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ABSTRACT

Hallucinations in LLMs—especially in multimodal settings—undermine reliabil-
ity. We present a rigorous, information-geometric framework in diffusion dy-
namics that quantifies hallucination in MLLMs: model outputs are embedded
spectrally on multimodal graph Laplacians, and gaps to a truth manifold define a
semantic-distortion metric. We derive Courant—Fischer bounds on a temperature-
dependent hallucination energy and use RKHS eigenmodes to obtain modality-
aware, interpretable measures that track evolution over prompts and time. This
reframes hallucination as measurable and bounded, providing a principled basis
for evaluation and mitigation.

1 INTRODUCTION

Large language models (LLMs) and their multimodal variants (MLLMs) are powerful generators,
but reliability or truthfulness remains a core limitation. A central drawback is the hallucinated con-
tent that is ungrounded or inconsistent with inputs - which is unacceptable and signifactly risky
in medicine, law, and finance Ji et al. (2023); Maynez et al. (2020); Bubeck et al. (2023). Prior
work offers taxonomies, datasets, and benchmarks for analysis and evaluation Ji et al. (2023);
Maynez et al. (2020); Ding et al. (2024), and recent multimodal studies emphasize empirical de-
tection/mitigation Bai et al. (2024); however, most approaches rely on heuristics, proxy metrics, or
human annotation rather than principled quantification.

On the theory side, complementary work include token-level analysis of hallucinated predic-
tions Jiang et al. (2024), Bayesian sequential detection Wang et al. (2023), entropy-style uncertainty
probes Han et al. (2024), latent-space steering to separate truthful vs. hallucinated generations Park
et al. (2025), and reference-free ranking for multimodal hallucinations Sun et al. (2024). Emerging
spectral/graph perspectives probe representations and attention, but are largely detection-oriented
and unimodal Xie et al. (2025).

Gap. The field currently lacks a quantitative, theory-backed, modality-aware framework that treats
hallucination as a measurable quantity (with temporal dynamics and guarantees), rather than only a
classification/detection outcome.

Our contribution. We introduce a spectral-graph framework that makes hallucination in MLLMs
measurable and bounded in the context of time-indexed temperature profiles:

(a) We model the grounding across modalities via optimal-transport paths in diffusion dynamics
and embed them in RKHS, yielding a structural view of semantic consistency.

(b) We represent outputs on multimodal graph Laplacians and derive tight Courant-Fischer (CF)
bounds on hallucination heatmap as a function of time-indexed temperature.

(¢c) Empirical validation: Across nine 3D panels (COCO/VQAv2/AudioCaps X
CLIP+Whisper+T5, BLIP+CLIP+Whisper, SigLIP+Whisper+T5), 8}?;1111“ lies
between panel-specific CF planes with a strictly positive lower envelope that tightens at lower
temperature (and higher diffusion); full /7 /h/p ablations and runtimes in the supplement.

This shifts hallucination study from qualitative detection to quantitative, modality-aware, and inter-
pretable analysis. To our knowledge, it is the first attempt to provide spectral bounds on hallucina-
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tion for MLLMs followed by a time-indexed temperature annealing, offering a principled basis for
evaluation and potential mitigation.

2 RELATED WORK

Kalai & Vempala show that, for calibrated LMs, the hallucination rate is lower-bounded by a
Good-Turing-style “monofact” mass - establishing an inherent trade-off between calibration and
truthfulness Kalai & Vempala (2024); while their recent work generalizes this via an ITV reduction
that ties generative errors to binary-classification - advocating IDK-tolerant evaluation Kalai et al.
(2025). Empirical study of LM hallucinations spans mechanistic probes that surface interpretable
features for diagnosis Templeton et al. (2024), retrieval-grounded detection and evaluation Gerner
et al. (2025); Niu et al. (2024), broad benchmark suites like HaluEval Li et al. (2023), Hallu-PI Ding
et al. (2024), GraphEval Feng et al. (2025), and early vision—language analyses of object halluci-
nation Rohrbach et al. (2018). Comprehensive surveys catalog causes, detection, and mitigation
strategies Ji et al. (2023); Rawte et al. (2023).

