train the

Beh2Stat network. Finally, lines 14-19 use alternating minimiza-

tion to alternate between maximizing the reach and updating the

embedding dictionary.

The actor’s loss is L𝐴 (𝜃, 𝜙,𝜓 ) = L1 (𝜃, 𝜙,𝜓 ) + 𝛼L2 (𝜃, 𝜙) which
combines two losses with 𝛼 as the hyperparameter. The loss term

L2 (𝜃,𝜓 ) promotes sparse cluster assignment such that each user

belonging to only one cluster with high probability. It is given by

L2 (𝜃,𝜓 ) = Ex∼𝑝𝑋
[
−
∑︁
𝑡 ∈𝑇

∑︁
𝑘∈𝐾

𝜋𝑡 (𝑘) log𝜋𝑡 (𝑘)
]

(7)

The loss term L1 (𝜃, 𝜙,𝜓 ) promotes the prediction of cluster level

outcomes 𝑦𝑡 from the cluster centroid. It is the partial function ob-

tained by fixing the embedding E is the loss expressionL1 (𝜃, 𝜙,𝜓, E)
given by

L1 (𝜃, 𝜙,𝜓, E) = Ex,𝑦∼𝑝𝑋𝑌

[∑︁
𝑡 ∈𝑇
E𝑐𝑡∼𝐶𝑎𝑡 (𝜋𝑡 )

[
𝑙1 (𝑦𝑡 , 𝑦𝑡 )

] ]
(8)

The critic’s loss is set to L𝐶 (𝜙) = L1 (𝜃, 𝜙,𝜓 ). Further, to pro-

mote well-separated cluster centroids in the embedding dictionary

representation, the lossL𝐸 (E) = L1 (E)+𝛽L3 (E) is used to update
the embedding dictionary, where

L3 (E) = −
∑︁
𝑘≠𝑘 ′

𝑙1 (𝑔𝜙 (e(𝑘), 𝑔𝜙 (e(𝑘′)) (9)

For the reach maximization subject to budget constraints, we

use the known techniques of Barrier method and Augmented La-

grangian from constrained deterministic optimization [14] to con-

vert it to an equivalent unconstrained objective for Algorithm 3.

These methods are fairly well understood for convex optimization.

However, neural network training is a non-convex problem and

in this setting, the methods employing Barriers or Augmented La-

grangians are not as well understood, despite being intuitive. The

three formulations that we implement are

(1) Slack Minimization with loss

L𝑅 =
1

ln(𝑅) +
𝑚𝑎𝑥 (𝑇𝑅, 0)

𝑤
(10)

The dual variable update rule is𝑤 ← 𝜇∗𝑤 with initialization

𝜇 ← 0.3.

(2) Barrier Method with loss

L𝑅 =
1

ln(𝑅) −
log(−𝑇𝑅)

𝑤
(11)

and the same dual update rule and initialization as above.

(3) Augmented Lagrangian Method with loss

L𝑅 =
1

ln(𝑅) −
𝜆𝑇𝑅

𝐵
+ 𝜇

2

(
𝑇𝑅

𝐵

)
2

(12)
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The update rule is 𝜆𝑘 ←𝑚𝑎𝑥 (𝜆𝑘−1
+𝜇 ∗ 𝑇𝑅,𝑘−1

𝐵
, 0), where 𝑘 is

iteration. Note that 𝜆 ≥ 0 and we use initialization 𝜇 ← 0.1,

𝜆 ← 0.1.

7 IMPLEMENTATION DETAILS
Our experimental setup including network parameters and hyper-

parameters used are as follows. The encoder is a HAN, with the

dimension of the hidden layer being 50. The predictor is a Multi-

Layered Perceptron (MLP), with input 𝑧𝑡 (of dimension 50), two

hidden layer with 50 perceptrons and an output layer of size 1. A

dropout rate of 0.3 is used after the hidden layer. Hidden layers

have ReLU activation and the output layer has sigmoid activation.

Selector is also an MLP with input 𝑧𝑡 , followed by hidden layer

with 50 perceptrons, which uses ReLU activation and a dropout 0.3.

