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ABSTRACT

Hallucinations in LLMs—especially in multimodal settings—undermine reliabil-
ity. We present a rigorous, information-geometric framework in diffusion dy-
namics that quantifies hallucination in MLLMs: model outputs are embedded
spectrally on multimodal graph Laplacians, and gaps to a truth manifold define a
semantic-distortion metric. We derive Courant–Fischer bounds on a temperature-
dependent hallucination energy and use RKHS eigenmodes to obtain modality-
aware, interpretable measures that track evolution over prompts and time. This
reframes hallucination as measurable and bounded, providing a principled basis
for evaluation and mitigation.

1 INTRODUCTION

Large language models (LLMs) and their multimodal variants (MLLMs) are powerful generators,
but reliability or truthfulness remains a core limitation. A central drawback is the hallucinated con-
tent that is ungrounded or inconsistent with inputs - which is unacceptable and signifactly risky
in medicine, law, and finance Ji et al. (2023); Maynez et al. (2020); Bubeck et al. (2023). Prior
work offers taxonomies, datasets, and benchmarks for analysis and evaluation Ji et al. (2023);
Maynez et al. (2020); Ding et al. (2024), and recent multimodal studies emphasize empirical de-
tection/mitigation Bai et al. (2024); however, most approaches rely on heuristics, proxy metrics, or
human annotation rather than principled quantification.

On the theory side, complementary work include token-level analysis of hallucinated predic-
tions Jiang et al. (2024), Bayesian sequential detection Wang et al. (2023), entropy-style uncertainty
probes Han et al. (2024), latent-space steering to separate truthful vs. hallucinated generations Park
et al. (2025), and reference-free ranking for multimodal hallucinations Sun et al. (2024). Emerging
spectral/graph perspectives probe representations and attention, but are largely detection-oriented
and unimodal Xie et al. (2025).

Gap. The field currently lacks a quantitative, theory-backed, modality-aware framework that treats
hallucination as a measurable quantity (with temporal dynamics and guarantees), rather than only a
classification/detection outcome.

Our contribution. We introduce a spectral-graph framework that makes hallucination in MLLMs
measurable and bounded in the context of time-indexed temperature profiles:

(a) We model the grounding across modalities via optimal-transport paths in diffusion dynamics
and embed them in RKHS, yielding a structural view of semantic consistency.

(b) We represent outputs on multimodal graph Laplacians and derive tight Courant–Fischer (CF)
bounds on hallucination heatmap as a function of time-indexed temperature.

(c) Empirical validation: Across nine 3D panels (COCO/VQAv2/AudioCaps ×
CLIP+Whisper+T5, BLIP+CLIP+Whisper, SigLIP+Whisper+T5), Emulti

hall lies
between panel-specific CF planes with a strictly positive lower envelope that tightens at lower
temperature (and higher diffusion); full ε/τ/h/ρ ablations and runtimes in the supplement.

This shifts hallucination study from qualitative detection to quantitative, modality-aware, and inter-
pretable analysis. To our knowledge, it is the first attempt to provide spectral bounds on hallucina-
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tion for MLLMs followed by a time-indexed temperature annealing, offering a principled basis for
evaluation and potential mitigation.

2 RELATED WORK

Kalai & Vempala show that, for calibrated LMs, the hallucination rate is lower-bounded by a
Good–Turing–style “monofact” mass - establishing an inherent trade-off between calibration and
truthfulness Kalai & Vempala (2024); while their recent work generalizes this via an IIV reduction
that ties generative errors to binary-classification - advocating IDK-tolerant evaluation Kalai et al.
(2025). Empirical study of LM hallucinations spans mechanistic probes that surface interpretable
features for diagnosis Templeton et al. (2024), retrieval-grounded detection and evaluation Gerner
et al. (2025); Niu et al. (2024), broad benchmark suites like HaluEval Li et al. (2023), Hallu-PI Ding
et al. (2024), GraphEval Feng et al. (2025), and early vision–language analyses of object halluci-
nation Rohrbach et al. (2018). Comprehensive surveys catalog causes, detection, and mitigation
strategies Ji et al. (2023); Rawte et al. (2023).

Recent work exploits uncertainty and structural signals: semantic-entropy probes Han et al. (2024),
Bayesian sequential estimation Wang et al. (2023), token-level dynamics of hallucinated predic-
tions Jiang et al. (2024), zero-shot reasoning signals Lee et al. (2024), and sampling-based self-
consistency checks (SelfCheckGPT) Manakul et al. (2023). Graph/spectral methods flag hallucina-
tions via KG self-checks (FactSelfCheck) Sawczyn et al. (2025), attention Laplacian eigen-spectra
(LapEigvals) Binkowski et al. (2025), and topological cues on hallucination graphs Le Merrer &
Trédan (2024).

3 PRELIMINARIES

We begin by establishing the mathematical foundations of our framework. MLLM outputs are em-
bedded as nodes on a knowledge graph Laplacian, and grounding gaps along this graph collectively
define a quantifiable hallucination metric. Figure 1 sketches our approach.

3.1 MATHEMATICAL FOUNDATIONS

Let X denote the measurableA.1 1 set of all possible model outputs of a multimodal LLM, with FX
being the σ-algebra over X and µ being the base measure Tao (2011); e.g., the count measure for
discrete outputs like token sequence or the Lebesgue measure for continuous outputs like embed-
dings Bartle (1995). We assume X is continuously embedded in a separable Reproducing Kernel
Hilbert space (RKHS) denoted by (H, ⟨·, ·⟩H) which is associated with a positive-definite kernel,

K : X × X → R+. (1)

The kernel K(x1, x2) encodes the semantic relationships between two distinct points or outputs
x1 and x2 ∀(x1 ̸= x2) ∈ X ; for example, through embedding-based or ontology-aware distance
measures, or co-reference resolution. For a product kernel in an MLLM, refer to Eq. (7) later.

Within this (X ,FX , µ) space, there exist two kinds of “truth” (the idea imported from Kalai &
Vempala (2024)):

(i) The semantic factoid space K which encompasses all semantically valid and coherent outputs
that include empirically plausible facts, contextually appropriate completions, and domain-
consistent inferences aligned with the prompt and background knowledge - importantly, el-
ements of K need not be verifiable, but they remain semantically valid within the modeled
domain.

(ii) The semantic ground-truth manifold Kg, as a stricter subregion of K, which consists of outputs
only verifiably correct or true facts that include factual assertions supported by empirical
evidence or directly observed information — elements of Kg can be properly referred to as
grounded in reality.

1Footnotes are added in chronological order and collected in Appendix A.
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Figure 1: Multimodal nested-manifold view of
hallucinations. Hollow ellipses denote X , K, Kg .

Thus the semantic plausibility/ground-truth
nesting and, for a given prompt p ∈ P , the hal-
lucination criterion for each output denoted by
x ∈ X are:

Kg ⊆ K ⊂ X , x ∈ X \ K. (2)
Note: x ∈ K \ Kg is a non-grounded output,
but still semantically plausible and strictly not
hallucination.

3.2 MODELING THE LLM OUTPUTS

We begin with the baseline assumptions:
Assumption 1 (General output distribution).
The LLM outputs can be characterized by a conditional probability distribution fp(x) that denotes
the likelihood of generating output x given a prompt p:

fp : X → [0,∞), fp ∈ L1(X ,FX , µ) ∩H, x 7→ fp(x), (3)
which ensure

∫
X fp(x) dµ(x) = 1.

Let fK
p denote the restricted distribution on the semantic plausibility space K:

fK
p (x) :=

1{x∈K}fp(x)∫
K fp(x′)dµ(x′)

≡
1{x∈K}fp(x)

Pfp(K)
, where, 1{x∈K} =

{
1 if x ∈ K,

0 otherwise.
(4)

Here,
∫
K fp(x

′)dµ(x′) = Pfp(K) is a normalization constant in the restricted distribution.
Assumption 2 (Ground-truth generative distribution). In line with Assumption 1, g denotes the
reference distribution on the ground-truth manifold Kg. Unlike fp or fK

p , g is the gold reference
which is not model-induced and hence, may not share support with fp except inside Kg and it is truly
independent of prompts in the generative sense (but conditioned on the same prompt contextually).

Thus, we do not assume any parametric form for the ground-truth distribution g and rather treat it as
an abstract measure over Kg:

supp(g) ⊆ Kg, g : Kg → [0,∞), g ∈ L1(Kg,FX |Kg , µ
′). (5)

Eq. (5) ensures
∫
Kg

g(x) dµ′(x) = 1 with notations used in consistency with Eq. (3) and µ′ playing
the same role of µ, but not necessarily equal to µ. See commentsA.2 in Appendix A.