Recent work exploits uncertainty and structural signals: semantic-entropy probes Han et al. (2024),
Bayesian sequential estimation Wang et al. (2023), token-level dynamics of hallucinated predic-
tions Jiang et al. (2024), zero-shot reasoning signals Lee et al. (2024), and sampling-based self-
consistency checks (SelfCheckGPT) Manakul et al. (2023). Graph/spectral methods flag hallucina-
tions via KG self-checks (FactSelfCheck) Sawczyn et al. (2025), attention Laplacian eigen-spectra
(LapEigvals) Binkowski et al. (2025), and topological cues on hallucination graphs Le Merrer &
Trédan (2024).

3 PRELIMINARIES

We begin by establishing the mathematical foundations of our framework. MLLM outputs are em-
bedded as nodes on a knowledge graph Laplacian, and grounding gaps along this graph collectively
define a quantifiable hallucination metric. Figure 1 sketches our approach.

3.1 MATHEMATICAL FOUNDATIONS

Let X denote the measurable®! ! set of all possible model outputs of a multimodal LLM, with Fx

being the o-algebra over X’ and p being the base measure Tao (2011); e.g., the count measure for
discrete outputs like token sequence or the Lebesgue measure for continuous outputs like embed-
dings Bartle (1995). We assume X is continuously embedded in a separable Reproducing Kernel
Hilbert space (RKHS) denoted by (H, (-, -),,) which is associated with a positive-definite kernel,

K:XxX—R". (D)

The kernel K (x1,x2) encodes the semantic relationships between two distinct points or outputs
z1 and x2 ¥(x1 # x2) € X; for example, through embedding-based or ontology-aware distance
measures, or co-reference resolution. For a product kernel in an MLLM, refer to Eq. (7) later.

Within this (X, Fx, ) space, there exist two kinds of “truth” (the idea imported from Kalai &
Vempala (2024)):

(i) The semantic factoid space K which encompasses all semantically valid and coherent outputs
that include empirically plausible facts, contextually appropriate completions, and domain-
consistent inferences aligned with the prompt and background knowledge - importantly, el-
ements of C need not be verifiable, but they remain semantically valid within the modeled
domain.

(ii) The semantic ground-truth manifold X, as a stricter subregion of K, which consists of outputs
only verifiably correct or true facts that include factual assertions supported by empirical
evidence or directly observed information — elements of Ky can be properly referred to as
grounded in reality.

"Footnotes are added in chronological order and collected in Appendix A.
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Thus the semantic plausibility/ground-truth
nesting and, for a given prompt p € P, the hal-
lucination criterion for each output denoted by
r € X are:

K.CKcCcx, zeX\K. 2)
Note: « € K\ K, is a non-grounded output,

but still semantically plausible and strictly not
hallucination.

Tall)
3.2 MODELING THE LLM OUTPUTS Figure 1: Multimodal nested-manifold view of

hallucinations. Hollow ellipses denote X', KC, K.
We begin with the baseline assumptions:

Assumption 1 (General output distribution).
The LLM outputs can be characterized by a conditional probability distribution f,(x) that denotes
the likelihood of generating output x given a prompt p:

fo: X =[0,00), fp,€LMX, Fx,p)NH, x> fp(z), (3)
which ensure [, fy(z)dp(z) = 1.

Let fz',C denote the restricted distribution on the semantic plausibility space K:

k() e Mzed @) Laey /(@) 1 ifzek,
g f,cfp(x’)du(x’) Py (K) 0 otherwise.

Here, [, fp(z")du(z") = Py, (K) is a normalization constant in the restricted distribution.

,  where, lizexy = { 4)

Assumption 2 (Ground-truth generative distribution). In line with Assumption 1, g denotes the
reference distribution on the ground-truth manifold KC,. Unlike f, or ff, g is the gold reference
which is not model-induced and hence, may not share support with f, except inside IC, and it is truly
independent of prompts in the generative sense (but conditioned on the same prompt contextually).

