The DEformer: An Order-Agnostic Distribution Estimating Transformer

Michael A. Alcorn' Anh Nguyen '

Abstract

Order-agnostic autoregressive distribution (den-
sity) estimation (OADE), i.e., autoregressive dis-
tribution estimation where the features can occur
in an arbitrary order, is a challenging problem
in generative machine learning. Prior work on
OADE has encoded feature identity by assign-
ing each feature to a distinct fixed position in an
input vector. As a result, architectures built for
these inputs must strategically mask either the
input or model weights to learn the various con-
ditional distributions necessary for inferring the
full joint distribution of the dataset in an order-
agnostic way. In this paper, we propose an alter-
native approach for encoding feature identities,
where each feature’s identity is included along-
side its value in the input. This feature identity
encoding strategy allows neural architectures de-
signed for sequential data to be applied to the
OADE task without modification. As a proof of
concept, we show that a Transformer trained on
this input (which we refer to as “the DEformer’?2,
i.e., the distribution estimating Transformer) can
effectively model binarized-MNIST, approaching
the performance of fixed-order autoregressive dis-
tribution estimating algorithms while still being
entirely order-agnostic. Additionally, we find that
the DEformer surpasses the performance of recent
flow-based architectures when modeling a tabular
dataset.

1. Introduction

For tasks such as: (a) efficiently imputing arbitrary missing
values from an input or (b) preemptive anomaly detection
in systems where input features can arrive asynchronously

"Department of Computer Science and Software Engineering,
Auburn University, Auburn, Alabama, USA. Correspondence to:
Michael A. Alcorn <alcorma@auburn.edu>.

Third workshop on Invertible Neural Networks, Normalizing
Flows, and Explicit Likelihood Models (ICML 2021). Copyright
2021 by the author(s).

2All data and code for the paper are available at: https:
//github.com/airalcorn2/deformer.

in an arbitrary order (e.g., internet of things applications
(Ahmad et al., 2017)), order-agnostic autoregressive distri-
bution (density) estimation (OADE) is necessary. However,
because there are D! factorizations of the joint probability
for a D-dimensional input, order-agnosticism adds consid-
erable complexity to the distribution estimation task. As
a result, many likelihood-based generative models either:
(1) assume a single, fixed order for the input features (e.g.,
NADE (Larochelle & Murray, 2011), PixelRNN (Oord et al.,
2016), and TraDE (Fakoor et al., 2020)), (2) only use a small
subset of the possible feature orderings in practice (e.g.,
MADE (Germain et al., 2015), IAF (Kingma et al., 2016),
MAF (Papamakarios et al., 2017), and LMConv (Jain et al.,
2020)), or (3) are not autoregressive (e.g., some flows (Dinh
etal.,2015;2017; Kingma & Dhariwal, 2018; Papamakarios
et al., 2021)).

In contrast to the previously mentioned approaches, Deep-
NADE (Uria et al., 2014; 2016) is notable in that it performs
full OADE. Specifically, DeepNADE consists of a standard
multilayer perceptron (MLP) that takes as input the concate-
nation of a D-dimensional binary mask m and the masked
version of the sample X, X = m © X, i.e., the input [X, m]
is a vector of size 2D. The feature identities (e.g., pixel
locations) are thus encoded by their positions in the input
feature vectors. However, this input design precludes the
use of neural architectures that are designed for sequen-
tial data (e.g., recurrent neural networks and Transformers
(Vaswani et al., 2017))—models that are a natural fit for
autoregressive problems.

Taking inspiration from a recently described multi-agent
spatiotemporal Transformer (Alcorn & Nguyen, 2021b), in
this paper, we propose an alternative approach for encoding
feature identities, where each feature’s identity is included
alongside its value in the input. Using this input design,
we train an otherwise ordinary Transformer (which we re-
fer to as “the DEformer”, i.e., the distribution estimating
Transformer) to perform OADE on the binarized-MNIST
(Salakhutdinov & Murray, 2008) and POWER (Vergara
et al., 2012) datasets. We find that:

1. The DEformer—while being entirely order agnostic
and autoregressive—is competitive with fixed-order
distribution estimating algorithms when modeling
binarized-MNIST and surpasses recent flow-based ar-

https://github.com/airalcorn2/deformer
https://github.com/airalcorn2/deformer

The DEformer: An Order-Agnostic Distribution Estimating Transformer

chitectures when modeling the tabular POWER dataset.