The output layer is of size 𝐾 , with softmax activation. The Encoder-

Predictor, Selector, Actor and Critic are trained using Adam Op-

timizer with a learning rate of 0.001 on the aforementioned loss

functions. The network weights and biases are initialized using

‘glorot uniform’. Batch size used is 128. Initialization iterations for

pretraining the Encoder-Predictor is 1000 and that for pretraining

the selector is 5000. Number of iterations for training actor, critic

and embeddings is 1000, with an early stopping after 100 epochs,

based on minimum value of L1, L2 and L3 obtained on validation

data within previous 15 iterations. Beh2Stat is an MLP with input

𝑧𝑡 (of dimension 50), four hidden layer with 500 perceptrons and

the output layer uses Softmax activation to yield probabilities over

the static features. It is trained for the same number of iterations

as actor-critic, using Adam Optimizer with a learning rate of 0.005.

The joint optimization model (Algorithm 3) is trained to update

the parameters of Selector, Predictor and MLP 𝑣𝛿 (S), with the in-

put as static features and output as mediums. It is trained for 2000

iterations, with an early stopping after 100 epochs, based on mini-

mum value of L4 obtained on validation data within previous 15

iterations. Depicting training and validation convergence plots for

Augmented Lagrangian Method on Dataset II, Figure 3 shows good

convergence for the four losses.

Figure 3: Convergence plots for Losses L1, L2, L3 and L4.
DAD-ALM, Dataset II. Training - Blue, Validation - Orange.

8 EXPERIMENTS
We design experiments around joint optimization of two goals: (i)

strong predictive conversion performance for behavior segments;

and (ii) achieve high reach relative to spend, subject to budget

constraint. In direct media spend, one can think of reach as corre-

sponding to pay-per-click, used by businesses to pay for messages

they send to the targeted segments. Our experiments test these

goals and are described next.

8.1 Experimental Setup
Two SOTA baselines (DISC) plus five proposed Delivery-Aware-
Discovery (DAD) models are now presented.

8.1.1 Baselines.

• DISC-UC: The first baseline, based on behavioral segmenta-

tion objective in Section 5.1, is the discovery focused SOTA

baseline, not delivery-optimized, since delivery-optimized-

discovery is not available in the prior art. Here, the spend is

unconstrained (UC) by the budget.

• DISC-BC: The second baseline, is the discovery focused

SOTA baseline, not delivery-optimized, but the spend is bud-

get constrained (BC). We train Step 1 and Step 2 of the

network to obtain 𝐾 segments, and skip Step 3 reach max-

imization. We compute reach for each segment, for each

medium, and assign each segment to a medium giving the

highest reach value for it. This process is repeated until no

budget is left over.

8.1.2 Proposed Models.

• DAD-CSSE: Cluster Specific MSE, equation (3)

• DAD-CASE: Cluster Agnostic MSE, equation (4)

• DAD-SMIN: Slack Minimization, equation (10)

• DAD-BARR: Barrier, equation (11)

• DAD-ALM: Augmented Lagrangian, equation (12)

8.1.3 Performance Metrics. We evaluate against the ground truth

of outcome, conversion, and spend efficiency to increase reach.

We introduce two new metrics which combine conversion accu-

racy, spend, and budget to give new insights about efficiency and

effectiveness of discovery and delivery.

AUROC. Consistent with the first goal of strong predictive con-

version for behavior segments, the performance metric is𝐴𝑈𝑅𝑂𝐶𝑦 ,

for which higher values are better.
Spend per Unit Reach. The spend metric comparable across

models including baselines is the spend per unit reach. Since delivery-

optimized-delivery is not available in the two DISC baselines an

overall spend metric is unfair to baselines. However, spend per

unit reach can be used since both reach and spend are affected in a

comparable way for each model. Here, lower values are better.
Within % Budget. This metric expresses the optimal spend

relative to the budget and applies to all five proposed DAD models.

Since the DISC-UC baseline’s delivery has no budget constraint, the

metric is undefined for DISC-UC. The DISC-BC baseline is budget

constrained and this metric applies. Here, a tighter interval around
zero is better since it indicates closeness to the budget.