Thus, we do not assume any parametric form for the ground-truth distribution g and rather treat it as
an abstract measure over Kg:

supp(g) € Ky, g Kg = [0,00), g € LN (K, Fixlc, 1'). (5)
Eq. (5) ensures | K, g(x)dp' (x) = 1 with notations used in consistency with Eq. (3) and p’ playing
the same role of 1, but not necessarily equal to ;.. See comments”? in Appendix A.

4 THEORETICAL ANALYSIS

In this section, we present a theoretical framework that couples a smoothed information-geometric
score derived from the Kullback-Leibler (KL) paradigm® with a multimodal energy formulation
to quantify and track hallucinations in MLLMs.

4.1 SEMANTIC DISTORTION

We establish the following theorem followed by stating a remark to set the stepping stone.

Theorem 1 (KL-calibrated smoothed score for hallucination). Let a smoothing mass ¢ € (0,1)
and a baseline density be fixed, with finite p(x) > 0 p-a.e. and [, p(x)dp(z) = 1; let
Ku(-,-) € (0,00) be a u-Markov kernel (bandwidth h > 0) and Ty, : L*(u) — L'(u) be
a linear smoother defined for q : X — R by (Thq)(x1) = [y Kn(x1,22) q(@2) dp(xs); let

the e-smoothed model be f,.(x) = (1 — &) f,(x) + ep(x) with its K-restricted renormalization

;’,C,E (x2) :== 1{m2€,<}fp75(x2)/ Jx foe(x) du(x); and let a measurable selector Tl = X — K sat-
isfy I (x) = « (Vz € K) or nearest point with convexity in K (otherwise). Then the semantic

distortion
A (K, ) = [og (T ) (M (@) — log((Th ) (@))] (©)

serves as a KL-calibrated smoothed pointwise information gap for tracking hallucinations across
prompts and remains as a reference-free (independent-of-g) statistic in language models.
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Proof sketch: Strict positivity from f, . = (1 — ¢) f, + €p and Markov K}, makes both smoothed
terms > 0, so Eq. (6) is finite. If x € K, Ix(x) = x and the K-restricted smoother > the
unconditional smoother at x; if = ¢ K, smoothing at ITx(z) € K dominates the mixed mass at x.
Detailed proof is found in Appendix B.1. (]

Remark 1. The score in Eq. (6) is g-agnostic and thus usable when g is unobservable®* or
partially verified in various real-world scenarios. In practice, we set a small smoothing mass
e € [1075,1072), choose h by validation, take K}, as a positive row-normalized kernel over em-
beddings/tokens, and we implement 1l as a measurable nearest—neighbour selector on a finite
reference set from K.

4.2 EXTENSION TO MULTI-MODAL GROUNDING

The intuition behind this setting of multimodality is: in image-grounded or dialogue models, seman-
tic grounding depends on multiple modalities — e.g., text, image or video, dialog or audio-history
etc. and the RKHS is then extended to a multi-modal product kernel space. In multi-modal settings,
where the LLM outputs involve textual (T"), visual (V'), audio (A) modalities, we define a joint out-
put space (') embedded into a composite RKHS () equipped with a product kernel (K') between
two distinct points (i.e., outputs) V(x1 # z3) € X as

A X, = @) ponexy, M =QHy, K(w,12) = [T &™), 28), @)
M

pertaining to each modality VM € M := {T,V, A}, where the prompts can also be categorized into
a composite prompt space P : X Py, with each prompt p = (p(M))p(mepM in a modality-aware
M

prescription to accommodate three different kinds of probable inputs (i.e., T, V & A) for the sake of
completeness. However, in the following calculation in this paper, we restrict ourselves only to the
notion of p without any loss of generality. Expanded form*- of Eq. (7) is found in Appendix A.