2. The DEformer can effortlessly fill in pixels of
binarized-MNIST images that are missing in a vari-
ety of patterns.

3. The DEformer can easily distinguish between
binarized-MNIST and non-binarized-MNIST images.

2. Architecture

Q@ i
4%

------- » = attention
—— = additional layers

2o~y
UQ—»
237

Cein

Figure 1. By including each feature’s identity alongside its value
in the input, sequential models can be used to perform order-
agnostic autoregressive distribution estimation. The DEformer
is a Transformer that uses an interleaved input design (partially
depicted here with the self-attention mask) for this task. The
two sets of interleaved feature vectors consist of identity feature
vectors (zx) and identity/value feature vectors (uy), and g, and
gu are their respective multilayer perceptrons. For the binarized-
MNIST dataset, each feature identity ¢y, is a tuple (rx, cx) where
71, and ci, are the row and column for the pixel indexed by k in the
permuted sequence, respectively, and vy, is the value of the pixel
(which is zero or one for binary images). For tabular data, each iy,
corresponds to a column, and vy, is the value of the indexed column
in the row. Lastly, e is an identity encoding function, which is
simply the identify function in the case of binarized-MNIST, and
is an embedding layer for tabular data.

Here, we describe our order-agnostic distribution estimating
Transformer, the DEformer (Figure 1). The goal in OADE
is to model the joint distribution of a D-dimensional vector
x by exploiting the chain rule of probability, i.e.:

p(X) = Hc?:lp@jod |X0<d)

where, as in Uria et al. (2014), o is a D-tuple representing
a permutation of the elements in X, so z,, indicates the
element of x indexed by the d-th element of o, and x,_,,
means the elements in x indexed by the first d — 1 elements
of 0. We assume each discrete feature can take on one
of C' labels (which is the case for image datasets), but,
in theory, each feature could have a different number of
possible labels.

Rather than encoding each feature’s identity by confining
it to a specific position in the input, here, we propose in-
cluding the feature’s identity as an additional input variable
alongside its value. Specifically, the input to the DEformer
consists of two parallel sequences: one containing only fea-
ture identities, and another containing identity/value pairs:

1. i1,y eeyin

2. (ilavl)7 (i27 U2)7 (X33} (Zna Un)

where i, is the identity of the k-th feature in the permuted
sequence and vy, is the value of the k-th feature. In the case
of binarized-MNIST, each iy, is a tuple (7, ¢) indicating
the row and column of the pixel, respectively, and vy, is the
value of the pixel (i.e., zero or one). For tabular data, each 7,
indexes a column, and vy, is the value of the indexed column
in the row.

The identity inputs are mapped to identity feature vectors
using an MLP, i.e., z;, = g.(e(ir)) where zy, is the identity
feature vector, g, is the identity MLP, and e is an identity
encoding function. In the case of binarized-MNIST, e is
simply the identity function, i.e., e(iy) = [r, cx], while for
tabular data, e is an embedding layer. The identity/value
pairs are similarly mapped to identity/value feature vectors
using a separate MLP, i.e., uy = g, ([e(ix), vr]) where uy is
the identity/value feature vector and g,, is the identity/value
MLP. These two sets of feature vectors are interleaved with
one another (i.e., u; always immediately follows zj, in the
input) to form a 2D x F matrix where F' is the dimension
of the outputs for the MLPs.

This matrix is passed into the Transformer along with a
lower triangular self-attention mask, which encodes the
following dependencies (see Figure 1):

1. When processing zj,, the DEformer is allowed to
“look™ at: (i) any 2, where k1 < ko and (ii) any uy,
where ki < ko.

2. When processing uy,, the DEformer is allowed to
“look™ at: (i) any 25, where k1 < ko and (ii) any uy,
where k1 < ks.

Like Alcorn & Nguyen (2021a;b), we do not use positional
encoding (Vaswani et al., 2017) because Irie et al. (2019)
observed that positional encoding is not only unnecessary,
but detrimental for Transformers that use a causal attention
mask.