Effective Spend. In a new contribution, this metric, capturing

’effectiveness of spend,’ combines the two metrics 𝐴𝑈𝑅𝑂𝐶𝑦 and
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Algorithm 1 Pre-training

Input: Dataset D = {(x𝑛𝑡 , 𝑦𝑛𝑡 )𝜏
𝑛

𝑡=1
}𝑁
𝑛=1

, number of clusters 𝐾 , learning rate 𝜂, mini-batch size 𝑛𝑚𝑏
Output: Model parameters {𝜃,𝜓, 𝜙}, initialized by Glorot-Uniform, embedding dictionary E.
Pre-train Encoder-Predictor

1: repeat
2: Sample mini-batch of 𝑛𝑚𝑏 samples

3: for n = 1 to 𝑛𝑚𝑏 do
4: Calculate 𝑦𝑛𝑡 ← 𝑔𝜙 (𝑓𝜃 (x𝑛1:𝑡

))
5: 𝜃 ← 𝜃 − 𝜂 1

𝑛𝑚𝑏

∑𝑛𝑚𝑏

𝑛=1

∑𝑇𝑛

𝑡=1
∇𝜃 𝑙1 (𝑦𝑛𝑡 , 𝑦𝑛𝑡 ), 𝜙 ← 𝜙 − 𝜂 1

𝑛𝑚𝑏

∑𝑛𝑚𝑏

𝑛=1
∇𝜙𝑙1 (𝑦𝑛𝑡 , 𝑦𝑛𝑡 )

6: until convergence
Calculate embeddings dictionary E and initial cluster assignments 𝑐𝑛𝑡

7: E, {{𝑐𝑛𝑡 }𝜏
𝑛

𝑡=1
}𝑁
𝑛=1
← K-Means({{𝑧𝑛𝑡 }

𝑛𝑚𝑏

𝑡=1
}𝑁
𝑛=1
), where 𝑧𝑛𝑡 = 𝑓𝜃 (x1:𝑡 )

Pre-train the Selector
8: repeat
9: Sample a minimbatch 𝑛𝑚𝑏 of data samples

10: for 𝑛 = 1 . . . 𝑛𝑚𝑏 do
11: Calculate cluster assignment probability 𝜋𝑛𝑡 ← ℎ𝜓 (𝑓𝜃 (x1:𝑡 )
12: Update selector parameters,𝜓 ← 𝜓 + 𝜂 1

𝑛𝑚𝑏

∑𝑛𝑚𝑏

𝑛=1

∑𝜏𝑛
𝑡=1

∑𝐾
𝑘=1

𝑐𝑛𝑡 (𝑘) log𝜋𝑛𝑡 (𝑘)
13: until convergence

Algorithm 2 Pseudo-code

Pre-train Encoder-Predictor
Initialize Cluster Centroid Embeddings
Pre-train Selector ⊲ Run Algorithm 1

1: repeat
2: Sample mini-batch of 𝑛𝑚𝑏 samples

3: for n = 1 to 𝑛𝑚𝑏 do
4: Train Actor← minL𝐴 (𝜃, 𝜙,𝜓 )
5: Train Critic← minL𝐶 (𝜙)
6: for n = 1 to 𝑛𝑚𝑏 do
7: Update embedding dictionary← minL𝐸 (E)
8: until convergence
9: repeat
10: Sample mini-batch of 𝑛𝑚𝑏 samples

11: for n = 1 to 𝑛𝑚𝑏 do
12: Train Beh2Stat← minL𝐵 (𝜔)
13: until convergence
14: repeat
15: Sample mini-batch of 𝑛𝑚𝑏 samples

16: for n = 1 to 𝑛𝑚𝑏 do
17: Train Joint_Opt← minL4 (𝜃, 𝜙,𝜓, 𝜔, 𝛿)
18: Update embedding dictionary← minL𝐸 (E)
19: until convergence

𝑆𝑝𝑒𝑛𝑑 𝑝𝑒𝑟 𝑈𝑛𝑖𝑡 𝑅𝑒𝑎𝑐ℎ, used respectively for the two goals of high

predictive accuracy and low spend per unit reach (Section 8), into a

composite scalar metric. By combining two metrics, a scalar metric

represents the combined goal. We define Effective Spend = Spend per
Unit Reach / 𝐴𝑈𝑅𝑂𝐶𝑦 . For the numerator, lower is better, while for

the denominator, higher is better. Put together, for Effective Spend,

lower values are better.