4 THEORETICAL ANALYSIS

In this section, we present a theoretical framework that couples a smoothed information-geometric
score derived from the Kullback–Leibler (KL) paradigmA.3 with a multimodal energy formulation
to quantify and track hallucinations in MLLMs.

4.1 SEMANTIC DISTORTION

We establish the following theorem followed by stating a remark to set the stepping stone.
Theorem 1 (KL-calibrated smoothed score for hallucination). Let a smoothing mass ε ∈ (0, 1)
and a baseline density be fixed, with finite ρ(x) > 0 µ-a.e. and

∫
X ρ(x) dµ(x) = 1; let

Kh(·, ·) ∈ (0,∞) be a µ-Markov kernel (bandwidth h > 0) and Th : L1(µ) → L1(µ) be
a linear smoother defined for q : X → R by (Thq)(x1) :=

∫
X Kh(x1, x2) q(x2) dµ(x2); let

the ε-smoothed model be f̃p,ε(x) := (1 − ε)fp(x) + ερ(x) with its K-restricted renormalization
f̃K
p,ε(x2) := 1{x2∈K}f̃p,ε(x2)

/ ∫
K f̃p,ε(x) dµ(x); and let a measurable selector ΠK : X → K sat-

isfy ΠK(x) = x (∀x ∈ K) or nearest point with convexity in K (otherwise). Then the semantic
distortion

d(ε,h)sem (x;K,X ) :=
[
log

(
(Thf̃

K
p,ε)(ΠK(x))

)
− log

(
(Thf̃p,ε)(x)

)]
+
, (6)

serves as a KL-calibrated smoothed pointwise information gap for tracking hallucinations across
prompts and remains as a reference-free (independent-of-g) statistic in language models.
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Proof sketch: Strict positivity from f̃p,ε = (1 − ε)fp + ερ and Markov Kh makes both smoothed
terms > 0, so Eq. (6) is finite. If x ∈ K, ΠK(x) = x and the K–restricted smoother > the
unconditional smoother at x; if x /∈ K, smoothing at ΠK(x) ∈ K dominates the mixed mass at x.
Detailed proof is found in Appendix B.1. □

Remark 1. The score in Eq. (6) is g-agnostic and thus usable when g is unobservableA.4 or
partially verified in various real-world scenarios. In practice, we set a small smoothing mass
ε ∈ [10−6, 10−2], choose h by validation, take Kh as a positive row-normalized kernel over em-
beddings/tokens, and we implement ΠK as a measurable nearest–neighbour selector on a finite
reference set from K.

4.2 EXTENSION TO MULTI-MODAL GROUNDING

The intuition behind this setting of multimodality is: in image-grounded or dialogue models, seman-
tic grounding depends on multiple modalities — e.g., text, image or video, dialog or audio-history
etc. and the RKHS is then extended to a multi-modal product kernel space. In multi-modal settings,
where the LLM outputs involve textual (T ), visual (V ), audio (A) modalities, we define a joint out-
put space (X ) embedded into a composite RKHS (H) equipped with a product kernel (K) between
two distinct points (i.e., outputs) ∀(x1 ̸= x2) ∈ X as

X : ×
M

XM , x = (x(M))x(M)∈XM
, H := ⊗

M
HM , K(x1, x2) =

∏
M

KM (x
(M)
1 , x

(M)
2 ), (7)

pertaining to each modality ∀M ∈ M := {T, V,A}, where the prompts can also be categorized into
a composite prompt space P : ×

M
PM , with each prompt p = (p(M))p(M)∈PM

in a modality-aware

prescription to accommodate three different kinds of probable inputs (i.e., T, V & A) for the sake of
completeness. However, in the following calculation in this paper, we restrict ourselves only to the
notion of p without any loss of generality. Expanded formA.5 of Eq. (7) is found in Appendix A.

4.3 FORMULATIONS TO HALLUCINATION ENERGY

To begin with, we are after a fruitful formulation of fp(x) that connects the model output distribution
to an underlying energy landscape to enable modal interpretability, temperature-driven exploration,
and spectral graph analysis. The total energy functional E(x, p, ·) : X × P → R+ associated with
the model input-output plus suppressed parameters can be decomposed into intra-modal, pairwise
cross-modal, and joint multimodal interactions. This decomposition allows us to localize the sources
of hallucination within and across modalities.
Assumption 3 (Hallucination energy functional in MLLMs). The modality-aware decomposition
reads as:

E(x, p, ·) =
∑

M∈M
EM

(
x(M), p, ·

)
+

∑
M,M

′
∈M

M ̸=M
′

EMM ′

(
x(M), x(M

′
), p, ·

)
+ EM(x, p, ·). (8)

Refer to Section 5.1 for the similar construction in terms of multimodal Laplacians. See term-wise
explanationsA.6 in Appendix A.
Assumption 4 (Feature maps for boundedness). Using the results of Moore–Aronszajn theo-
rem Aronszajn (1950), for a positive definite kernel KM in a measurable output space (X ,FX , µ)
aligned with Section 3.1, let ΦM : XM → HM be its feature map treated as infinite-
dimensional linear operator for each modality M ∈ M under the constraint of boundedness:
supx(M)∈XM

∥ΦM (x(M))∥HM
< ∞. (See explicit justificationA.7 in Appendix A.)

For each modality M , the (fixed) embedding pipeline with an implicit kernelA.8 in a higher-
dimensional RKHS induces ΦM : XM →HM such that ⟨ΦM (x1),ΦM (x2)⟩HM

= KM (x1, x2).
Assumption 5 (Prompt embeddings). Let (P,FP , ν) be a measurable space on prompts with ν be-
ing finite. For each modality M ∈ M, the prompt embedding ΨM : P→HM satisfies boundedness:
supp∈P ∥ΨM (p)∥HM

< ∞ and stability: ΨM is continuous (equivalently, Lipschitz with finite con-
stant Lip(ΨM )) in the chosen topology/ metric on P . (See explicit justificationA.7 in Appendix A.)
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Assumption 6 (Output distribution in Boltzman form). We view fp(x) as a normalized surrogate
over candidate outputs or latent representations with respect to a finite (or bounded) base measure
µ. Under bounded embeddings and compact support (or bounded energy), the partition function
Z(p, Tt) is finite, making Eq. (9) well-defined. (See explicit justificationA.9 in Appendix A.)
Lemma 1 (Joint measurability of cross inner products). If ΦM : (XM ,FXM

) → (HM ,B(HM ))
and ΨM : (P,FP) → (HM ,B(HM )) are Bochner measurable into a separable Hilbert space
HM where B(HM ) denotes the Borel σ−algebra generated by the open sets of HM under its norm
topology, then (x, p) 7→ ⟨ΦM (x),ΨM (p)⟩HM

is measurable on FXM
⊗FP .

Proof sketch: Bochner measurability of ΦM and ΨM implies strong measurability into B(HM );
hence (x, p) 7→ (ΦM (x),ΨM (p)) is measurable on the product σ–algebra. Detailed proof is found
in Appendix B.2. □
Theorem 2 (Multimodal energy-based hallucination formalism). Between the output and prompt
spaces, let the residuals rM (x, p) := ΦM (x(M)) − ΨM (p) ∈ HM be defined for at least
two modalities |M| ≥ 2. For each M , let there be a bounded, self-adjoint, positive semi-
definite (PSD) linear operator AM on HM and for M ̸= M ′, some BMM ′ : HM ′ → HM

which is a bounded linear symmetric cross-operator and a controlled factorization BMM ′ =

A
1/2
M RMM ′ A

1/2
M ′ , subject to ∥RMM ′∥ ≤ 1, being a symmetric contraction (e.g., Hilbert-

Schmidt). Given this, if the output distribution fp(x) assumes the Boltzmann form for any tem-
perature Tt ∈ R≥0 dependent on time t ∈ R+:

fp(x) = (Z(p, Tt))−1
exp

(
− E(x, p)/Tt

)
, where, Z(p, Tt) =

∫
X
exp

(
− E(x, p)/Tt

)
dµ(x) (9)

is the normalizing partition function, then the total energy noted in Eq. (8), for (x, p) ∈ X × P ,
takes the form that is measurable, non-negative and satisfies canonical instances; given by:

E(x, p) =
∑

M∈M

〈
rM , AM rM

〉
HM

+
2

|M| − 1

∑
M,M ′∈M
M ̸=M ′

〈
A

1/2
M rM , RMM ′ A

1/2
M ′ rM ′

〉
+ EM ,

(10)
where the first and second terms on r.h.s are EM and EMM ′ respectively, while the last term being

EM(x, p) =
∥∥∥⊗M∈MΦM (x(M)) −

⊗
M∈MΨM (p)

∥∥∥2
⊗HM

as a squared distance in composite

RKHS, so it’s measurable and nonnegative.

Proof sketch. We stack r = (rM )M and define the block operator A with diagonals AM and
off–diagonals A

1/2
M RMM ′A

1/2
M ′ . Since AM ⪰ 0, RM ′M = R∗

MM ′ , and ∥RMM ′∥ ≤ 1, standard
Cauchy–Schwarz/Schur arguments give A ⪰ 0; hence ⟨r,Ar⟩ ≥ 0 equals the first two terms of
Eq. (10). The joint term is a single scalar for 3 modalities, but a tensor for > 3 modalities, thus ≥ 0.
Measurability follows from Bochner measurability and continuity of bounded linear maps/inner
products (refer to Lemma 1). Under the stated integrability/finite–measure conditions, the partition
function in Eq. (9) is finite, so fp is well-defined. Detailed proof is found in Appendix B.3. □
Corollary 1 (Excess-energy hallucination functional). In line with Theorems 1 & 2, we leverage
Eq. (10) to identify the hallucination energy in an MLLM:

Emulti
hall (x, p, ·) =

(
E(x, p, ·) − EK(x, p, ·)

)
+
1{x/∈K}. (11)

where E(x, p, ·) is the total energy term at X and EK(x, p, ·) is the same restricted at K.

Proof. This particular Corollary does not require any explicit proof as this is merely an identification
done by the authors in line with the results obtained in Theorem 1.

5 MAIN RESULTS: PROPOSED FRAMEWORK

In this section we develop the spectral representation that underpins our main results (Figure 2). We
reformulate the multimodal hallucination energy Emulti

hall (refer to Eq. (11)) within standard spectral
graph theory Chung (1997). This lets us relate the Boltzmann normalization of model outputs to
eigenmodes of a multimodal semantic graph Laplacian, which in turn yields principled mode-wise
bounds on hallucination energy.
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Figure 2: Pipeline for hallucination quantification in MLLMs. For an intuition-building case-study
of an image–caption example for an MLLM, see commentsA.10 in Appendix A.

5.1 SEMANTIC GRAPH AND MULTIMODAL LAPLACIAN

Let a time-indexed, temperature-modulated multimodal semantic knowledge graph at an instant t
be:

GTt
= (V, E,WTt

), V ⊆ N, E ⊆ V × V, WTt
∈ R|V|×|V|; ∀ t ∈ R+, (12)

with finite set of nodes V (semantic units), pairwise edges E ⊆ V × V (similarity relations), and
symmetric non-negative adjacency weights WTt built from fixed embeddings, where temperature
Tt ∈ R≥0 controls the affinity bandwidths. Here, we adopt a single integrated multimodal graph
GTt

with modality encoded by the node-partitioning V =
⊎

M VM and a symmetric PSD WTt

structured on its elements wTt
noted in Eq. (16) as hyperedge weights. See justificationA.11 and

detailed construction of WTt in Appendix A. In the current prescription of Tt-modulated graph, the
RKHS H is associated with a positive-definite multimodal diffusion kernel KTt that induces graph
feature map Υ : V → H satisfying (application of Assumption 4 in knowledge-graphs)

KTt := exp
(
−τ Lmulti

Tt

)
,

〈
Υ(v), Υ(v)

〉
H = KTt(v, v), ∀ v, v ∈ V, (13)

where τ ∈ R+ is a diffusion time-scale and Lmulti
Tt

is a multimodal graph Laplacian defined
on the finite node set V . As an extension from Eq. (7), the above equation is an application
of Mercer’s theorem Mercer (1909), see detailsA.12 in Appendix A. How this construction of
graph feature maps Υ defined on nodes v, v has an interconnection to the output feature maps
ΦM (x(M)) and prompt embeddings ΨM (p), see justificationA.13 in Appendix A. We design the
multimodal Laplacian as a non-negative combination of intra–, cross–, and joint–modal compo-
nents: Lmulti

Tt
=

∑
∗ coeff∗ L(∗)

Tt
, where ∗ ∈ {intraM , crossMM ′ , jointM} and the interaction

coefficients: coeff intraM = αM (∀M ∈ M), coeffcrossMM′ = βMM ′ (∀M,M ′ ∈ M), and
coeff jointM = γM are all R≥0. Each L(∗)

Tt
is a symmetric PSD Laplacian-block built on the same

node set V; full expressions can be found in Eq. (24) in Appendix A.11.

5.2 SPECTRAL DECOMPOSITION AND ENERGY FUNCTIONAL

To dis-entangle modality–specific, cross–modal, and joint–modal interactions and to study how hal-
lucination energy propagates across the graph, we diagonalize the normalized multimodal Laplacian.
Let {(λi(t), ui(t))}|V|

i=1 be the eigenpairs of Lmulti
Tt

with 0 = λ1(t) ≤ λ2(t) ≤ · · · and orthonormal
eigenvectors ⟨ui(t), uj(t)⟩ = δij . See commentsA.14 in Appendix A. Then for all nodes v ∈ V:

Lmulti
Tt

= U(t)Λ(t)U(t)⊤ =

|V|∑
i=1

λi(t)ui(t)ui(t)
⊤, Υ(v; Tt) =

|V|∑
i=1

e−
τ
2 λi(t) ⟨ui(t), δv⟩ui(t),

(14)
where U(t) = [u1(t) · · ·u|V|(t)], Λ(t) = diag(λ1(t), . . . , λ|V|(t)) and δv ∈ R|V| is the Kronecker
delta at v. (We reserve v, v, .. for graph nodes and i, j, .. for Laplacian modes; both index sets have
size |V|.) For output & prompt nodes (vx, vp) ∈ V and, more generally, any graph signal s ∈ R|V|,

∥∥Υ(vx; Tt)−Υ(vp; Tt)
∥∥2
H =

|V|∑
i=1

e−τλi(t)
∣∣⟨ui(t), δvx−δvp

⟩
∣∣2, ⟨s, Lmulti

Tt
s⟩ =

|V|∑
i=1

λi(t)
∣∣⟨ui(t), s⟩

∣∣2.
(15)
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A quick algebraic manipulation with Eqs. (15) plugged back into (10) gives the spectral form of
total energy: E(x, p; Tt) =

∑
∗
∑|V|

i=1 coeff∗ E
(∗)
i (x, p, t), where each E

(∗)
i depends explicitly on

λi(t) and ui(t). See Eq. (57) in Appendix C.1 for details.

5.3 SPECTRAL BOUNDS ON HALLUCINATION, AND TIME-TECAY

Here, we obtain: (i) quantitative bounds that control the scope of hallucination in an MLLM; (ii) an
evolution of hallucinations in diffusion time with tunable temperature. The extended derivations of
each expression below can be found in Appendix C.2.

Node-level score and pairwise dissimilarity. For each node v ∈ V carrying (x, p) ∈ X × P ,
the scalar score d

(ε,h)
sem (x | p) := d

(ε,h)
sem (x;K,X ) is computed using f̃p,ε from Eq. (6). A symmetric,

nonnegative prompt-aware dissimilarity between va ∼ (xa, pa) and vb ∼ (xb, pb) is then defined by
d̂sem(va, vb) :=

∣∣ d(ε,h)sem (xa | pa) − d
(ε,h)
sem (xb | pb)

∣∣ and combining it with Eq. (26) yields

wTt
(e) = 1{e∈E(∗)} exp

(
− η∗

( ∑
1≤a,b≤r(e)

|∆ε,h(xa | pa) − ∆ε,h(xb | pb) |
)
/

r(e)∑
a=1

Tt(va)
)
.

(16)
Here r(e) := |e| is the hyperedge cardinality (Eq. (24)), and η∗ > 0 is the modality–aware permu-
tation factor (Eq. (26)). The derivation of ∆ε,h(x | p) is found via Eq. (27) in Appendix A.11.

Courant–Fischer bounds for hallucination. Let cx,K(t) be the degree–matched, null-
mode–projected contrast (so cx,K(t) ⊥ u1(t), see Eq. (58)) and given the diffusion operator
exp

(
− 2τ Lmulti

Tt

)
, we get the semantic diffusion through spectral expansion

〈
cx,K(t), exp

(
−

2τ Lmulti
Tt

)
cx,K(t)

〉
=

∑|V|
i=2 e

−2τλi(t)
∣∣⟨ui(t), cx,K(t)⟩

∣∣2. By Courant–Fischer principle Horn
& Johnson (2013), we get a pure spectral sandwich:
e−2τ λmax(t) ∥cx,K(t)∥2 ≤

〈
cx,K(t), exp

(
− 2τ Lmulti

Tt

)
cx,K(t)

〉
≤ e−2τ λ2(t) ∥cx,K(t)∥2. (17)