Each processed z; feature vector is then passed through
a final linear layer. When modeling discrete features, the
final linear layer is followed by a softmax, which gives
a probability distribution over the labels for the feature
indexed by k. The loss for each sample is thus:

The DEformer: An Order-Agnostic Distribution Estimating Transformer

2k—1[Vk]) (h

K
L= -(f(2)
k=1

where f(Z)ak—1[vg] is the probability assigned to the la-
bel vy (where vy is an integer from one to C) by f, i.e.,
Equation (1) is the NLL of the data according to the model.
For continuous features, the output of the final linear layer
defines a mixture of Gaussians, so the loss for each sample
is:

K
L= Z —In(7g - k)
k=1

where 7, = softmax(f(Z)ax—1,1.7) is a vector containing
the J mixture proportions for feature k, and cj, is a vector
containing the mixture densities such that:

1 72(% #k7)2

cplj| = —=e Tk
k[J] -

where oy =
F(Z)ok—1,2741:37-

f(Z2)ak-1,741:27 and py =

Because any ordering of a chain rule decomposition of a
joint probability produces the same value, e.g.:

p(z1)p(@2|z1)p(as|zize) = plas)p(we|ws)p(z|rsws)
like Uria et al. (2014); Yang et al. (2019); Alcorn & Nguyen
(2021b), we shuffle the order of the features in each train-
ing sample to encourage the DEformer to learn a joint dis-
tribution of the dataset that is approximately permutation
invariant with respect to the ordering of the features.

3. Experiments

To test the utility of the DEformer for OADE, we trained a
nearly identical architecture to the model described in Al-
corn & Nguyen (2021b) on the binarized-MNIST (Salakhut-
dinov & Murray, 2008) and POWER (Vergara et al., 2012)
datasets. The binarized-MNIST dataset consists of 70,000
28 x 28 pixel binary images (i.e., the pixel values are either
black or white) of digits (i.e., 0-9) where each digit is repre-
sented by the same number of images. We used the standard
60,000/10,000 split for training/testing images, respectively,
and used 1,200 of the 60,000 training images (i.e., 2%) for
validation. The POWER dataset consists of 2,049,280 power
measurements from a single household in a tabular format,
where each sample consists of six real values. We used the
same preprocessing steps and training/validation/test split
described in Papamakarios et al. (2017).

064
717

|/|%/0)
IEEEIHIIII
/11 F71417]4]1 4]
3| 20|48k |y 7 /]

Figure 2. Top: A sample of 50 images from the test set of
binarized-MNIST organized by their average NLLs according
to the DEformer (starting with the lowest average NLL, 42.1, at
the top left, and ending with the highest average NLL, 119.6, at the
bottom right). Bottom: 50 generated images organized by their
average NLLs according to the DEformer (starting with the lowest
average NLL, 42.0, at the top left, and ending with the highest
average NLL, 131.1, at the bottom right). The average NLLs for
both sets of images are calculated over 10 random orderings.

The size of the output for the final linear layer was one for
the binarized-MNIST dataset and 3 x 150 = 450 for the
POWER dataset (as in Fakoor et al. (2020)), but all remain-
ing hyperparameters and training details were nearly identi-
calto baller2vec++ (Alcorn & Nguyen, 2021b), which
itself closely follows the original Transformer (Vaswani
et al., 2017). Specifically, the Transformer settings were:
dmodel = 512 (the dimension of the input and output of each
Transformer layer), eight attention heads, dg = 2048 (the di-
mension of the inner feedforward layers), six layers, dropout
probabilities of 0.0 and 0.2 for the binarized-MNIST and
POWER datasets, respectively, and no positional encoding.
Each MLP (i.e., g,, gu, and g,) had 128, 256, and 512 nodes
in its three layers, respectively, and a ReLU nonlinearity
following each of the first two layers. Lastly, the identity
embedding layer for the POWER dataset mapped column
indices to 20-dimensional vectors.

We used the Adam optimizer (Kingma & Ba, 2015) with
an initial learning rate of 1076, B, = 0.9, B> = 0.999,
and € = 10~ to update the model parameters, of which
there were ~19 million. The learning rate was reduced
to 10~7 after 5/20 epochs of the validation loss not im-
proving for the binarized-MNIST/POWER datasets, respec-
tively, and we used batch sizes of 1/128 for the binarized-
MNIST/POWER datasets, respectively. Models were im-
plemented in PyTorch and trained on a single NVIDIA
GTX 1080 Ti GPU for ~50/700 epochs (2.5/6 days) for

The DEformer: An Order-Agnostic Distribution Estimating Transformer

Table 1. The average NLL on the binarized-MNIST test set for
different models. Despite being entirely order agnostic (“OA”),
the DEformer is competitive with PixelRNN and TraDE, which
use a single fixed order (“FO”). For MADE, the model was trained
on 32 different orders (Uria et al., 2016). The average NLLs for
both DeepNADE and the DEformer are calculated over 10 random
orderings.