Algorithm 3 Joint_Opt training

1: for each mini-batch in {(𝑥𝑛𝑡 , 𝑦𝑛𝑡 )
𝜏𝑛

𝑡=1
}𝑛𝑚𝑏

𝑛=1
∼ D do

2: 𝑧𝑛𝑡 ← 𝑓𝜃 (x𝑛1:𝑡
)

3: 𝜋𝑛𝑡 ← ℎ𝜓 (𝑧𝑛𝑡 )
4: sample cluster assignment 𝑐𝑛𝑡 ∼ 𝐶𝑎𝑡 (𝜋𝑛𝑡 ))
5: centroid embedding 𝑧𝑛𝑡 B E(𝑐𝑛𝑡 )
6: 𝑦𝑛𝑡 ← 𝑔𝜙 (𝑧𝑛𝑡 )
7: S ← 𝑏𝜔 (𝑧𝑛𝑡 )
8: 𝐴𝑖 𝑗 ← 𝑣𝛿 (S)
9: Compute reach, 𝑅 using (2)

10: Compute constraint, 𝑇 using (5)

11: Update ℎ𝜓 , 𝑔𝜙 and 𝑣𝛿 , minimize L4 (𝜃, 𝜙,𝜓, 𝜔, 𝛿)

Reach Efficiency-Effectiveness, or, Reach Effc-Effe. In con-

tributing another new metric, this is the second composite, scalar

metric which captures both the ’efficiency’ and ’effectiveness’ of

reach. Note that we seek to maximize reach, subject to a budget.

We define, Reach Effc-Effe = (Reach / Spend as Proportion of Budget)
* (𝐴𝑈𝑅𝑂𝐶𝑦 ). The term in the first parenthesis represents reach-

efficiency, making reach-efficiency increase (decrease) when the

denominator is less (more) than 1. The term in the second parenthe-

sis stands for accuracy of prediction, and thus combined with the

first term, provide a succinct representation of both the efficiency

of budget spend to maximize reach, and the effectiveness in achiev-

ing the other goal of high performance in predictive accuracy. The

DISC-UC baseline’s delivery has no budget constraint; this metric

is undefined for DISC-UC. Here, higher values are better.

8.2 Results, Dataset I
All results are shown with Mean +/- Stderr based on 8 seeds. Cap-

tion of Table 2 highlights the significantly improved performance

of proposed DAD models over SOTA baselines DISCs. Note that
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two metrics are undefined for DISC-UC since it is unconstrained.

Overall, DAD-SMIN and DAD-ALM, each with good performance

in 3 metrics, including two important composite metrics Effective
Spend and Reach-Effc-Effe, stand out. Thus, decreased spend for

maximizing reach is achievable with no decrease in conversion

performance.

Table 2: Results. Dataset I. K=5. In 𝐴𝑈𝑅𝑂𝐶𝑦 (higher is bet-
ter), five proposed DADmodels perform identical to the two
DISC baselines. In𝑊𝑖𝑡ℎ𝑖𝑛 % 𝐵𝑢𝑑𝑔𝑒𝑡 (closer to 0 is better), base-
line DISC-BC outperforms DADmodels. In 𝑆𝑝𝑒𝑛𝑑 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑅𝑒𝑎𝑐ℎ
(lower is better), DAD-SMIN, DAD-ALM outperforms DISC base-
lines. In 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑆𝑝𝑒𝑛𝑑 (lower is better), DAD-SMIN, DAD-CSSE,
DAD-CASE, DAD-ALM outperform DISC baselines. In 𝑅𝑒𝑎𝑐ℎ 𝐸𝑓𝑓𝑐-
𝐸𝑓𝑓𝑒 (higher is better), DAD-SMIN, DAD-CSSE, DAD-CASE, DAD-ALM
outperform DISC-BC baseline. Overall, the DADmodels show
strong and significantly improved performance (shown in
bold) over DISC baselines. See Section 8.2 for discussion.

