

000 GROUNDING THE UNGROUNDED: A SPECTRAL- 001 GRAPH FRAMEWORK FOR QUANTIFYING HALLUCI- 002 NATIONS IN MULTIMODAL LLMs 003

004 **Anonymous authors**
005
006

007 Paper under double-blind review
008
009

010 ABSTRACT 011

012 Hallucinations in LLMs—especially in multimodal settings—undermine reliability.
013 We present a rigorous information-geometric framework, grounded in
014 diffusion dynamics, to quantify hallucinations in MLLMs where model outputs
015 are embedded via spectral decompositions of multimodal graph Laplacians, and
016 their gaps to a truth manifold define a semantic distortion metric. We derive
017 Courant–Fischer bounds on a temperature-dependent hallucination profile and use
018 RKHS eigenmodes to obtain modality-aware, interpretable measures that track
019 evolution over prompts and time. This reframes hallucination as quantifiable and
020 bounded, providing a principled basis for evaluation and mitigation.
021
022

023 1 INTRODUCTION 024

025 Large language models (LLMs) and their multimodal variants (MLLMs) are powerful generators,
026 but reliability or truthfulness remains a core limitation. A central drawback is the hallucinated content
027 that is ungrounded or inconsistent with inputs - which is unacceptable and significantly risky
028 in medicine, law, and finance [Ji et al. \(2023\)](#); [Maynez et al. \(2020\)](#); [Bubeck et al. \(2023\)](#). Prior work offers taxonomies, datasets, and benchmarks for analysis and evaluation [Ji et al. \(2023\)](#);
029 [Maynez et al. \(2020\)](#); [Ding et al. \(2024\)](#), and recent multimodal studies emphasize empirical de-
030 tection/mitigation [Bai et al. \(2024\)](#); however, most approaches rely on heuristics, proxy metrics, or
031 human annotation rather than principled quantification.
032

033 On the theory side, complementary work include token-level analysis of hallucinated predictions [Jiang et al. \(2024\)](#), Bayesian sequential detection [Wang et al. \(2023\)](#), entropy-style uncertainty
034 probes [Han et al. \(2024\)](#), latent-space steering to separate truthful vs. hallucinated generations [Park et al. \(2025\)](#), and reference-free ranking for multimodal hallucinations [Sun et al. \(2024\)](#). Emerging
035 spectral/graph perspectives probe representations and attention, but are largely detection-oriented
036 and unimodal [Binkowski et al. \(2025b\)](#).
037

038 **Gap.** The field currently lacks a quantitative, theory-backed, modality-aware framework that treats
039 hallucination as a measurable quantity (with temporal dynamics and guarantees), rather than only a
040 classification/detection outcome.
041

042 **Our contribution.** At a high level, our framework provides a plug-in, reference-free hallucination
043 controller for MLLM pipelines that remains meaningful even when the ground-truth labels are miss-
044 ing and, unlike other standard uncertainty proxies (entropy, max-probability, margin), decomposes
045 hallucination into modality-wise and spectral components on a multimodal graph Laplacian. It pro-
046 vides a calibrated knob to rank outputs by hallucination risk, set “IDK”/abstention thresholds, and
047 track hallucination under time-indexed temperature and retrieval policies:
048

- 049 (a) We model the grounding across modalities via optimal-transport paths in diffusion dynamics
050 and embed them in RKHS, yielding a structural view of semantic consistency.
- 051 (b) We represent outputs on multimodal graph Laplacians and derive tight Courant–Fischer (CF)
052 bounds on hallucination heatmap as a function of time-indexed temperature.
- 053 (c) *Empirical validation:* Across nine 3D panels (COCO/VQAv2/AudioCaps \times
CLIP+Whisper+T5, BLIP+CLIP+Whisper, SigLIP+Whisper+T5), $\mathcal{E}_{\text{hall}}^{\text{multi}}$ lies
between panel-specific CF planes with a strictly positive lower envelope that tightens at lower
temperature (and higher diffusion); full $\varepsilon/\tau/h/\rho$ ablations and runtimes in the supplement.

054 This shifts hallucination study from qualitative detection to quantitative, modality-aware, and interpretable analysis. To our knowledge, it is the first attempt to provide spectral bounds on hallucination
 055 for MLLMs followed by a time-indexed temperature annealing, offering a principled basis for
 056 evaluation and potential mitigation. A clear mathematical roadmap is presented in Appendix A.1.
 057

059 2 RELATED WORK 060

061 Kalai & Vempala show that, for calibrated LMs, the hallucination rate is lower-bounded by a
 062 Good–Turing–style “monofact” mass - establishing an inherent trade-off between calibration and
 063 truthfulness [Kalai & Vempala \(2024\)](#); while their recent work generalizes this via an IIV reduction
 064 that ties generative errors to binary-classification - advocating IDK-tolerant evaluation [Kalai et al.](#)
 065 (2025). Empirical study of LM hallucinations spans mechanistic probes that surface interpretable
 066 features for diagnosis [Templeton et al. \(2024\)](#), retrieval-grounded detection and evaluation [Gerner](#)
 067 [et al. \(2025\)](#); [Niu et al. \(2024\)](#), broad benchmark suites like HalluEval [Li et al. \(2023\)](#), Hallu-PI [Ding](#)
 068 [et al. \(2024\)](#), GraphEval [Feng et al. \(2025\)](#), and early vision–language analyses of object hallucination
 069 [Rohrbach et al. \(2018\)](#). Comprehensive surveys catalog causes, detection, and mitigation
 070 strategies [Ji et al. \(2023\)](#); [Rawte et al. \(2023\)](#).

071 Recent work exploits uncertainty and structural signals: semantic-entropy probes [Han et al. \(2024\)](#),
 072 Bayesian sequential estimation [Wang et al. \(2023\)](#), token-level dynamics of hallucinated predictions
 073 [Jiang et al. \(2024\)](#), zero-shot reasoning signals [Lee et al. \(2024\)](#), and sampling-based self-
 074 consistency checks (SelfCheckGPT) [Manakul et al. \(2023\)](#). Graph/spectral methods flag hallucinations
 075 via KG self-checks (FactSelfCheck) [Sawczyn et al. \(2025\)](#), attention Laplacian eigen-spectra
 076 (LapEigvals) [Binkowski et al. \(2025a\)](#), and topological cues on hallucination graphs [Le Merrer &](#)
 077 [Trédan \(2024\)](#).

078 3 PRELIMINARIES 079

080 We begin by establishing the mathematical foundations of our framework. MLLM outputs are em-
 081 bedded as nodes on a knowledge graph Laplacian, and grounding gaps along this graph collectively
 082 define a quantifiable hallucination metric. Figure 1 sketches our approach.
 083

084 3.1 MATHEMATICAL FOUNDATIONS 085

086 Let \mathcal{X} denote the measurable^{A.2}¹ set of all possible model outputs of a multimodal LLM, with $\mathcal{F}_{\mathcal{X}}$
 087 being the σ -algebra over \mathcal{X} and μ being the base measure [Tao \(2011\)](#); e.g., the count measure for
 088 discrete outputs like token sequence or the Lebesgue measure for continuous outputs like embed-
 089 dings [Bartle \(1995\)](#). We assume \mathcal{X} is continuously embedded in a separable Reproducing Kernel
 090 Hilbert space (RKHS) denoted by $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ which is associated with a positive-definite kernel,
 091

$$K : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}^+. \quad (1)$$

092 The kernel $K(x_1, x_2)$ encodes the semantic relationships between two distinct points or outputs
 093 x_1 and $x_2 \forall (x_1 \neq x_2) \in \mathcal{X}$; for example, through embedding-based or ontology-aware distance
 094 measures, or co-reference resolution. For a product kernel in an MLLM, refer to Eq. (7) later.
 095

096 Within this $(\mathcal{X}, \mathcal{F}_{\mathcal{X}}, \mu)$ space, there exist two kinds of “truth” (the idea imported from [Kalai &](#)
 097 [Vempala \(2024\)\):](#)

- 099 (i) The semantic factoid space \mathcal{K} which encompasses all semantically valid and coherent outputs
 100 that include empirically plausible facts, contextually appropriate completions, and domain-
 101 consistent inferences aligned with the prompt and background knowledge - importantly, el-
 102 ements of \mathcal{K} need not be verifiable, but they remain semantically valid within the modeled
 103 domain.
- 104 (ii) The semantic ground-truth manifold \mathcal{K}_g , as a stricter subregion of \mathcal{K} , which consists of outputs
 105 only verifiably correct or true facts that include factual assertions supported by empirical
 106 evidence or directly observed information — elements of \mathcal{K}_g can be properly referred to as
 107 grounded in reality.