MODEL NLL
DEEPNADE (OA) 89.17
MADE (32) 86.64
PIXELRNN (FO) 79.20
TRADE (FO) 78.92
DEFORMER (OA) 80.49

Table 2. The average NLL on the POWER test set for different
models. The DEformer surpasses the performance of recent flow-
based architectures while still retaining order-agnostic and au-
toregressive properties. The average NLL for the DEformer is
calculated over 10 random orderings.

MODEL NLL
REALNVP -0.17
MAF -0.3

NAF -0.62
NSF -0.66
TRADE -0.73
DEFORMER -0.68

the binarized-MNIST/POWER datasets, respectively, and
the validation set was used for early stopping.

4. Results

The DEformer achieved an average NLL (taken over 10
orders) of 80.49 on the binarized-MNIST test set. This is
a vast improvement over DeepNADE (Uria et al., 2014)
and is competitive with fixed-order distribution estimation
algorithms like PixeIRNN (Oord et al., 2016) and TraDE
(Fakoor et al., 2020) (see Table 1). On the POWER dataset,
the DEformer achieved an average NLL of -0.68, which
surpasses the performance of recent flow-based architectures
like NAF (Huang et al., 2018) and NSF (Durkan et al., 2019).
We suspect the DEformer’s performance could be improved
with a careful hyperparameter search.

Following Uria et al. (2014), Figure 2 shows 50 samples
from the test set of binarized-MNIST sorted by their average
NLLs (taken over 10 orders) according to the DEformer,
along with 50 samples generated by the DEformer, also
sorted by their average NLLs. Also following Uria et al.
(2014), Figure 3 shows examples of images with 100 pixels
missing in a variety of patterns, which were then “filled in”
by the DEformer when conditioned on the remaining 684

Figure 3. Because the DEformer is order-agnostic, it can easily
“fill in” images where pixels are missing in a variety of patterns
by placing the missing pixels at the end of the input sequence.
Here, each row corresponds to a different ground truth image from
the test set (depicted in the first column). The remaining pairs
of columns show 100 removed pixels (red) from the ground truth
image and the corresponding filled in image.

2500 2500

2000 2000

1500 1500

Count
Count

1000 1000

20 40 60 80 100 120 140 160

0 1000 2000 3000 4000 5000 6000

Figure 4. The distribution of the DEformer average NLLs for the
binarized-MNIST test set (left) and a subset of 10,000 images
from the binarized-notMNIST dataset (right) diverge considerably
(notice the difference in scales of the x-axes), i.e., the DEformer
consistently assigns lower probabilities to out-of-distribution sam-
ples.

pixels. Like DeepNADE, this task is trivial for the DEformer
because the pixels can be arranged such that the condition-
ing pixels are at the beginning of the sequence. Lastly, as
can be seen in Figure 4, the DEformer can easily distin-
guish between in-distribution and out-of-distribution (i.e.,
binarized-notMNIST images (Bulatov, 2011)) samples.

5. Related Work

5.1. Interleaved input Transformers

The DEformer is directly inspired by baller2vec++ (Al-
corn & Nguyen, 2021b), a multi-agent spatiotemporal Trans-
former that used an identical interleaved input design to
model the behaviors of coordinated agents. Our key con-
tribution is recognizing that this interleaved architecture
design can be applied to OADE. The DEformer is archi-
tecturally similar to the independently developed XLNet
language model (Yang et al., 2019). Compared to XLNet,
the DEformer:

The DEformer: An Order-Agnostic Distribution Estimating Transformer

1. encodes feature identity by including it as an input to
the network (instead of using positional embeddings)
and

2. uses a full lower triangular attention mask to attend to
both identity feature vectors and identity/value feature
vectors that occur earlier in the shuffled input (instead
of only attending to the “content stream”).