By Eq. (57), the full energy is a nonnegative linear combination of blockwise spectral terms, there-
fore the energy difference admits the eigen-expansion while its spectral weights lie in a bound:

E(x, p; Tt)−EK(x, p; Tt) =

|V|∑
i=2

ζi(t, τ)
∣∣⟨ui(t), cx,K(t)⟩

∣∣2, m(t) e−2τ λi(t) ≤ ζi(t, τ) ≤ M(t),

(18)
where ζi(t, τ) ≥ 0 and (m(t), M(t)) ∈ (0,∞); see Eq.(63) for details. By Eqs. (11), (17) and (18),

m(t) e−2τ λmax(t) ∥cx,K(t)∥2 1{x/∈K} ≤ Emulti
hall (x, p, ·) ≤ M(t) e−2τ λ2(t) ∥cx,K(t)∥2 1{x/∈K}.

(19)

Calibration-compatible lower envelope for hallucination time-scale. Let m̂GT(t) denote the
Good–Turing “missing-mass” estimate for the model fp over X \K at time t (computed on the cur-
rent prompt-conditioned sample window), and we set the calibrated lower-bound aligned with Kalai
& Vempala (2024) as ϑKV(t) := ξ m̂GT(t) for some fixed ξ ∈ (0, 1]. A time-indexed diffu-
sion/temperature profile τ = τ(t) is chosen to embed that envelope by identifying

m(t) e−2τ(t)λmax(t) ∥cx,K(t)∥2 ≥ ϑKV(t) ⇐⇒ τ(t) ≤ 1

2λmax(t)
log

(
m(t) ∥cx,K(t)∥2

ϑKV(t)

)
.

(20)
Eq. (20) operationalizes Kalai–Vempala’s calibrated lower bound within our spectral framework,
guaranteeing the bound is met (and dominated tunably) by the diffusion–Laplacian control.

Time–decay of hallucination energy. From Eq. (19), Emulti
hall is nonincreasing in τ and decays to

0 as τ → ∞ at a rate sandwiched between e−2τλmax and e−2τλ2 . When the block responses are
diffusion–monotone (standard for normalized kernels), the pointwise derivative exists (for x /∈ K)

d

dτ
Emulti
hall (x, p, ·) = − 2

|V|∑
i=2

λi(t) ζi(t, τ)
∣∣⟨ui(t), cx,K(t)⟩

∣∣2 ↘ 0, (21)

which is compatible with Eq. (18) that makes it implementation-ready.
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6 EXPERIMENTS

Code base. <REPO>. The exact configs used for each run are shipped under configs/.

6.1 DATASETS AND MODELS

We evaluate 3 multimodal datasets crossed with 3 inference stacks, yielding 9 panels (Fig. 3).

Datasets.
• COCO Captions (val2017): large image–text

captioning split; diverse everyday scenes.
• VQAv2: balanced visual question answering;

short free-form answers grounded in images.
• AudioCaps: audio–text captioning from

YouTube clips; non-visual acoustic events.
Note. In the audio–text setting, panels that
require a vision captioner are intentionally
omitted (see caption of Fig. 3).

Models (inference stacks).
• CLIP+Whisper+T5: vision embeddings

(CLIP) + audio embeddings (Whisper) + text
LM (T5) for scoring/logits.

• BLIP+CLIP+Whisper: BLIP captioner for
image semantics (paired with CLIP features)
+ Whisper for audio; vision-dependent, so the
AudioCaps cross is blank by design.

• SigLIP+Whisper+T5: SigLIP vision
encoder + Whisper + T5; same interface as the
first stack.

Sources. Pulled from HuggingFace Hub (private tokens); HF HOME and HF TOKEN are set at run-
time.

Algorithm 1: KL-SMOOTHED MULTIMODAL HALLUCINATION (per prompt p)

Input: K; µ; Kh; ε, ρ; blocks {I(∗), E(∗), ω∗, η∗}; Tt; τ ; {ΦM ,ΨM}M∈M;
{AM}M , {RMM ′}M ̸=M ′

Output: d(ε,h)sem (x | p); wTt
(e); Lmulti

Tt
; KTt

; Emulti
hall (x, p) and CF-bounds

1 Form f̃p,ε = (1− ε)fp + ερ and f̃K
p,ε; compute d

(ε,h)
sem (x | p) by Eq. (6). (Thm. 1);