¹Footnotes are added in chronological order and collected in Appendix A.

108 Thus the semantic plausibility/ground-truth
 109 nesting and, for a given prompt $p \in \mathcal{P}$, the hal-
 110 lucination criterion for each output denoted by
 111 $x \in \mathcal{X}$ are:

$$\mathcal{K}_g \subseteq \mathcal{K} \subset \mathcal{X}, \quad x \in \mathcal{X} \setminus \mathcal{K}. \quad (2)$$

112 Note: $x \in \mathcal{K} \setminus \mathcal{K}_g$ is a non-grounded output,
 113 but still semantically plausible and strictly not
 114 hallucination.

117 3.2 MODELING THE LLM OUTPUTS

118 We begin with the baseline assumptions:

119 **Assumption 1** (General output distribution).

120 *The LLM outputs can be characterized by a conditional probability distribution $f_p(x)$ that denotes
 121 the likelihood of generating output x given a prompt p :*

$$f_p : \mathcal{X} \rightarrow [0, \infty), \quad f_p \in L^1(\mathcal{X}, \mathcal{F}_{\mathcal{X}}, \mu) \cap \mathcal{H}, \quad x \mapsto f_p(x), \quad (3)$$

122 which ensure $\int_{\mathcal{X}} f_p(x) d\mu(x) = 1$. (See justification^{A.3} in Appendix A.)

123 Let $f_p^{\mathcal{K}}$ denote the restricted distribution on the semantic plausibility space \mathcal{K} :

$$f_p^{\mathcal{K}}(x) := \frac{\mathbf{1}_{\{x \in \mathcal{K}\}} f_p(x)}{\int_{\mathcal{K}} f_p(x') d\mu(x')} \equiv \frac{\mathbf{1}_{\{x \in \mathcal{K}\}} f_p(x)}{\mathbb{P}_{f_p}(\mathcal{K})}, \quad \text{where, } \mathbf{1}_{\{x \in \mathcal{K}\}} = \begin{cases} 1 & \text{if } x \in \mathcal{K}, \\ 0 & \text{otherwise.} \end{cases} \quad (4)$$

124 Here, $\int_{\mathcal{K}} f_p(x') d\mu(x') = \mathbb{P}_{f_p}(\mathcal{K})$ is a normalization constant in the restricted distribution.

125 **Assumption 2** (Ground-truth generative distribution). *In line with Assumption 1, g denotes the
 126 reference distribution on the ground-truth manifold \mathcal{K}_g . Unlike f_p or $f_p^{\mathcal{K}}$, g is the gold reference
 127 which is not model-induced and hence, may not share support with f_p except inside \mathcal{K}_g and it is truly
 128 independent of prompts in the generative sense, but conditioned on the same prompt contextually.
 129 (See justification^{A.4} in Appendix A.)*

130 Thus, we do not assume any parametric form for the ground-truth distribution g and rather treat it as
 131 an abstract measure over \mathcal{K}_g :

$$\text{supp}(g) \subseteq \mathcal{K}_g, \quad g : \mathcal{K}_g \rightarrow [0, \infty), \quad g \in L^1(\mathcal{K}_g, \mathcal{F}_{\mathcal{K}_g}, \mu'). \quad (5)$$

132 Eq. (5) ensures $\int_{\mathcal{K}_g} g(x) d\mu'(x) = 1$ with notations used in consistency with Eq. (3) and μ' playing
 133 the same role of μ , but not necessarily equal to μ .

144 4 THEORETICAL ANALYSIS

145 In this section, we present a theoretical framework that couples a smoothed information-geometric
 146 score derived from the Kullback–Leibler (KL) paradigm^{A.5} with a multimodal energy formulation
 147 to quantify and track hallucinations in MLLMs.

148 4.1 SEMANTIC DISTORTION

149 We establish the following theorem followed by stating remarks to set the stepping stone.

150 **Theorem 1** (KL-calibrated smoothed score for hallucination). *Let a smoothing mass $\varepsilon \in (0, 1)$
 151 and a baseline density be fixed, with finite $\rho(x) > 0$ μ -a.e. and $\int_{\mathcal{X}} \rho(x) d\mu(x) = 1$; let
 152 $K_h(\cdot, \cdot) \in (0, \infty)$ be a μ -Markov kernel (bandwidth $h > 0$) and $T_h : L^1(\mu) \rightarrow L^1(\mu)$ be
 153 a linear smoother defined for $q : \mathcal{X} \rightarrow \mathbb{R}$ by $(T_h q)(x_1) := \int_{\mathcal{X}} K_h(x_1, x_2) q(x_2) d\mu(x_2)$; let
 154 the ε -smoothed model be $\tilde{f}_{p, \varepsilon}(x) := (1 - \varepsilon)f_p(x) + \varepsilon\rho(x)$ with its \mathcal{K} -restricted renormalization
 155 $\tilde{f}_{p, \varepsilon}^{\mathcal{K}}(x_2) := \mathbf{1}_{\{x_2 \in \mathcal{K}\}} \tilde{f}_{p, \varepsilon}(x_2) / \int_{\mathcal{K}} \tilde{f}_{p, \varepsilon}(x) d\mu(x)$; and let a measurable selector $\Pi_{\mathcal{K}} : \mathcal{X} \rightarrow \mathcal{K}$ sat-
 156 isfy $\Pi_{\mathcal{K}}(x) = x$ ($\forall x \in \mathcal{K}$) or nearest point with convexity in \mathcal{K} (otherwise). Then the semantic
 157 distortion*

$$d_{\text{sem}}^{(\varepsilon, h)}(x; \mathcal{K}, \mathcal{X}) := \left[\log((T_h \tilde{f}_{p, \varepsilon}^{\mathcal{K}})(\Pi_{\mathcal{K}}(x))) - \log((T_h \tilde{f}_{p, \varepsilon})(x)) \right]_+, \quad (6)$$

162 serves as a KL -calibrated smoothed pointwise information gap for tracking hallucinations across
 163 prompts and remains as a reference-free (independent-of- g) statistic in language models.
 164

165 *Proof sketch:* Strict positivity from $\tilde{f}_{p,\varepsilon} = (1 - \varepsilon)f_p + \varepsilon\rho$ and Markov K_h makes both smoothed
 166 terms > 0 , so Eq. (6) is finite. If $x \in \mathcal{K}$, $\Pi_{\mathcal{K}}(x) = x$ and the \mathcal{K} -restricted smoother $>$ the
 167 unconditional smoother at x ; if $x \notin \mathcal{K}$, smoothing at $\Pi_{\mathcal{K}}(x) \in \mathcal{K}$ dominates the mixed mass at x .
 168 Detailed proof is found in Appendix B.1. \square

169 **Remark 1.** The score in Eq. (6) is g -agnostic and thus usable when g is unobservable^{A.6} or
 170 partially verified in various real-world scenarios. In practice, we set a small smoothing mass
 171 $\varepsilon \in [10^{-6}, 10^{-2}]$, choose h by validation, take K_h as a positive row-normalized kernel over em-
 172 beddings/tokens, and we implement $\Pi_{\mathcal{K}}$ as a measurable nearest-neighbour selector on a finite
 173 reference set from \mathcal{K} . To clarify how this mathematical framework connects to MLLM pipelines in
 174 practice, we identify^{A.7} what are “observable”, “assumed” or “estimated” in Appendix A.