4.3 FORMULATIONS TO HALLUCINATION ENERGY

To begin with, we are after a fruitful formulation of f,,(«) that connects the model output distribution
to an underlying energy landscape to enable modal interpretability, temperature-driven exploration,
and spectral graph analysis. The total energy functional £(z,p, ) : X x P — R associated with
the model input-output plus suppressed parameters can be decomposed into intra-modal, pairwise
cross-modal, and joint multimodal interactions. This decomposition allows us to localize the sources
of hallucination within and across modalities.

Assumption 3 (Hallucination energy functional in MLLMSs). The modality-aware decomposition
reads as:

5(33,]7,-) = Z En (m(M)apa ) + Z EMM' (‘r(M)’m(M/)7p7 ) + 5/\/1('1:’])7')' ®)
MeM IVI,M'EM
M#M

Refer to Section 5.1 for the similar construction in terms of multimodal Laplacians. See term-wise
explanations®® in Appendix A.

Assumption 4 (Feature maps for boundedness). Using the results of Moore—Aronszajn theo-
rem Aronszajn (1950), for a positive definite kernel K r in a measurable output space (X, Fx, )
aligned with Section 3.1, let ®p : Xy — Hpr be its feature map treated as infinite-
dimensional linear operator for each modality M € M under the constraint of boundedness:
SUPL (v e xy, || @ ar (@ M))]|30,, < 0. (See explicit justification™” in Appendix A.)

For each modality M, the (fixed) embedding pipeline with an implicit kernel®® in a higher-
dimensional RKHS induces ® s : Xpy — H s such that (P (1), Par(22))3e,, = K1, 22).

Assumption 5 (Prompt embeddings). Let (P, Fp,v) be a measurable space on prompts with v be-
ing finite. For each modality M € M, the prompt embedding V s : P — H s satisfies boundedness:
sup,ep [War(p)llae,, < oo and stability: Uy is continuous (equivalently, Lipschitz with finite con-

stant Lip(V 5) ) in the chosen topology/ metric on P. (See explicit justification™ in Appendix A.)
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Assumption 6 (Output distribution in Boltzman form). We view f,(x) as a normalized surrogate
over candidate outputs or latent representations with respect to a finite (or bounded) base measure
. Under bounded embeddings and compact support (or bounded energy), the partition function
Z(p, T;) is finite, making Eq. (9) well-defined. (See explicit justification®® in Appendix A.)

Lemma 1 (Joint measurability of cross inner products). If ®ar : (Xar, Fay,) — (Har, B(Hr))
and Uyr : (P,Fp) — (Hm,B(Har)) are Bochner measurable into a separable Hilbert space
H s where B(H ar) denotes the Borel o—algebra generated by the open sets of Hy under its norm
topology, then (z,p) — (Ppr(x), Uar(p))n,, is measurable on Fx,, ® Fp.

Proof sketch: Bochner measurability of ®,; and ¥, implies strong measurability into B(H s );
hence (z,p) — (Ppr(z), ¥as(p)) is measurable on the product o—algebra. Detailed proof is found

in Appendix B.2. ]
Theorem 2 (Multimodal energy-based hallucination formalism). Between the output and prompt
spaces, let the residuals ryr(z,p) = ®n(xM)) — Up(p) € Has be defined for at least

two modalities |M| > 2. For each M, let there be a bounded, self-adjoint, positive semi-
definite (PSD) linear operator Apr on Hyy and for M # M', some By @ Hyr — Hu
which is a bounded linear symmetric cross-operator and a controlled factorization Byrpyy =
A}f Ry A}V/I,z, subjectto ||Rya|| < 1, being a symmetric contraction (e.g., Hilbert-
Schmidt). Given this, if the output distribution f,(x) assumes the Boltzmann form for any tem-
perature Ty € R>q dependent on time t € RT*:

fol@) = (Z(p, T0)) " exp( — E(z,p)/T;), where, Z(p, Ty) = / exp( — E(x,p)/Ts) du(z) ©)