2 Compute rM (x, p); store {AM , BMM ′} for energy in Eq. (10). (Thm. 2);
3 Set ∆a = d

(ε,h)
sem (xa | p) and wTt

(e) by Eq. (26); build L(∗)
Tt

via Eq. (24) and assemble Lmulti
Tt

via Eq. (25).;
4 Compute KTt

and set graph features Υ(v) so that ⟨Υ(v),Υ(v)⟩H = KTt
(v, v) (Eq. (14)).;

5 Form cx,K(t) by Eq. (58) and apply bounds in Eq. (17).;
6 Evaluate E(x, p) via Eq. (10); set Emulti

hall by Eq. (11); report Courant–Fischer bounds in Eq. (19)
plus KV/Good–Turing calibration via Eq. (20)).;

7 return d
(ε,h)
sem , wTt

(e), Lmulti
Tt

, KTt
, Emulti

hall (with bounds)

Algorithm COCO VQAv2 AudioCaps Avg.
AUROC / AUPRC AUROC / AUPRC AUROC / AUPRC AUROC / AUPRC

Entropy 0.81 / 0.79 0.78 / 0.75 0.74 / 0.70 0.78 / 0.75
MaxProb 0.82 / 0.81 0.80 / 0.77 0.76 / 0.72 0.79 / 0.77
Margin 0.83 / 0.82 0.81 / 0.78 0.77 / 0.74 0.80 / 0.78

d
(ε,h)
sem (ours) 0.86 / 0.84 0.84 / 0.81 0.80 / 0.77 0.83 / 0.81

Model COCO VQAv2 AudioCaps Avg. Throughput↑ Asymp.
median (lo / hi) median (lo / hi) median (lo / hi) median ex/s

CLIP+Whisper+T5 2.11 (0.42 / 3.05) 2.23 (0.50 / 3.28) 2.35 (0.55 / 3.50) 2.23 420 O(|E|+N log k +md)
BLIP+CLIP+Whisper 1.98 (0.40 / 2.90) 2.05 (0.48 / 2.96) — 2.02 360 O(|E|+N log k +md)
SigLIP+Whisper+T5 1.92 (0.38 / 2.85) 1.99 (0.45 / 2.90) 2.08 (0.50 / 3.05) 2.00 400 O(|E|+N log k +md)

Table 1: (a) Detection (AUROC/AUPRC) and (b) Energy diagnostics with runtime. Bold =
column-best; in (b), lower median energy is better and throughput (ex/s) higher is better. Audio-
Caps–BLIP+CLIP+Whisper is intentionally blank (vision captioner omitted), matching Fig. 3.
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(a) COCO–CLIP+Whisper+T5 (b) COCO–BLIP+CLIP+Whisper (c) COCO–SigLIP+Whisper+T5

(d) VQAv2–CLIP+Whisper+T5 (e) VQAv2–BLIP+CLIP+Whisper (f) VQAv2–SigLIP+Whisper+T5

(g) Audio-
Caps–CLIP+Whisper+T5

(h) Audio-
Caps–BLIP+CLIP+Whisper

(i) Audio-
Caps–SigLIP+Whisper+T5

Figure 3: CF-bounded hallucination energy surfaces (9 panels). Each 3D surface shows
Emulti
hall over temperature Tt (X) and smoothing mass ε (Y), clamped between two panel-specific

parallel planes marking the Courant–Fischer lower (strictly > 0) and upper bounds (Z). Other
hyperparameters (τ, h) are aggregated by median, consistent across panels. Note: the Audio-
Caps–BLIP+CLIP+Whisper panel may appear blank if the BLIP vision backbone is intentionally
omitted for the audio–text setup; this is expected and documented in our pipeline.

6.2 METRICS AND EVALUATION

We report AUROC/AUPRC for hallucination detection using d
(ε,h)
sem against entropy, max-

probability, and margin baselines, and summarize CF-bounded energy surfaces (lower is better)
with temperature/ε trends matching theory. Details about the baselines and all remaining protocol
& design, and compute details are in Appendix D.

7 CONCLUSION AND FUTURE WORK

We proposed a reference-free, KL–smoothed information gap with hypergraph–spectral con-
trol: the score is 0 on K and strictly > 0 off K, admits Courant–Fischer (CF) bounds,
and integrates Good–Turing/KV calibration. Compact Colab runs (COCO/VQAv2/AudioCaps
× CLIP/BLIP/SigLIP stacks) show consistent gains over entropy/margin and interpretable
temperature/τ decay. A joint tuning of (ε, h, Tt, τ) with uncertainty can be the next direction.
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