175 **Remark 2.** We deliberately work with a continuous hallucination score $\mathbb{h}(x, p) \in [0, \infty)$, rather
 176 than a binary 0/1 label, for several practical reasons; see Appendix A.8 for a detailed discussion.
 177

178 4.2 EXTENSION TO MULTI-MODAL GROUNDING

179 The intuition behind this setting of multimodality is: in image-grounded or dialogue models, semantic
 180 grounding depends on multiple modalities — e.g., text, image or video, dialog or audio-history
 181 etc. and the RKHS is then extended to a multi-modal product kernel space. In multi-modal settings,
 182 where the LLM outputs involve textual (T), visual (V), audio (A) modalities, we define a joint out-
 183 put space (\mathcal{X}) embedded into a composite RKHS (\mathcal{H}) equipped with a product kernel (K) between
 184 two distinct points (i.e., outputs) $\forall(x_1 \neq x_2) \in \mathcal{X}$ as
 185

$$186 \mathcal{X} : \bigtimes_M \mathcal{X}_M, \quad x = (x^{(M)})_{x^{(M)} \in \mathcal{X}_M}, \quad \mathcal{H} := \bigotimes_M \mathcal{H}_M, \quad K(x_1, x_2) = \prod_M K_M(x_1^{(M)}, x_2^{(M)}), \quad (7)$$

188 pertaining to each modality $\forall M \in \mathcal{M} := \{T, V, A\}$, where the prompts can also be categorized into
 189 a composite prompt space $\mathcal{P} : \bigtimes_M \mathcal{P}_M$, with each prompt $p = (p^{(M)})_{p^{(M)} \in \mathcal{P}_M}$ in a modality-aware
 190 prescription to accommodate three different kinds of probable inputs (i.e., T, V & A) for the sake of
 191 completeness. However, in the following calculation in this paper, we restrict ourselves only to the
 192 notion of p without any loss of generality. Expanded form^{A.9} of Eq. (7) is found in Appendix A.
 193

194 4.3 FORMULATIONS TO HALLUCINATION ENERGY

196 To begin with, we are after a fruitful formulation of $f_p(x)$ that connects the model output distribution
 197 to an underlying energy landscape to enable modal interpretability, temperature-driven exploration,
 198 and spectral graph analysis. The total energy functional $\mathcal{E}(x, p, \cdot) : \mathcal{X} \times \mathcal{P} \rightarrow \mathbb{R}^+$ associated with
 199 the model input-output plus suppressed parameters can be decomposed into intra-modal, pairwise
 200 cross-modal, and joint multimodal interactions. This decomposition allows us to localize the sources
 201 of hallucination within and across modalities.

202 **Assumption 3** (Hallucination energy functional in MLLMs). *The modality-aware decomposition
 203 reads as:*

$$204 \mathcal{E}(x, p, \cdot) = \sum_{M \in \mathcal{M}} \mathcal{E}_M(x^{(M)}, p, \cdot) + \sum_{\substack{M, M' \in \mathcal{M} \\ M \neq M'}} \mathcal{E}_{MM'}(x^{(M)}, x^{(M')}, p, \cdot) + \mathcal{E}_{\mathcal{M}}(x, p, \cdot). \quad (8)$$

208 (See justification^{A.10} in Appendix A and Section 5.1 for the similar construction.)

209 **Assumption 4** (Feature maps for boundedness). *Using the results of Moore–Aronszajn theorem Aronszajn (1950), for a positive definite kernel K_M in a measurable output space $(\mathcal{X}, \mathcal{F}_{\mathcal{X}}, \mu)$
 210 aligned with Section 3.1, let $\Phi_M : \mathcal{X}_M \rightarrow \mathcal{H}_M$ be its feature map treated as infinite-
 211 dimensional linear operator for each modality $M \in \mathcal{M}$ under the constraint of boundedness:
 212 $\sup_{x^{(M)} \in \mathcal{X}_M} \|\Phi_M(x^{(M)})\|_{\mathcal{H}_M} < \infty$. (See justification^{A.11} in Appendix A.)*

214 For each modality M , the (fixed) embedding pipeline with an implicit kernel^{A.11} in a higher-
 215 dimensional RKHS induces $\Phi_M : \mathcal{X}_M \rightarrow \mathcal{H}_M$ such that $\langle \Phi_M(x_1), \Phi_M(x_2) \rangle_{\mathcal{H}_M} = K_M(x_1, x_2)$.

216 **Assumption 5** (Prompt embeddings). *Let $(\mathcal{P}, \mathcal{F}_{\mathcal{P}}, \nu)$ be a measurable space on prompts with ν 217 being finite. For each modality $M \in \mathcal{M}$, the prompt embedding $\Psi_M : \mathcal{P} \rightarrow \mathcal{H}_M$ satisfies boundedness: $\sup_{p \in \mathcal{P}} \|\Psi_M(p)\|_{\mathcal{H}_M} < \infty$ and stability: Ψ_M is continuous (equivalently, Lipschitz with 218 finite constant $\text{Lip}(\Psi_M)$) in the chosen topology/metric on \mathcal{P} . (See justification^{A.12} in Appendix A.)*

219 **Assumption 6** (Output distribution in Boltzman form). *We view $f_p(x)$ as a normalized surrogate 220 over candidate outputs or latent representations with respect to a finite (or bounded) base measure 221 μ . Under bounded embeddings and compact support (or bounded energy), the partition function 222 $Z(p, T_t)$ is finite, making Eq. (9) well-defined. (See justification^{A.13} in Appendix A.)*

223 **Lemma 1** (Joint measurability of cross inner products). *If $\Phi_M : (\mathcal{X}_M, \mathcal{F}_{\mathcal{X}_M}) \rightarrow (\mathcal{H}_M, \mathcal{B}(\mathcal{H}_M))$ 224 and $\Psi_M : (\mathcal{P}, \mathcal{F}_{\mathcal{P}}) \rightarrow (\mathcal{H}_M, \mathcal{B}(\mathcal{H}_M))$ are Bochner measurable into a separable Hilbert space 225 \mathcal{H}_M where $\mathcal{B}(\mathcal{H}_M)$ denotes the Borel σ -algebra generated by the open sets of \mathcal{H}_M under its norm 226 topology, then $(x, p) \mapsto \langle \Phi_M(x), \Psi_M(p) \rangle_{\mathcal{H}_M}$ is measurable on $\mathcal{F}_{\mathcal{X}_M} \otimes \mathcal{F}_{\mathcal{P}}$.*

227 *Proof sketch:* Bochner measurability of Φ_M and Ψ_M implies strong measurability into $\mathcal{B}(\mathcal{H}_M)$; 228 hence $(x, p) \mapsto (\Phi_M(x), \Psi_M(p))$ is measurable on the product σ -algebra. Detailed proof is found 229 in Appendix B.2. \square