X
is the normalizing partition function, then the total energy noted in Eq. (8), for (z,p) € X x P,
takes the form that is measurable, non-negative and satisfies canonical instances; given by:

2 1/2 1/2
5(x,p): Z <rM7A]VIrM>HM + W Z <AM rar, RMM’A]\,{/ ’I“M/> + Em s
MeM M,M'eM
M#M'
(10)
where the first and second terms on r.h.s are Eyp and Epypyr respectively, while the last term being

2
Emlz,p) = H R rrer @ () — ®M€M\IJM(p)H as a squared distance in composite
QHm

RKHS, so it’s measurable and nonnegative.

Proof sketch. We stack r = (rps)y and define the block operator A with diagonals A, and

off-diagonals AMQRMM/A}V/I,Q. Since Apr = 0, Ryrr = Ry and ||Rasarr]] < 1, standard
Cauchy—Schwarz/Schur arguments give .4 > 0; hence (r, Ar) > 0 equals the first two terms of
Eq. (10). The joint term is a single scalar for 3 modalities, but a tensor for > 3 modalities, thus > 0.
Measurability follows from Bochner measurability and continuity of bounded linear maps/inner
products (refer to Lemma 1). Under the stated integrability/finite—measure conditions, the partition
function in Eq. (9) is finite, so f, is well-defined. Detailed proof is found in Appendix B.3. (|

Corollary 1 (Excess-energy hallucination functional). In line with Theorems 1 & 2, we leverage
Eq. (10) to identify the hallucination energy in an MLLM:

& ep) = (E@.p) — Ex(@.p)) Lpapr). an

where E(x,p, ) is the total energy term at X and Ex:(x, p, -) is the same restricted at K.

Proof. This particular Corollary does not require any explicit proof as this is merely an identification
done by the authors in line with the results obtained in Theorem 1. O

5 MAIN RESULTS: PROPOSED FRAMEWORK

In this section we develop the spectral representation that underpins our main results (Figure 2). We
reformulate the multimodal hallucination energy £l (refer to Eq. (11)) within standard spectral
graph theory Chung (1997). This lets us relate the Boltzmann normalization of model outputs to
eigenmodes of a multimodal semantic graph Laplacian, which in turn yields principled mode-wise

bounds on hallucination energy.
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Figure 2: Pipeline for hallucination quantification in MLLMs. For an intuition-building case-study
of an image—caption example for an MLLM, see comments™'? in Appendix A.

5.1 SEMANTIC GRAPH AND MULTIMODAL LAPLACIAN

Let a time-indexed, temperature-modulated multimodal semantic knowledge graph at an instant ¢
be:

Gr,=(V,E,2Wr), VCN, ECVxV, WrecRVXV viecRrt (12)

with finite set of nodes V (semantic units), pairwise edges £ C V x V (similarity relations), and
symmetric non-negative adjacency weights Wy, built from fixed embeddings, where temperature
T € R controls the affinity bandwidths. Here, we adopt a single integrated multimodal graph
G'7, with modality encoded by the node-partitioning V = #,, Vas and a symmetric PSD W,
structured on its elements w7, noted in Eq. (16) as hyperedge weights. See justification®!! and
detailed construction of W, in Appendix A. In the current prescription of 7;-modulated graph, the
RKHS # is associated with a positive-definite multimodal diffusion kernel K7, that induces graph
feature map Y : V — H satisfying (application of Assumption 4 in knowledge-graphs)

Ky, = exp(—T E%“lti) , <T(v)7 T(n)>H = K7, (v,0), Vv,0e, (13)
where 7 € RT is a diffusion time-scale and Lﬁ?‘““ is a multimodal graph Laplac1an defined
on the finite node set V. As an extension from Eq. (7), the above equation is an application
of Mercer’s theorem Mercer (1909), see details®!? in Appendix A. How this construction of
graph feature maps YT defined on nodes v, v has an interconnection to the output feature maps
® (M) and prompt embeddings Wy, (p), see justification®!® in Appendix A. We design the
multimodal Laplacian as a non-negative combination of intra—, cross—, and joint-modal compo-
nents: Lm“m = >, coeff, L',(t), where * € {intraps, crosspsas, joint .} and the interaction
coefﬁments coeffintray, = anr (VM € M), coeffeross,,,,, = Bumr (YM,M' € M), and

coeffjoint m = YMm are all R>g. Each E(T) is a symmetric PSD Laplacian-block built on the same
node set V; full expressions can be found in Eq. (24) in Appendix A.11.

5.2 SPECTRAL DECOMPOSITION AND ENERGY FUNCTIONAL

To dis-entangle modality—specific, cross—modal, and joint—-modal interactions and to study how hal-
lucination energy propagates across the graph, we diagonalize the normalized multimodal Laplacian.

Let {(A(1), ul(t))}lzll be the eigenpairs of L1 with 0 = Ay () < Ao(t) < --- and orthonormal
eigenvectors (u;(t), u;j(t)) = 6;;. See comments™'* in Appendix A. Then for all nodes v € V:

V| V|
LE =UMAOU® T => M@ wi(u®)T, Y Te) =D e 280 (ui(t), 6,) ui(t),

i=1

(14)

where U (t) = [u1(t) - - - upy(t)], A(t) = diag(Ai(f),..., Ay (t)) and 6, € R!VI is the Kronecker

delta at v. (We reserve v, v, .. for graph nodes and ¢, j, .. for Laplacian modes; both index sets have

size |V|.) For output & prompt nodes (v, v,) € V and, more generally, any graph signal s € RV,
V] V|

||T(vx;7?)—T(np;7§)Hj_[ => e [(wi(t), 8y, =0 )[°, (s, L1 ) = > i) [(us(t), 5)|*.
i=1 i=1
(15)
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A quick algebraic manipulation with Egs. (15) plugged back into (10) gives the spectral form of

total energy: &(z,p;T¢) = Z ZMI coeff, E( (z,p,t), where each Eg*) depends explicitly on
Ai(t) and u;(t). See Eq. (57) in Appendix C.1 for details.

5.3 SPECTRAL BOUNDS ON HALLUCINATION, AND TIME-TECAY

Here, we obtain: (i) quantitative bounds that control the scope of hallucination in an MLLM,; (ii) an
evolution of hallucinations in diffusion time with tunable temperature. The extended derivations of
each expression below can be found in Appendix C.2.

Node-level score and pairwise dissimilarity. For each node v € V carrying (z,p) € X x P,

the scalar score d'e’ (x| p) := d{&i (23 K, X) is computed using f, . from Eq. (6). A symmetric,
nonnegative prompt-aware dissimilarity between v, ~ (x4, p,) and v, ~ (xp, pp) is then defined by

(iscm(va, Vp) = | dgixﬁ)(xa | pa) — dgi,ﬁ) (zp | po) | and combining it with Eq. (26) yields
r(e)
wr(e) = epopesp( = (30 [Bentealpe) = Benlwn[p0)])/ 3 Titw)).
1<a,b<r(e)

(16)
Here r(e) := |e] is the hyperedge cardinality (Eq. (24)), and 7, > 0 is the modality—aware permu-
tation factor (Eq. (26)). The derivation of A, j,(z | p) is found via Eq. (27) in Appendix A.11.

Courant-Fischer bounds for hallucination. Let ¢, xc(t) be the degree—matched, null-
mode—projected contrast (so ¢z xc(t) L wui(t), see Eq. (58)) and given the diffusion operator
exp( — 27 L), we get the semantic diffusion through spectral expansion (cq,xc(t), exp( —
27 L) ¢y k(1)) = Zlv‘ —2mxi(?) (i (t), ca ;C(t)>|2. By Courant-Fischer principle Horn
& Johnson (2013), we get a pure spectral sandwich:

2 Mm@ ey ()2 < (cauc(t), exp( - 2r LBM) o (D)) < e 2O e ()2 A7)
By Eq. (57), the full energy is a nonnegative linear combination of blockwise spectral terms, there-
fore the energy difference admits the eigen-expansion while its spectral weights lie in a bound:

VI
E(x,pyTe) — Ecla,p; Te ZQ (t,7) [ (t), copc)|*s m(t)e2TNO < ¢(t,7) < M),

(18)
where (;(t,7) > 0and (m(t), M(¢)) € (0,0); see Eq.(63) for details. By Egs. (11), (17) and (18),

m(t) e T ey o (8)|* Lagry < EmiT(@,p,) < M(t)e*T 0 ||Cz,1<(t)||21{m¢zc(}l-9

)

Calibration-compatible lower envelope for hallucination time-scale. Let mgT(¢) denote the
Good-Turing “missing-mass” estimate for the model f, over X'\ K at time ¢ (computed on the cur-
rent prompt-conditioned sample window), and we set the calibrated lower-bound aligned with Kalai
& Vempala (2024) as kv (t) = £ mgr(t) for some fixed £ € (0,1]. A time-indexed diffu-
sion/temperature profile 7 = 7(¢) is chosen to embed that envelope by identifying

m(t) ||Cm,lc(t)||2>
Yrv (1) '

m(t) e RO leg e (OIP = Dxv(t) = T() < o ! ()10g<

(20)
Eq. (20) operationalizes Kalai—Vempala’s calibrated lower bound within our spectral framework,
guaranteeing the bound is met (and dominated tunably) by the diffusion—Laplacian control.

Time-decay of hallucination energy. From Eq. (19), &24/% is nonincreasing in 7 and decays to

0 as 7 — oo at a rate sandwiched between e~27*max and e~27*2. When the block responses are
diffusion—monotone (standard for normalized kernels), the pointwise derivative exists (for x ¢ K)

d .
e @) = —23 MO G .o N0, e

which is compatible with Eq. (18) that makes it implementation-ready.
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6 EXPERIMENTS

Code base. <REPO>. The exact configs used for each run are shipped under configs/.

6.1 DATASETS AND MODELS

We evaluate 3 multimodal datasets crossed with 3 inference stacks, yielding 9 panels (Fig. 3).

Datasets. Models (inference stacks).
* COCO Captions (val2017): large image—text * CLIP+Whisper+T5: vision embeddings
captioning split; diverse everyday scenes. (CLIP) + audio embeddings (Whisper) + text

* VQAV2: balanced visual question answering; LM (T5) for scoring/logits.
short free-form answers grounded in images. * BLIP+CLIP+Whisper: BLIP captioner for

« AudioCaps: audio—text captioning from imagg semantics (pairgd .With CLIP features)
YouTube clips; non-visual acoustic events. + Whlsper for au(%lo; VIS lon-depgndent, so the
AudioCaps cross is blank by design.

* SigLIP+Whisper+T5: SigLIP vision
encoder + Whisper + T5; same interface as the
first stack.

Sources. Pulled from HuggingFace Hub (private tokens); HF _HOME and HF _TOKEN are set at run-
time.

Note. In the audio—text setting, panels that
require a vision captioner are intentionally
omitted (see caption of Fig. 3).

Algorithm 1: KL-SMOOTHED MULTIMODAL HALLUCINATION (per prompt p)

Input: [C; u; Kp; €, p; blocks {I(*), E® w,, N} Tes 73 AP, s barents
{Ane o AR Y are

Output: d{5;” (] p): wr, (e); LM Ko, s E84% (a, p) and CF-bounds

Form f,. = (1 —¢)f, +epand f<_; compute d'sl (2 | p) by Eq. (6). (Thm. 1);

Compute rps(x, p); store {Apr, Byrar + for energy in Eq. (10). (Thm. 2);

Set A, = dieit! (w4 | p) and wr; (e) by Eq. (26); build £ via Eq. (24) and assemble L2
via Eq. (25).;

Compute K7, and set graph features Y (v) so that (Y(v), T(v))y = K7, (v,0) (Eq. (14)).;

Form ¢, x(t) by Eq. (58) and apply bounds in Eq. (17).;

Evaluate £(x, p) via Eq. (10); set 5{:;‘1111“ by Eq. (11); report Courant—Fischer bounds in Eq. (19)
plus KV/Good-Turing calibration via Eq. (20)).;

return d5, wr, (e), LR Ko, Rl (with bounds)

Algorithm COCO VQAvV2 AudioCaps Avg.