Notably, XLNet was trained to only predict the final six
tokens of a shuffled sentence because the authors observed
“slow convergence in preliminary experiments”. The DE-
former was capable of modeling the values for all 784 pixels
in our binarized-MNIST experiments.

5.2. DeepNADE

One important way DeepNADE (Uria et al., 2014; 2016)
and the DEformer differ is in the size of the outputs for their
final classification layers, which are DC' and C, respec-
tively. While this difference is not particularly important for
a relatively simple dataset like binarized-MNIST, for more
complex datasets like CIFAR-10 (Krizhevsky et al., 2009),
these contrasting designs produce dramatically different
parameter counts. Specifically, the size of the output for a
CIFAR-10 DeepNADE model would be 32 x 32 x 3 x 256 =
786,432 (because each pixel has three channels, and each
channel can take on one of 256 different integer values).
Therefore, if the input dimension to the final layer was 500
(as it was in the DeepNADE model for binarized-MNIST),
the final layer alone would have 500 x 786,432 + 786,432 =
394,002,432 parameters. While the number of outputs can
be reduced for image datasets by using a discretized logis-
tic mixture likelihood (Salimans et al., 2017), this strategy
restricts the complexity of the model, and the discretized lo-
gistic mixture likelihood is not applicable to datasets where
the labels do not have a clear underlying order.

On the other hand, due to the attention mechanism, the DE-
former suffers from the same quadratic complexity problem
known to plague Transformers. However, recent work in
sparse Transformers (e.g., (Child et al., 2019; Zaheer et al.,
2020; Beltagy et al., 2020; Kitaev et al., 2020)) may allow
the DEformer to scale to larger inputs.

When training DeepNADE, a mask is randomly generated
for each sample by: (1) randomly selecting an integer
¢ €40,...,D — 1} to serve as the number of conditioning
variables and (2) randomly assigning a value of one to ¢
locations in the mask and assigning a value of zero to the
remaining locations. The loss for each sample is then:

»)
RS
o
WE

(1 =ma)(=In(f(X,m)q-1yc41,))

where [; is the label for the d-th feature of x, and DD_ .

is a scaling factor ensuring the loss for each sample is an
unbiased estimator (which is necessary because the error
signal is only computed for D — c features of the sample due
to the 1 — my, term). In contrast, for the DEformer, there is
always an error signal for all of the features of each sample.
While MADE (Germain et al., 2015) also produces an error
signal for all of the features of each sample, the authors
observed that sampling many different weight masks led to
the model underfitting, so it is unclear how well MADE can
perform fully OADE.

5.3. Spatial inputs as feature identities

A number of neural network architectures operate directly
on spatial coordinates, which can be interpreted as feature
identities in their various contexts (e.g., images (Ha, 2016),
point clouds (Guo et al., 2020), and 3D scenes (Sitzmann
etal., 2019)). Additionally, Liu et al. (2018) observed that
adding channels to feature maps that contain the spatial co-
ordinates of the pixels greatly improved the performance of
convolutional neural networks on certain spatial reasoning
tasks. However, none of these models are performing au-
toregressive distribution estimation, nor do they employ the
interleaved input design of the DEformer.

6. Conclusion

In this paper, we described an alternative approach to OADE
where the identities of features are included alongside their
values in the input. We believe the performance of the
DEformer on the binarized-MNIST and POWER datasets is
encouraging, and we are excited to see how this architecture
can be applied in different contexts.

Author Contributions

MAA conceived and implemented the architecture, designed
and ran the experiments, and wrote the manuscript. AN
partially funded MAA and provided the GPUs for the exper-
iments.

Acknowledgements
We would like to thank Iain Murray and Rasool Fakoor for

their helpful feedback.

References

Ahmad, S., Lavin, A., Purdy, S., and Agha, Z. Unsupervised
real-time anomaly detection for streaming data. Neuro-
computing, 262:134-147, 2017.

Alcorn, M. A. and Nguyen, A. baller2vec: A multi-

The DEformer: An Order-Agnostic Distribution Estimating Transformer

entity transformer for multi-agent spatiotemporal model-
ing. arXiv preprint arXiv:2102.03291, 2021a.

Alcorn, M. A. and Nguyen, A. baller2vec++: A look-
ahead multi-entity transformer for modeling coordinated
agents. arXiv preprint arXiv:2104.11980, 2021b.