230 **Theorem 2** (Multimodal energy-based hallucination formalism). *Between the output and prompt 231 spaces, let the residuals $r_M(x, p) := \Phi_M(x^{(M)}) - \Psi_M(p) \in \mathcal{H}_M$ be defined for at least 232 two modalities $|\mathcal{M}| \geq 2$. For each M , let there be a bounded, self-adjoint, positive semi- 233 definite (PSD) linear operator A_M on \mathcal{H}_M and for $M \neq M'$, some $B_{MM'} : \mathcal{H}_{M'} \rightarrow \mathcal{H}_M$ 234 which is a bounded linear symmetric cross-operator and a controlled factorization $B_{MM'} = 235 A_M^{1/2} R_{MM'} A_{M'}^{1/2}$, subject to $\|R_{MM'}\| \leq 1$, being a symmetric contraction (e.g., Hilbert- 236 Schmidt). Given this, if the output distribution $f_p(x)$ assumes the Boltzmann form for any tem- 237 perature $T_t \in \mathbb{R}_{\geq 0}$ dependent on time $t \in \mathbb{R}^+$:*

$$241 f_p(x) = (Z(p, T_t))^{-1} \exp(-\mathcal{E}(x, p)/T_t), \text{ where, } Z(p, T_t) = \int_{\mathcal{X}} \exp(-\mathcal{E}(x, p)/T_t) d\mu(x) \quad (9)$$

242 is the normalizing partition function, then the total energy noted in Eq. (8), for $(x, p) \in \mathcal{X} \times \mathcal{P}$, 243 takes the form that is measurable, non-negative and satisfies canonical instances; given by:

$$244 \mathcal{E}(x, p) = \sum_{M \in \mathcal{M}} \langle r_M, A_M r_M \rangle_{\mathcal{H}_M} + \frac{2}{|\mathcal{M}| - 1} \sum_{\substack{M, M' \in \mathcal{M} \\ M \neq M'}} \langle A_M^{1/2} r_M, R_{MM'} A_{M'}^{1/2} r_{M'} \rangle + \mathcal{E}_{\mathcal{M}}, \quad (10)$$

245 where the first and second terms on r.h.s are \mathcal{E}_M and $\mathcal{E}_{MM'}$ respectively, while the last term being 246 $\mathcal{E}_{\mathcal{M}}(x, p) = \left\| \bigotimes_{M \in \mathcal{M}} \Phi_M(x^{(M)}) - \bigotimes_{M \in \mathcal{M}} \Psi_M(p) \right\|_{\otimes \mathcal{H}_M}^2$ as a squared distance in composite 247 RKHS, so it's measurable and nonnegative.

248 *Proof sketch.* We stack $r = (r_M)_M$ and define the block operator \mathcal{A} with diagonals A_M and 249 off-diagonals $A_M^{1/2} R_{MM'} A_{M'}^{1/2}$. Since $A_M \succeq 0$, $R_{M'M} = R_{MM'}^*$, and $\|R_{MM'}\| \leq 1$, standard 250 Cauchy–Schwarz/Schur arguments give $\mathcal{A} \succeq 0$; hence $\langle r, \mathcal{A}r \rangle \geq 0$ equals the first two terms of 251 Eq. (10). The joint term is a single scalar for 3 modalities, but a tensor for > 3 modalities, thus ≥ 0 . 252 Measurability follows from Bochner measurability and continuity of bounded linear maps/inner 253 products (refer to Lemma 1). Under the stated integrability/finite-measure conditions, the partition 254 function in Eq. (9) is finite, so f_p is well-defined. Detailed proof is found in Appendix B.3. \square

255 **Corollary 1** (Excess-energy hallucination functional). *In line with Theorems 1 & 2, we leverage 256 Eq. (10) to identify the hallucination energy in an MLLM:*

$$257 \mathcal{E}_{\text{hall}}^{\text{multi}}(x, p, \cdot) = \left(\mathcal{E}(x, p, \cdot) - \mathcal{E}_{\mathcal{K}}(x, p, \cdot) \right)_+ \mathbf{1}_{\{x \notin \mathcal{K}\}}. \quad (11)$$

258 where $\mathcal{E}(x, p, \cdot)$ is the total energy term at \mathcal{X} and $\mathcal{E}_{\mathcal{K}}(x, p, \cdot)$ is the same restricted at \mathcal{K} .

259 *Proof.* This particular Corollary does not require any explicit proof as this is merely an identification 260 done by the authors in line with the results obtained in Theorem 1. \square

Figure 2: Pipeline for hallucination quantification in MLLMs. For an intuition-building case-study of an image–caption example for an MLLM, see comments^{A.14} in Appendix A.

5 MAIN RESULTS: PROPOSED FRAMEWORK

In this section we develop the spectral representation that underpins our main results (Figure 2). We reformulate the multimodal hallucination energy $\mathcal{E}_{\text{hall}}^{\text{multi}}$ (refer to Eq. (11)) within standard spectral graph theory Chung (1997). This lets us relate the Boltzmann normalization of model outputs to eigenmodes of a multimodal semantic graph Laplacian, which in turn yields principled mode-wise bounds on hallucination energy.

5.1 SEMANTIC GRAPH AND MULTIMODAL LAPLACIAN

Let a time-indexed, temperature-modulated multimodal semantic graph at an instant t be:

$$G_{\mathcal{T}_t} = (\mathcal{V}, E, W_{\mathcal{T}_t}), \quad \mathcal{V} \subseteq \mathbb{N}, \quad E \subseteq \mathcal{V} \times \mathcal{V}, \quad W_{\mathcal{T}_t} \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}; \quad \forall t \in \mathbb{R}^+, \quad (12)$$

with finite set of nodes \mathcal{V} (semantic units), pairwise edges $E \subseteq \mathcal{V} \times \mathcal{V}$ (similarity relations), and symmetric non-negative adjacency weights $W_{\mathcal{T}_t}$ built from fixed embeddings, where temperature $\mathcal{T}_t \in \mathbb{R}_{\geq 0}$ controls the affinity bandwidths. Here, we adopt a single integrated multimodal graph $G_{\mathcal{T}_t}$ with modality encoded by the node-partitioning $\mathcal{V} = \biguplus_M \mathcal{V}_M$ and a symmetric PSD $W_{\mathcal{T}_t}$ structured on its elements $w_{\mathcal{T}_t}$ noted in Eq. (16) as hyperedge weights. See justification^{A.15} and detailed construction of $W_{\mathcal{T}_t}$ in Appendix A. In the current prescription of \mathcal{T}_t -modulated graph, the RKHS \mathcal{H} is associated with a positive-definite multimodal diffusion kernel $K_{\mathcal{T}_t}$ that induces graph feature map $\Upsilon : \mathcal{V} \rightarrow \mathcal{H}$ satisfying (application of Assumption 4 in knowledge-graphs)

$$K_{\mathcal{T}_t} := \exp(-\tau \mathcal{L}_{\mathcal{T}_t}^{\text{multi}}), \quad \langle \Upsilon(v), \Upsilon(v) \rangle_{\mathcal{H}} = K_{\mathcal{T}_t}(v, v), \quad \forall v, v \in \mathcal{V}, \quad (13)$$