& AUROC /AUPRC AUROC/AUPRC AUROC/AUPRC AUROC/AUPRC
Entropy 0.81/0.79 0.78/70.75 0.74/0.70 0.78/70.75
MaxProb 0.82/0.81 0.80/0.77 0.76/0.72 0.7970.77
Margin 0.83/0.82 0.81/0.78 0.77/0.74 0.80/0.78
dish (ours) 0.86/0.84 0.84/0.81 0.80/0.77 0.83/0.81

Model COCO VQAv2 AudioCaps Avg. Throughputt Asymp.

median (lo / hi) median (lo / hi) median (lo / hi) median ex/s
CLIP+Whisper+T5 2.11 (0.42/3.05) 2.23 (0.50/3.28) 2.35 (0.55/3.50) 2.23 420 O(|E| + Nlog k + md)
BLIP+CLIP+Whisper  1.98 (0.40/2.90) 2.05 (0.48/2.96) — 2.02 360 O(|E| + Nlogk + md)
SigLIP+Whisper+T5 ~ 1.92 (0.38/2.85) 1.99 (0.45/2.90) 2.08 (0.50/3.05) 2.00 400 O(|E| + Nlog k 4+ md)

Table 1: (a) Detection (AUROC/AUPRC) and (b) Energy diagnostics with runtime. Bold =
column-best; in (b), lower median energy is better and throughput (ex/s) higher is better. Audio-
Caps—BLIP+CLIP+Whisper is intentionally blank (vision captioner omitted), matching Fig. 3.


https://anonymous.4open.science/r/quantifying-hallucinations-F23E/
https://cocodataset.org/
https://visualqa.org/
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(d) VQAV2-CLIP+Whisper+TS  (e) VQAv2-BLIP+CLIP+Whisper

(g2) Audio- (h) Audio- (i) Audio-
Caps—CLIP+Whisper+T5 Caps-BLIP+CLIP+Whisper Caps—SigLIP+Whisper+T5

Figure 3: CF-bounded hallucination energy surfaces (9 panels). Each 3D surface shows
Eﬁ‘ﬁm over temperature 7; (X) and smoothing mass € (Y), clamped between two panel-specific
parallel planes marking the Courant—Fischer lower (strictly > 0) and upper bounds (Z). Other
hyperparameters (7, h) are aggregated by median, consistent across panels. Note: the Audio-
Caps-BLIP+CLIP+Whisper panel may appear blank if the BLIP vision backbone is intentionally
omitted for the audio—text setup; this is expected and documented in our pipeline.

6.2 METRICS AND EVALUATION

We report AUROC/AUPRC for hallucination detection using dgi}ﬁ) against entropy, max-
probability, and margin baselines, and summarize CF-bounded energy surfaces (lower is better)
with temperature/e trends matching theory. Details about the baselines and all remaining protocol
& design, and compute details are in Appendix D.

7 CONCLUSION AND FUTURE WORK

We proposed a reference-free, KL-smoothed information gap with hypergraph—spectral con-
trol: the score is 0 on K and strictly > 0 off X, admits Courant-Fischer (CF) bounds,
and integrates Good—Turing/KV calibration. Compact Colab runs (COCO/VQAv2/AudioCaps
x CLIP/BLIP/SigLIP stacks) show consistent gains over entropy/margin and interpretable
temperature/T decay. A joint tuning of (&, h, T¢, 7) with uncertainty can be the next direction.
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