Model AUROC Within Spend per Effective Reach

𝑦 % Budget unit Reach Spend Effc-Effe

DISC-UC 0.873 – 66.993 76.751 –

±0.002 – ±1.42 ±1.722 –

DISC-BC 0.873 -0.304 68.105 78.017 87.383

±0.002 ±0.149 ±1.127 ±1.361 ±1.596

DAD-CSSE 0.88 -18.301 60.02 68.181 100.173

±0.009 ±5.988 ±1.553 ±1.631 ±2.294

DAD-CASE 0.873 -13.745 57.618 65.984 103.226
±0.004 ±8.163 ±0.833 ±0.96 ±1.492

DAD-SMIN 0.873 -10.474 59.827 68.62 99.951
±0.009 ±5.252 ±1.709 ±2.26 ±3.25

DAD-BARR 0.841 -9.122 61.751 73.539 93.535

±0.014 ±16.786 ±2.275 ±2.873 ±3.426

DAD-ALM 0.875 -12.002 57.403 65.693 103.74
±0.009 ±4.775 ±0.737 ±1.083 ±1.737

8.3 Results, Dataset II, Public
Throughout all tables, results are shown with Mean +/- Stderr
based on 8 seeds. Caption of Table 3 highlights the significantly

improved performance of DAD models over SOTA baselines, DISCs.

Note that two metrics are undefined for DISC-UC. Overall, DAD-

ALM with strong performance in four metrics stand out. Similar

to Dataset I, results with Public, Dataset II strongly reinforce that

decreased spend for maximizing reach is achievable with no de-

preciation in performance in conversion prediction. That is, deliv-

ery aware discovery outweighs traditional discovery which ignore

delivery and budget constraint. We now move on to sensitivity

experiments by varying 𝐾 .

8.4 Sensitivity to 𝐾
Sensitivity to the choice of 𝐾 , number of segments, with Dataset

II, public data, is shown in Table 4, for K=7 and 9. DAD-BARR and

DAD-ALM strongly outperform baselines in crucial composite met-

rics Effective Spend and Reach-Effc-Effe, and perform the same in

predicting conversion, 𝐴𝑈𝑅𝑂𝐶𝑦 . Comparing with Table 3 finds

remarkable consistency across K=5, 7, 9, strongly favoring our pro-

posed models over SOTA baselines.

Table 3: Results. Dataset II. K=5. In 𝐴𝑈𝑅𝑂𝐶𝑦 (higher is bet-
ter), five proposed DAD models perform identical to two base-
lines DISCs. In𝑊𝑖𝑡ℎ𝑖𝑛 % 𝐵𝑢𝑑𝑔𝑒𝑡 (closer to 0 is better), DAD-ALM
performs same as baseline DISC-BC. In 𝑆𝑝𝑒𝑛𝑑 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑅𝑒𝑎𝑐ℎ
(lower is better), DAD-ALM outperforms DISC baselines. In
𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑆𝑝𝑒𝑛𝑑 (lower is better), DAD-SMIN, DAD-ALM outper-
form DISC baselines. In 𝑅𝑒𝑎𝑐ℎ 𝐸𝑓𝑓𝑐-𝐸𝑓𝑓𝑒 (higher is better),
DAD-SMIN, DAD-ALM outperform DISC-BC baseline. Overall, the
DADmodels show strong and significantly improved perfor-
mance (shown in bold) over baselines DISC. See Section 8.3
for discussion.

Model AUROC Within Spend per Effective Reach

𝑦 % Budget unit Reach Spend Effc-Effe

DISC-UC 0.956 – 61.543 64.333 –

±0.002 – ±1.803 ±1.84 –

DISC-BC 0.956 -6.43 62.736 65.594 1640.449

±0.002 ±2.246 ±0.824 ±0.898 ±22.355

DAD-CSSE 0.961 -24.498 63.471 66.038 1643.048

±0.001 ±6.616 ±2.189 ±2.304 ±58.492

DAD-CASE 0.963 -25.344 62.285 64.7 1671.964

±0.001 ±9.345 ±1.826 ±1.919 ±48.866

DAD-SMIN 0.957 5.237 59.229 61.884 1745.79
±0.002 ±4.846 ±1.629 ±1.707 ±44.765

DAD-BARR 0.945 -27.171 62.667 66.369 1623.459

±0.006 ±4.207 ±1.009 ±1.309 ±30.659

DAD-ALM 0.957 -3.485 58.548 61.196 1757.545
±0.001 ±3.955 ±0.749 ±0.738 ±21.582

8.5 Ablation Study
The ablation study checks whether the proposed full model, or, the

full network architecture shown in Figure 2 is necessary to achieve

our dual goals of strong predictive performance in conversion and

reach maximization, subject to budget constraint. Or, can a reduced

architecture give comparable performance? To test this, we turn
off Step 2 of the architecture in training, that is, did not train