where $\tau \in \mathbb{R}^+$ is a diffusion time-scale and $\mathcal{L}_{\mathcal{T}_t}^{\text{multi}}$ is a multimodal graph Laplacian defined on the finite node set \mathcal{V} . As an extension from Eq. (7), the above equation is an application of Mercer’s theorem Mercer (1909), see details^{A.16} in Appendix A. How this construction of graph feature maps Υ defined on nodes v, v has an interconnection to the output feature maps $\Phi_M(x^{(M)})$ and prompt embeddings $\Psi_M(p)$, see justification^{A.17} in Appendix A. We design the multimodal Laplacian as a non-negative combination of intra-, cross-, and joint-modal components: $\mathcal{L}_{\mathcal{T}_t}^{\text{multi}} = \sum_* \text{coeff}_* \mathcal{L}_{\mathcal{T}_t}^{(*)}$, where $* \in \{\text{intra}_M, \text{cross}_{MM'}, \text{joint}_{MM'}\}$ and the interaction coefficients: $\text{coeff}_{\text{intra}_M} = \alpha_M$ ($\forall M \in \mathcal{M}$), $\text{coeff}_{\text{cross}_{MM'}} = \beta_{MM'}$ ($\forall M, M' \in \mathcal{M}$), and $\text{coeff}_{\text{joint}_{MM'}} = \gamma_{MM'}$ are all $\mathbb{R}_{\geq 0}$. Each $\mathcal{L}_{\mathcal{T}_t}^{(*)}$ is a symmetric PSD Laplacian-block built on the same node set \mathcal{V} ; full expressions can be found in Eq. (24) in Appendix A.15.

5.2 SPECTRAL DECOMPOSITION AND ENERGY FUNCTIONAL

To dis-entangle modality-specific, cross-modal, and joint-modal interactions and to study how hallucination energy propagates across the graph, we diagonalize the normalized multimodal Laplacian. Let $\{(\lambda_i(t), u_i(t))\}_{i=1}^{|\mathcal{V}|}$ be the eigenpairs of $\mathcal{L}_{\mathcal{T}_t}^{\text{multi}}$ with $0 = \lambda_1(t) \leq \lambda_2(t) \leq \dots$ and orthonormal eigenvectors $\langle u_i(t), u_j(t) \rangle = \delta_{ij}$. See comments^{A.18} in Appendix A. Then for all nodes $v \in \mathcal{V}$:

$$\mathcal{L}_{\mathcal{T}_t}^{\text{multi}} = U(t) \Lambda(t) U(t)^\top = \sum_{i=1}^{|\mathcal{V}|} \lambda_i(t) u_i(t) u_i(t)^\top, \quad \Upsilon(v; \mathcal{T}_t) = \sum_{i=1}^{|\mathcal{V}|} e^{-\frac{\tau}{2} \lambda_i(t)} \langle u_i(t), \delta_v \rangle u_i(t), \quad (14)$$

324 where $U(t) = [u_1(t) \cdots u_{|\mathcal{V}|}(t)]$, $\Lambda(t) = \text{diag}(\lambda_1(t), \dots, \lambda_{|\mathcal{V}|}(t))$ and $\delta_v \in \mathbb{R}^{|\mathcal{V}|}$ is the Kronecker
 325 delta at v . (We reserve v, v, \dots for graph nodes and i, j, \dots for Laplacian modes; both index sets have
 326 size $|\mathcal{V}|$.) For output & prompt nodes $(v_x, v_p) \in \mathcal{V}$ and, more generally, any graph signal $s \in \mathbb{R}^{|\mathcal{V}|}$,
 327

$$328 \|\Upsilon(v_x; \mathcal{T}_t) - \Upsilon(v_p; \mathcal{T}_t)\|_{\mathcal{H}}^2 = \sum_{i=1}^{|\mathcal{V}|} e^{-\tau \lambda_i(t)} |\langle u_i(t), \delta_{v_x} - \delta_{v_p} \rangle|^2, \quad \langle s, \mathcal{L}_{\mathcal{T}_t}^{\text{multi}} s \rangle = \sum_{i=1}^{|\mathcal{V}|} \lambda_i(t) |\langle u_i(t), s \rangle|^2. \\ 330 \quad (15)$$

331 A quick algebraic manipulation with Eq. (15) plugged back into Eq. (10) gives the spectral form
 332 of total energy: $\mathcal{E}(x, p; \mathcal{T}_t) = \sum_* \sum_{i=1}^{|\mathcal{V}|} \text{coeff}_* E_i^{(*)}(x, p, t)$, where each $E_i^{(*)}$ depends explicitly on
 333 $\lambda_i(t)$ and $u_i(t)$. See Eq. (65) in Appendix C.1 for details.
 334

335 5.3 SPECTRAL BOUNDS ON HALLUCINATION, AND TIME-TECAY

337 Here, we obtain: (i) quantitative bounds that control the scope of hallucination in an MLLM; (ii) an
 338 evolution of hallucinations in diffusion time with tunable temperature. The interpretation of spectral
 339 quantities with time parameter and extended derivations of each expression below can be found
 340 respectively in Appendices A.19 and C.2.

341 **Node-level score and pairwise dissimilarity.** For each node $v \in \mathcal{V}$ carrying $(x, p) \in \mathcal{X} \times \mathcal{P}$,
 342 the scalar score $d_{\text{sem}}^{(\varepsilon, h)}(x | p) := d_{\text{sem}}^{(\varepsilon, h)}(x; \mathcal{K}, \mathcal{X})$ is computed using $\tilde{f}_{p, \varepsilon}$ from Eq. (6). A symmetric,
 343 nonnegative prompt-aware dissimilarity between $v_a \sim (x_a, p_a)$ and $v_b \sim (x_b, p_b)$ is then defined by
 344 $\hat{d}_{\text{sem}}(v_a, v_b) := |d_{\text{sem}}^{(\varepsilon, h)}(x_a | p_a) - d_{\text{sem}}^{(\varepsilon, h)}(x_b | p_b)|$ and combining it with Eq. (26) yields
 345

$$346 w_{\mathcal{T}_t}(e) = \mathbf{1}_{\{e \in E^{(*)}\}} \exp \left(-\eta_* \left(\sum_{1 \leq a, b \leq r(e)} |\Delta_{\varepsilon, h}(x_a | p_a) - \Delta_{\varepsilon, h}(x_b | p_b)| \right) / \sum_{a=1}^{r(e)} \mathcal{T}_t(v_a) \right). \\ 347 \quad (16)$$

350 Here $r(e) := |e|$ is the hyperedge cardinality (Eq. (24)), and $\eta_* > 0$ is the modality-aware permutation
 351 factor (Eq. (26)). The derivation of $\Delta_{\varepsilon, h}(x | p)$ is found via Eq. (27) in Appendix A.15.

352 **Courant–Fischer (CF) bounds for hallucination.** Let $c_{x, \mathcal{K}}(t)$ be the degree-matched, null-
 353 mode-projected contrast (so $c_{x, \mathcal{K}}(t) \perp u_1(t)$, see Eq. (66)) and given the diffusion operator
 354 $\exp(-2\tau \mathcal{L}_{\mathcal{T}_t}^{\text{multi}})$, we get the semantic diffusion through spectral expansion $\langle c_{x, \mathcal{K}}(t), \exp(-2\tau \mathcal{L}_{\mathcal{T}_t}^{\text{multi}}) c_{x, \mathcal{K}}(t) \rangle = \sum_{i=2}^{|\mathcal{V}|} e^{-2\tau \lambda_i(t)} |\langle u_i(t), c_{x, \mathcal{K}}(t) \rangle|^2$. By Courant–Fischer principle Horn
 355 & Johnson (2013), we get a pure spectral sandwich:
 356

$$357 e^{-2\tau \lambda_{\max}(t)} \|c_{x, \mathcal{K}}(t)\|^2 \leq \langle c_{x, \mathcal{K}}(t), \exp(-2\tau \mathcal{L}_{\mathcal{T}_t}^{\text{multi}}) c_{x, \mathcal{K}}(t) \rangle \leq e^{-2\tau \lambda_2(t)} \|c_{x, \mathcal{K}}(t)\|^2. \quad (17)$$

358 By Eq. (65), the full energy is a nonnegative linear combination of blockwise spectral terms, therefore
 359 the energy difference admits the eigen-expansion while its spectral weights lie in a bound:
 360

$$361 \mathcal{E}(x, p; \mathcal{T}_t) - \mathcal{E}_{\mathcal{K}}(x, p; \mathcal{T}_t) = \sum_{i=2}^{|\mathcal{V}|} \zeta_i(t, \tau) |\langle u_i(t), c_{x, \mathcal{K}}(t) \rangle|^2, \quad m(t) e^{-2\tau \lambda_i(t)} \leq \zeta_i(t, \tau) \leq M(t), \\ 362 \quad (18)$$

363 where $\zeta_i(t, \tau) \geq 0$ and $(m(t), M(t)) \in (0, \infty)$; see Eq. (71) for details. By Eqs. (11), (17) and (18),
 364

$$365 m(t) e^{-2\tau \lambda_{\max}(t)} \|c_{x, \mathcal{K}}(t)\|^2 \mathbf{1}_{\{x \notin \mathcal{K}\}} \leq \mathcal{E}_{\text{hall}}^{\text{multi}}(x, p, \cdot) \leq M(t) e^{-2\tau \lambda_2(t)} \|c_{x, \mathcal{K}}(t)\|^2 \mathbf{1}_{\{x \notin \mathcal{K}\}}. \\ 366 \quad (19)$$

367 **Calibration-compatible lower envelope for hallucination time-scale.** Let $\hat{m}_{\text{GT}}(t)$ denote the
 368 Good–Turing “missing-mass” estimate for the model f_p over $\mathcal{X} \setminus \mathcal{K}$ at time t (computed on the current
 369 prompt-conditioned sample window), and we set the calibrated lower-bound aligned with Kalai
 370 & Vempala (2024) as $\vartheta_{\text{KV}}(t) := \xi \hat{m}_{\text{GT}}(t)$ for some fixed $\xi \in (0, 1]$. A time-indexed diffusion/temperature profile $\tau = \tau(t)$ is chosen to embed that envelope by identifying
 371

$$372 m(t) e^{-2\tau(t) \lambda_{\max}(t)} \|c_{x, \mathcal{K}}(t)\|^2 \geq \vartheta_{\text{KV}}(t) \iff \tau(t) \leq \frac{1}{2 \lambda_{\max}(t)} \log \left(\frac{m(t) \|c_{x, \mathcal{K}}(t)\|^2}{\vartheta_{\text{KV}}(t)} \right). \\ 373 \quad (20)$$

374 Eq. (20) operationalizes Kalai–Vempala’s calibrated lower bound within our spectral framework,
 375 guaranteeing the bound is met (and dominated tunably) by the diffusion–Laplacian control.
 376

378 **Time-decay of hallucination energy.** From Eq. (19), $\mathcal{E}_{\text{hall}}^{\text{multi}}$ is nonincreasing in τ and decays to
 379 0 as $\tau \rightarrow \infty$ at a rate sandwiched between $e^{-2\tau\lambda_{\max}}$ and $e^{-2\tau\lambda_2}$. When the block responses are
 380 diffusion-monotone (standard for normalized kernels), the pointwise derivative exists (for $x \notin \mathcal{K}$)
 381

$$382 \quad \frac{d}{d\tau} \mathcal{E}_{\text{hall}}^{\text{multi}}(x, p, \cdot) = -2 \sum_{i=2}^{|\mathcal{V}|} \lambda_i(t) \zeta_i(t, \tau) |\langle u_i(t), c_{x, \mathcal{K}}(t) \rangle|^2 \searrow 0, \quad (21)$$

385 which is compatible with Eq. (18) that makes it implementation-ready. In all experiments, the spec-
 386 trum of $\mathcal{L}_{\mathcal{T}_t}^{\text{multi}}$ is computed empirically from the multimodal graph built on encoder embeddings for
 387 each dataset–backbone pair, and the CF bounds. The CF planes in Fig. 3 use these actual eigenvalues
 388 (see details in Appendix A.19).

390 6 EXPERIMENTS

392 **Code base.** <REPO>. The exact configs used for each run are shipped under `configs/`.

394 6.1 DATASETS AND MODELS

396 We evaluated 3 multimodal datasets crossed with 3 inference stacks, yielding 9 panels (Fig. 3).

397 **Datasets.** (Details in Appendix D.1)

- 399 • **COCO Captions (val2017):** large image–text
 400 captioning split; where \mathcal{K} = set of all reference
 401 captions + near-duplicate variants after
 402 tokenization / lower-casing.
- 403 • **VQAv2:** balanced visual question answering,
 404 short free-form answers grounded in images;
 405 where \mathcal{K} = normalized unique answers
 406 (lower-case, stripped punctuation) from
 407 training split.
- 408 • **AudioCaps:** audio–text captioning from
 409 YouTube clips, non-visual acoustic events;
 410 where \mathcal{K} = references captions, with same
 411 normalization as COCO, plus optional
 412 synonyms via a lexical resource.

413 **Sources.** Pulled from HuggingFace Hub (private tokens); HF_HOME and HF_TOKEN are set at run-
 414 time.

415 **Models (inference stacks).**

- 416 • CLIP+Whisper+T5: vision embeddings
 417 (CLIP) + audio embeddings (Whisper) + text
 418 LM (T5) for scoring/logits.
- 419 • BLIP+CLIP+Whisper: BLIP captioner for
 420 image semantics (paired with CLIP features)
 421 + Whisper for audio; *vision-dependent*, so the
 422 AudioCaps cross is blank by design.
- 423 • SigLIP+Whisper+T5: SigLIP vision
 424 encoder + Whisper + T5; same interface as the
 425 first stack.

426 **Note.** In the audio–text setting, panels that
 427 require a vision captioner are intentionally
 428 omitted (see caption of Fig. 3).

429 **Algorithm 1: KL-SMOOTHED MULTIMODAL HALLUCINATION (per prompt p)**

430 **Input:** $\mathcal{K}; \mu; K_h; \varepsilon, \rho$; blocks $\{\mathcal{I}^{(*)}, E^{(*)}, \omega_*, \eta_*\}; \mathcal{T}_t; \tau; \{\Phi_M, \Psi_M\}_{M \in \mathcal{M}}$;
 431 $\{A_M\}_M, \{R_{MM'}\}_{M \neq M'}$

432 **Output:** $d_{\text{sem}}^{(\varepsilon, h)}(x | p)$; $w_{\mathcal{T}_t}(e)$; $\mathcal{L}_{\mathcal{T}_t}^{\text{multi}}$; $K_{\mathcal{T}_t}$; $\mathcal{E}_{\text{hall}}^{\text{multi}}(x, p)$ and CF-bounds

433 1 Form $\tilde{f}_{p, \varepsilon} = (1 - \varepsilon)f_p + \varepsilon\rho$ and $\tilde{f}_{p, \varepsilon}^{\mathcal{K}}$; compute $d_{\text{sem}}^{(\varepsilon, h)}(x | p)$ by Eq. (6), (Thm. 1);

434 2 Compute $r_M(x, p)$; store $\{A_M, B_{MM'}\}$ for energy in Eq. (10). (Thm. 2);

435 3 Set $\Delta_a = d_{\text{sem}}^{(\varepsilon, h)}(x_a | p)$ and $w_{\mathcal{T}_t}(e)$ by Eq. (26); build $\mathcal{L}_{\mathcal{T}_t}^{(*)}$ via Eq. (24) and assemble $\mathcal{L}_{\mathcal{T}_t}^{\text{multi}}$
 436 via Eq. (25);

437 4 Compute $K_{\mathcal{T}_t}$ and set graph features $\Upsilon(v)$ so that $\langle \Upsilon(v), \Upsilon(v) \rangle_{\mathcal{H}} = K_{\mathcal{T}_t}(v, v)$ (Eq. (14));

438 5 Form $c_{x, \mathcal{K}}(t)$ by Eq. (66) and apply bounds in Eq. (17);

439 6 Evaluate $\mathcal{E}(x, p)$ via Eq. (10); set $\mathcal{E}_{\text{hall}}^{\text{multi}}$ by Eq. (11); report CF bounds in Eq. (19) plus
 440 KV/Good–Turing calibration via Eq. (20);

441 7 **return** $d_{\text{sem}}^{(\varepsilon, h)}$, $w_{\mathcal{T}_t}(e)$, $\mathcal{L}_{\mathcal{T}_t}^{\text{multi}}$, $K_{\mathcal{T}_t}$, $\mathcal{E}_{\text{hall}}^{\text{multi}}$ (with bounds)

Figure 3: **CF-bounded hallucination energy surfaces (9 panels).** Each 3D surface shows $\mathcal{E}_{\text{hall}}^{\text{multi}}$ over temperature \mathcal{T}_t (X) and smoothing mass ε (Y), clamped between two panel-specific parallel planes marking the CF lower (strictly > 0) and upper bounds (Z). Other hyperparameters (τ, h) are aggregated by median, consistent across panels. *Note:* the **AudioCaps-BLIP+CLIP+Whisper** panel may appear blank if the BLIP vision backbone is intentionally omitted for the audio–text setup; this is expected and documented in our pipeline.

Algorithm	COCO AUROC / AUPRC	VQAv2 AUROC / AUPRC	AudioCaps AUROC / AUPRC	Avg. AUROC / AUPRC
Entropy	0.81 / 0.79	0.78 / 0.75	0.74 / 0.70	0.78 / 0.75
MaxProb	0.82 / 0.81	0.80 / 0.77	0.76 / 0.72	0.79 / 0.77
Margin	0.83 / 0.82	0.81 / 0.78	0.77 / 0.74	0.80 / 0.78
$d_{\text{sem}}^{(\varepsilon, h)}$ (ours)	0.86 / 0.84	0.84 / 0.81	0.80 / 0.77	0.83 / 0.81

Model	COCO median (lo / hi)	VQAv2 median (lo / hi)	AudioCaps median (lo / hi)	Avg. median	Throughput↑ ex/s	Asymp.
CLIP+Whisper+T5	2.11 (0.42 / 3.05)	2.23 (0.50 / 3.28)	2.35 (0.55 / 3.50)	2.23	420	$O(E + N \log k + md)$
BLIP+CLIP+Whisper	1.98 (0.40 / 2.90)	2.05 (0.48 / 2.96)	—	2.02	360	$O(E + N \log k + md)$
SigLIP+Whisper+T5	1.92 (0.38 / 2.85)	1.99 (0.45 / 2.90)	2.08 (0.50 / 3.05)	2.00	400	$O(E + N \log k + md)$

Table 1: (a) **Detection (AUROC/AUPRC)** and (b) **Energy diagnostics with runtime.** **Bold =** column-best; in (b), lower median energy is better and throughput (ex/s) higher is better. **AudioCaps-BLIP+CLIP+Whisper** is intentionally blank (vision captioner omitted), matching Fig. 3.

486 6.2 METRICS AND EVALUATION
487

488 We report AUROC/AUPRC for hallucination detection using $d_{\text{sem}}^{(\varepsilon, h)}$ against entropy, max-
489 probability, and margin baselines, and summarize CF-bounded energy surfaces (lower is better) with
490 temperature/ ε trends matching theory. These three baselines are the default, architecture-agnostic
491 confidence surrogates used in the literature and operate on exactly the same $\mathcal{K}(p)$ -posterior as our
492 method, so they provide a strong and fair set of competitors under identical information. Details
493 about the baselines and all remaining protocol & design, and compute details are in Appendix D.

494 7 CONCLUSION AND FUTURE WORK
495

496 We proposed a reference-free, KL-smoothed information gap with hypergraph-spectral control: the
497 score is 0 on \mathcal{K} and strictly > 0 off \mathcal{K} , admits the CF bounds, and integrates Good-Turing/KV
498 calibration. Compact Colab runs (COCO/VQAv2/AudioCaps \times CLIP/BLIP/SigLIP stacks) show
499 consistent gains over entropy/margin and interpretable temperature/ τ decay. A joint tuning of
500 $(\varepsilon, h, T_t, \tau)$ with uncertainty or extending the framework to complex multi-step reasoning and
501 stronger LLM-based multimodal settings can be the next direction along with integrating $\mathbb{h}(x, p)$
502 as an auxiliary reward or re-ranking signal within RLHF. Details can be found in Appendix A.20.

503 REFERENCES
504

505 Nachman Aronszajn. Theory of reproducing kernels. *Transactions of the American Mathematical
506 Society*, 68(3):337–404, 1950. doi: 10.2307/1990404.

507 T. Bai, Y. Zhang, X. Lin, Q. Sun, and C. Wu. Multimodal hallucinations: A survey of causes,
508 metrics, and mitigation. Technical report, arXiv, 2024. arXiv:2404.18930.

509 Robert G. Bartle. *The Elements of Integration and Lebesgue Measure*. Wiley-Interscience, corrected
510 reprint of the 1st ed. (1966) edition, 1995. Introduction emphasizing Lebesgue measure on \mathbb{R}^n
511 with clarity and examples.

512 Jakub Binkowski, Denis Janiak, Albert Sawczyn, Bogdan Gabrys, and Tomasz Kajdanowicz. Spec-
513 tral characterization of hallucination in large language models. *arXiv preprint arXiv:2502.17598*,
514 2025a.

515 Jakub Binkowski, Denis Janiak, Albert Sawczyn, Bogdan Gabrys, and Tomasz Kajdanowicz. Hal-
516 lucination detection in LLMs using spectral features of attention maps, 2025b. URL <https://arxiv.org/abs/2502.17598>.

517 Sébastien Bubeck, Varsha Chandrasekaran, Ran Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
518 Percy Lee, Yu Li, Scott Lundberg, Harsha Nori, et al. Sparks of artificial general intelligence:
519 Early experiments with gpt-4. Technical report, arXiv, 2023. arXiv preprint arXiv:2303.12712.

520 Fan R. K. Chung. *Spectral Graph Theory*, volume 92 of *CBMS Regional Conference Series in
521 Mathematics*. American Mathematical Society, Providence, RI, 1997. ISBN 978-0-8218-0315-8.
522 doi: 10.1090/cbms/092.

523 R. R. Coifman and S. Lafon. Diffusion maps. *Applied and Computational Harmonic Analysis*, 2006.

524 Joseph Diestel and Jr. John J. Uhl. *Vector Measures*, volume 15 of *Mathematical Surveys and
525 Monographs*. American Mathematical Society, 1977.

526 Peng Ding, X. Hu, H. Li, X. Chen, and H. Ji. Hallu-pi: Benchmarking hallucinations under perturbed
527 inputs for large language models. In *ICLR*, 2024.

528 Tao Feng, Yihang Sun, and Jiaxuan You. Grapheval: A lightweight graph-based LLM framework for
529 idea evaluation. *arXiv preprint arXiv:2503.12600*, 2025.

530 Assaf Gerner, Netta Madvil, Nadav Barak, Alex Zaikman, Jonatan Liberman, Liron Hamra, Rotem
531 Brazilay, Shay Tsadok, Yaron Friedman, Neal Harow, Noam Bressler, Shir Chorov, and Philip
532 Tannor. Orion grounded in context: Retrieval-based method for hallucination detection. *arXiv
533 preprint arXiv:2504.15771*, 2025. doi: 10.48550/arXiv.2504.15771. URL <https://arxiv.org/abs/2504.15771>.

540 J. Han, J. Kossen, M. Razzak, L. Schut, S. Malik, and Y. Gal. Semantic entropy probes: Robust
 541 and cheap hallucination detection in large language models. In *ICML Workshop on Foundation
 542 Models in the Wild*, 2024.

543

544 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
 545 *NeurIPS Deep Learning Workshop*, 2015.

546

547 Roger A. Horn and Charles R. Johnson. *Matrix Analysis*. Cambridge University Press, Cambridge,
 548 2 edition, 2013. ISBN 978-0-521-54823-6.

549

550 Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, An-
 551 drea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. *ACM
 552 Computing Surveys*, 55(12):1–38, 2023. doi: 10.1145/3571730.

553

554 C. Jiang, B. Qi, X. Hong, D. Fu, Y. Cheng, F. Meng, M. Yu, B. Zhou, and J. Zhou. On large language
 555 models’ hallucination with regard to known facts. In *NAACL*, 2024.

556

557 Adam Tauman Kalai and Santosh S. Vempala. Calibrated language models must hallucinate. In
 558 *Proceedings of the 56th Annual ACM Symposium on Theory of Computing (STOC)*, pp. 160–171,
 559 2024. doi: 10.1145/3618260.3649777.

560

561 Adam Tauman Kalai, Ofir Nachum, Santosh S. Vempala, and Edwin Zhang. Why language models
 562 hallucinate. *arXiv preprint arXiv:2509.04664*, 2025. doi: 10.48550/arXiv.2509.04664. URL
 563 <https://arxiv.org/abs/2509.04664>.

564

565 Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
 566 tokenizer and detokenizer for neural text processing. *arXiv:1808.06226*, 2018. URL <https://arxiv.org/abs/1808.06226>.

567

568 Eric Le Merrer and Gilles Trédan. Llms hallucinate graphs too: A structural perspective. *arXiv
 569 preprint arXiv:2409.00159*, 2024.

570

571 Seongmin Lee, Hsiang Hsu, and Chun-Fu Chen. Llm hallucination reasoning with zero-shot knowl-
 572 edge test. *arXiv preprint arXiv:2411.09689*, 2024.

573

574 Jiaan Li et al. Halueval: A large-scale hallucination evaluation benchmark for llms. In *EMNLP*,
 575 2023. URL <https://aclanthology.org/2023.emnlp-main.397/>.

576

577 Potsawee Manakul, Adian Liusie, and Mark J. F. Gales. Selfcheckgpt: Zero-resource black-box
 578 hallucination detection for generative large language models. In *Proceedings of EMNLP*, 2023.

579

580 Justin Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factu-
 581 ality in abstractive summarization. In *Proceedings of the Annual Meeting of the Association for
 582 Computational Linguistics (ACL)*, pp. 1906–1919, 2020.

583

584 James Mercer. Functions of positive and negative type, and their connection with the theory of
 585 integral equations. *Philosophical Transactions of the Royal Society A*, 209:415–446, 1909.

586

587 Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
 588 In *NeurIPS*, 2002.

589

590 Chenxi Niu et al. Ragtruth: A hallucination corpus for developing more truthful systems. In *ACL*,
 591 2024. URL <https://aclanthology.org/2024.acl-long.585/>.

592

593 S. Park, X. Du, M.-H. Yeh, H. Wang, and S. Li. Steer llm latents for hallucination detection.
 594 Technical report, ICML Poster, 2025.

595

596 Alec Radford et al. Learning transferable visual models from natural language supervision.
 597 *arXiv:2103.00020*, 2021a. URL <https://arxiv.org/abs/2103.00020>.

598

599 Alec Radford et al. Learning transferable visual models from natural language supervision. In
 600 *Proceedings of the 38th International Conference on Machine Learning*, 2021b. URL <https://proceedings.mlr.press/v139/radford21a.html>.

594 Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In *Advances in*
 595 *Neural Information Processing Systems (NeurIPS)*, 2007.

596

597 Vipula Rawte, Swagata Chakraborty, Agnibh Pathak, Anubhav Sarkar, S. M. Towhidul Islam Ton-
 598 moy, Aman Chadha, Amit Sheth, and Amitava Das. The troubling emergence of hallucination in
 599 large language models: An extensive definition, quantification, and prescriptive remediations. In
 600 *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp.
 601 2541–2573, Singapore, 2023. Association for Computational Linguistics.

602

602 Anna Rohrbach et al. Object hallucination in image captioning. In *EMNLP*, 2018. URL <https://arxiv.org/abs/1809.02156>.

603

604

605 Albert Sawczyn, Jakub Binkowski, Denis Janiak, Bogdan Gabrys, and Tomasz Kajdanow-
 606 icz. Factselfcheck: Fact-level black-box hallucination detection for llms. *arXiv preprint*
 607 *arXiv:2503.17229*, 2025.

608

608 Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
 609 subword units. In *ACL*, 2016. URL <https://arxiv.org/abs/1508.07909>.

610

611 G. Sun, P. Manakul, A. Liusie, K. Pipatanakul, C. Zhang, P. Woodland, and M. Gales. Crosscheck-
 612 gpt: Universal hallucination ranking for multimodal foundation models. In *NeurIPS Workshop*
 613 *on Next Gen Multimodal Models*, 2024.

614

614 Terence Tao. *An Introduction to Measure Theory*, volume 126 of *Graduate Studies in Mathematics*.
 615 American Mathematical Society, 2011. Covers sigma-algebras, outer measures, completeness,
 616 and constructions of measure.

617

617 Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
 618 Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L.
 619 Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
 620 Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
 621 Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Transformer
 622 Circuits Thread, 2024. URL <https://transformer-circuits.pub/2024/scaling-monosemanticity/>. Anthropic Interpretability Team.

623

624 Ashish Vaswani et al. Attention is all you need. In *NeurIPS*, 2017. URL <https://arxiv.org/abs/1706.03762>.

625

626

627 X. Wang, Y. Yan, L. Huang, X. Zheng, and X. Huang. Hallucination detection for generative large
 628 language models by bayesian sequential estimation. In *EMNLP*, pp. 15361–15371, 2023.

629

629 Christopher K. I. Williams and Matthias Seeger. Using the nyström method to speed up kernel
 630 machines. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2001.

631

632 Lih Zelnik-Manor and Pietro Perona. Self-tuning spectral clustering. In *NeurIPS*, 2004.

633

633 Y. Zhang et al. Semantics at an angle: When cosine similarity works until it doesn't.
 634 *arXiv:2504.16318*, 2025. URL <https://arxiv.org/abs/2504.16318>.

635

636 Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs: Clustering,
 637 classification, and embedding. *Advances in Neural Information Processing Systems*, 19:1601–
 638 1608, 2006.

639

640

641

642

643

644

645

646

647