Beltagy, 1., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Bulatov, Y., Sep 2011. URL http://yaroslavvb.
blogspot.com/2011/09/notmnist-dataset.
html.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Dinh, L., Krueger, D., and Bengio, Y. NICE: non-linear
independent components estimation. In Bengio, Y. and
LeCun, Y. (eds.), 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Workshop Track Proceedings, 2015. URL
http://arxiv.org/abs/1410.8516.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density es-
timation using real NVP. In 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017. URL https://openreview.
net/forum?id=HkpbnH91x.

Durkan, C., Bekasov, A., Murray, 1., and Papamakarios, G.
Neural spline flows. Advances in Neural Information
Processing Systems, 32:7511-7522, 2019.

Fakoor, R., Chaudhari, P., Mueller, J., and Smola, A. J.
Trade: Transformers for density estimation. Invertible
Neural Networks, Normalizing Flows, and Explicit Like-
lihood Models Workshop, 2020.

Germain, M., Gregor, K., Murray, 1., and Larochelle,
H. Made: Masked autoencoder for distribution es-
timation. In Bach, F. and Blei, D. (eds.), Proceed-
ings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learn-
ing Research, pp. 881-889, Lille, France, 07-09 Jul
2015. PMLR. URL http://proceedings.mlr.
press/v37/germainl5.html.

Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., and Ben-
namoun, M. Deep learning for 3d point clouds: A survey.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, pp. 1-1, 2020. doi: 10.1109/TPAMI.2020.
3005434.

from la-
URL

Ha, D. Generating large images
tent vectors. blog.otoro.net, 2016.
https://blog.otoro.net/2016/04/01/

generating-large—-images—from-latent-vectors/.

Huang, C.-W., Krueger, D., Lacoste, A., and Courville, A.
Neural autoregressive flows. In International Conference
on Machine Learning, pp. 2078-2087. PMLR, 2018.

Irie, K., Zeyer, A., Schliiter, R., and Ney, H. Lan-
guage modeling with deep transformers. In Proc. In-
terspeech 2019, pp. 3905-3909, 2019. doi: 10.21437/
Interspeech.2019-2225. URL http://dx.doi.org/
10.21437/Interspeech.2019-2225.

Jain, A., Abbeel, P., and Pathak, D. Locally masked
convolution for autoregressive models. In Peters, J.
and Sontag, D. (eds.), Proceedings of the 36th Con-
ference on Uncertainty in Artificial Intelligence (UAI),
volume 124 of Proceedings of Machine Learning Re-
search, pp. 1358-1367. PMLR, 03-06 Aug 2020.
URL http://proceedings.mlr.press/v124/
Jain20b.html.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Kingma, D. P. and Dhariwal, P. Glow: Generative
flow with invertible 1x1 convolutions. In Bengio,
S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL https://proceedings.
neurips.cc/paper/2018/file/
dl139db6a236200b21cc7£752979132d0-Paper.
pdf.

Kingma, D. P, Salimans, T., Jozefowicz, R., Chen, X.,
Sutskever, 1., and Welling, M. Improved variational
inference with inverse autoregressive flow. In Lee,
D., Sugiyama, M., Luxburg, U., Guyon, I, and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 29. Curran Associates,
Inc., 2016. URL https://proceedings.
neurips.cc/paper/2016/file/
ddeebdeefdb/e7e7a697elc3e3d8efb54-Paper.
pdf.

Kitaev, N., Kaiser, L., and Levskaya, A. Reformer:
The efficient transformer. In International Conference
on Learning Representations, 2020. URL https://
openreview.net/forum?id=rkgNKkHtvB.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
http://arxiv.org/abs/1410.8516
https://openreview.net/forum?id=HkpbnH9lx
https://openreview.net/forum?id=HkpbnH9lx
http://proceedings.mlr.press/v37/germain15.html
http://proceedings.mlr.press/v37/germain15.html
https://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/
https://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/
http://dx.doi.org/10.21437/Interspeech.2019-2225
http://dx.doi.org/10.21437/Interspeech.2019-2225
http://proceedings.mlr.press/v124/jain20b.html
http://proceedings.mlr.press/v124/jain20b.html
https://proceedings.neurips.cc/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Paper.pdf
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB

The DEformer: An Order-Agnostic Distribution Estimating Transformer

Larochelle, H. and Murray, I. The neural autoregressive
distribution estimator. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and
Statistics, pp. 29-37. JMLR Workshop and Conference
Proceedings, 2011.