Actor(Encoder, Selector)-Critic(Predictor) and centroid Embeddings

(see green text in Figure 2). We trained Steps 1 and 3 only. The

ablated results, with Dataset II, are shown in Table 5 for each 𝐾 =

5, 7, 9. We compare the full architecture’s performance with that of

the reduced architecture, for each 𝐾 , affording generalization of the

ablation. As the caption in Table 5 states, the ablated results show

large decrease in performance compared to the full architecture,

for each 𝐾 = 5, 7, 9. This strongly justifies the use of the proposed

full architecture for the delivery aware discovery problem.

8.6 Evaluation of Beh2Stat
For the proprietary data, Table 6 shows that Beh2Stat has accura-

cies appreciably higher than that of the random model. Random

prediction accuracy values are shown in the last column, which

vary by the number of classes.

9 CONCLUSION
Behavioral segmentation of users is highly desirable by a firm as

emphasized in both industry and academia [7, 20] since users’ on-

line behaviors are very predictive of outcomes such as conversion.

Firms send different offers, messages, communications to different
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Table 4: Sensitivity to K. Dataset II. See Section 8.4. Similar
to K=5 results, DAD models, namely DAD-BARR and DAD-ALM
stand out in strong performance in 3 metrics as compared to
baselines DISCs.

Model AUROC Within Spend per Effective Reach

𝑦 % Budget unit Reach Spend Effc-Effe

K=7

DISC-UC 0.955 – 60.605 63.437 –

±0.002 – ±2.26 ±2.358 –

DISC-BC 0.955 -3.787 63.113 66.068 1627.736

±0.002 ±1.55 ±0.633 ±0.701 ±17.448

DAD-CSSE 0.961 -19.716 62.695 65.234 1661.574

±0 ±7.19 ±2.089 ±2.163 ±55.77

DAD-CASE 0.962 -24.853 61.416 63.842 1698.022

±0.001 ±3.967 ±2.066 ±2.167 ±56.525

DAD-SMIN 0.959 6.298 61.386 63.984 1691.268

±0.001 ±5.006 ±1.949 ±2.009 ±49.046

DAD-BARR 0.947 -43.356 60.354 63.794 1693.691
±0.004 ±3.921 ±1.486 ±1.781 ±43.628

DAD-ALM 0.962 -13.002 57.89 60.207 1787.501
±0.001 ±3.842 ±0.846 ±0.901 ±26.752

K=9

DISC-UC 0.959 – 59.482 61.99 –

±0.001 – ±1.596 ±1.645 –

DISC-BC 0.959 -4.024 63.656 66.346 1621.532

±0.001 ±1.629 ±0.772 ±0.837 ±20.866

DAD-CSSE 0.962 -29.568 58.923 61.272 1757.175
±0.001 ±4.949 ±0.958 ±1.013 ±29.456

DAD-CASE 0.963 -28.462 59.628 61.897 1744.099
±0.001 ±6.72 ±1.563 ±1.592 ±41.464

DAD-SMIN 0.957 1.845 62.286 65.079 1671.734

±0.002 ±6.86 ±2.438 ±2.582 ±66.204

DAD-BARR 0.955 -40.699 60.307 63.168 1703.421
±0.001 ±5.292 ±0.846 ±0.915 ±23.898

DAD-ALM 0.962 -3.617 58.102 60.405 1781.633
±0.001 ±4.486 ±0.887 ±0.908 ±26.626

segments. The obstacle in delivering messages on media channels

lies in reaching these behavioral segments on media. On a medium,

only a proportion of a behavior segment can be matched, and of

those matched only a fraction sees / clicks on a message. Moreover,

on a medium, users are defined by their static characteristics, but

not by their online interactions with the firm, which only the firm

knows, but the media do not. For discovery to be useful, delivery

ought to be considered simultaneously, and not sequentially after

discovery. Extant work on discovery of user segments ignore the

need for this simultaneity between discovery and delivery. We offer

an approach to fill this research gap. Extensive experiments on two

datasets - proprietary and public (Google Analytics) - find strong

support for our approach. Moreover, sensitivity experiments on

Google data, by varying the hyperparameter, number of segments,

affirm those findings that our approach achieves high, improved

performance on Spend and Reach metrics, while achieving equally

good predictive conversion performance AUROC, compared to two

SOTA baselines. Ablation studies, including sensitivity of ablation

to number of segments, further justify the value of our proposed net-

work to address this joint delivery-aware-discovery optimization

problem at hand.

Table 5: Ablation Sensitivity to K. Dataset II. See Section 8.5.
For each K, comparing results of the full model (see Tables 3
and 4), the ablated results below show that: Each DAD model
has appreciably large (i) decrease in 𝐴𝑈𝑅𝑂𝐶𝑦 , (ii) increase in
𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑆𝑝𝑒𝑛𝑑 , and (iii) decrease in 𝑅𝑒𝑎𝑐ℎ 𝐸𝑓𝑓𝑐-𝐸𝑓𝑓𝑒.

Model AUROC Within Spend per Effective Reach

𝑦 % Budget unit Reach Spend Effc-Effe

K=5

DAD-CSSE 0.898 -31.965 61.615 68.606 1575.407

±0.004 ±3.561 ±1.672 ±1.945 ±42.224

DAD-CASE 0.898 -28.608 62.268 69.374 1561.016

±0.004 ±5.573 ±1.984 ±2.196 ±49.403

DAD-SMIN 0.866 2.948 60.238 69.716 1546.403

±0.015 ±1.597 ±1.126 ±1.479 ±32.301

DAD-BARR 0.857 -41.1 58.436 68.221 1577.539

±0.008 ±4.475 ±0.794 ±1.01 ±23.999

DAD-ALM 0.898 -11.66 58.997 65.7 1641.753
±0.001 ±2.53 ±1.352 ±1.546 ±35.428

K=7

DAD-CSSE 0.9 -26.207 59.284 65.847 1637.582

±0.003 ±4.598 ±1.357 ±1.429 ±35.284

DAD-CASE 0.9 -15.201 61.319 68.114 1582.834
±0.003 ±4.831 ±1.258 ±1.425 ±33.951

DAD-SMIN 0.877 -2.069 61.442 70.08 1539.038

±0.005 ±2.513 ±1.479 ±1.571 ±34.241

DAD-BARR 0.876 -36.016 62.338 71.203 1520.433

±0.005 ±4.633 ±1.776 ±2.261 ±46.257

DAD-ALM 0.891 -18.332 58.468 65.602 1639.33
±0.001 ±5.067 ±0.69 ±0.758 ±19.304

K=9

DAD-CSSE 0.896 -27.864 58.868 65.673 1637.147

±0.003 ±2.485 ±0.571 ±0.658 ±16.876

DAD-CASE 0.894 -26.952 59.551 66.605 1620.766

±0.003 ±6.121 ±1.517 ±1.725 ±38.121

DAD-SMIN 0.819 11.684 62.404 76.973 1416.837

±0.03 ±6.11 ±1.947 ±3.41 ±60.135

DAD-BARR 0.859 -36.784 61.994 72.136 1498.258

±0.003 ±3.793 ±1.736 ±2.005 ±40.722

DAD-ALM 0.896 -12.456 58.753 65.592 1639.492
±0.003 ±3.386 ±0.74 ±0.74 ±18.771

Table 6: Evaluation of Beh2Stat function. See section 8.6.

Accuracy

Static Characteristics # Classes Beh2Stat Random

Country 6 0.58 0.17

Source 2 0.86 0.5

Member 3 0.53 0.33

Browser 6 0.51 0.17

Operating System (OS) 6 0.51 0.17

As a way of limitation, our joint optimization works when the

cost of a message sent to a user is known and not an outcome

of bidding. Future research may address this problem, under ad

bidding based media spend and budget pacing.
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