Liu, R., Lehman, J., Molino, P., Petroski Such, F.,
Frank, E., Sergeev, A., and Yosinski, J. An intriguing
failing of convolutional neural networks and the
coordconv solution. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 31. Curran Associates,
Inc.,, 2018. URL https://proceedings.
neurips.cc/paper/2018/file/

60106888£8977b71lelfl5db7bc9a88dl-Paper.

pdf.

Oord, A. V., Kalchbrenner, N., and Kavukcuoglu, K. Pixel
recurrent neural networks. In Balcan, M. F. and Wein-
berger, K. Q. (eds.), Proceedings of The 33rd Interna-
tional Conference on Machine Learning, volume 48
of Proceedings of Machine Learning Research, pp.
1747-1756, New York, New York, USA, 20-22 Jun
2016. PMLR. URL http://proceedings.mlr.
press/v48/o0ordl6.html.

Papamakarios, G., Pavlakou, T., and Murray, I. Masked
autoregressive flow for density estimation. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/

6cl1da886822c67822bcf3679d04369fa-Paper.

pdf.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed,
S., and Lakshminarayanan, B. Normalizing flows for
probabilistic modeling and inference. Journal of Machine
Learning Research, 22(57):1-64, 2021. URL http:
//Jjmlr.org/papers/v22/19-1028.html.

Salakhutdinov, R. and Murray, I. On the quantitative analy-
sis of deep belief networks. In Proceedings of the 25th
international conference on Machine learning, pp. 872—
879, 2008.

Salimans, T., Karpathy, A., Chen, X., and Kingma, D. P.
Pixelcnn++: A pixelenn implementation with discretized
logistic mixture likelihood and other modifications. In
ICLR, 2017.

Sitzmann, V., Zollhofer, M., and Wetzstein, G. Scene repre-
sentation networks: Continuous 3d-structure-aware neu-
ral scene representations. In Advances in Neural Informa-
tion Processing Systems, 2019.

Uria, B., Murray, 1., and Larochelle, H. A deep and tractable

density estimator. In International Conference on Ma-
chine Learning, pp. 467-475. PMLR, 2014.

Uria, B., Coté, M.-A., Gregor, K., Murray, I., and
Larochelle, H. Neural autoregressive distribution esti-
mation. The Journal of Machine Learning Research, 17
(1):7184-7220, 2016.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N, Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, pp. 5998-6008, 2017.

Vergara, A., Vembu, S., Ayhan, T., Ryan, M. A., Homer,
M. L., and Huerta, R. Chemical gas sensor drift compen-
sation using classifier ensembles. Sensors and Actuators
B: Chemical, 166:320-329, 2012.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov,
R.R., and Le, Q. V. Xlnet: Generalized autoregressive
pretraining for language understanding. In Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F,,
Fox, E., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/
dc6a7e655d7e5840e66733e9eeb67ccb69-Paper.
pdf.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J.,
Alberti, C., Ontanon, S., Pham, P., Ravula, A., Wang,
Q., Yang, L., and Ahmed, A. Big bird: Transformers
for longer sequences. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M. F.,, and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 17283-17297. Curran Associates,
Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/
c8512d142a2d849725f31a%a7a36lab9-Paper.
pdf.

https://proceedings.neurips.cc/paper/2018/file/60106888f8977b71e1f15db7bc9a88d1-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/60106888f8977b71e1f15db7bc9a88d1-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/60106888f8977b71e1f15db7bc9a88d1-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/60106888f8977b71e1f15db7bc9a88d1-Paper.pdf
http://proceedings.mlr.press/v48/oord16.html
http://proceedings.mlr.press/v48/oord16.html
https://proceedings.neurips.cc/paper/2017/file/6c1da886822c67822bcf3679d04369fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6c1da886822c67822bcf3679d04369fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6c1da886822c67822bcf3679d04369fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6c1da886822c67822bcf3679d04369fa-Paper.pdf
http://jmlr.org/papers/v22/19-1028.html
http://jmlr.org/papers/v22/19-1028.html
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf

