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Abstract
In this paper, we provide a rigorous analysis of DPO’s convergence rates with different sampling
strategies under the exact gradient setting, revealing a separation: uniform sampling achieves linear
convergence, while our proposed online sampler achieves quadratic convergence. We further adapt
the sampler to practical settings by incorporating posterior distributions and logit mixing, demon-
strating significant improvements over previous approaches. Our results not only offer insights into
the theoretical standing of DPO but also pave the way for potential algorithm designs in the future.

1. Introduction

Aligning language models (LMs) to human preferences is a critical pursuit due to its great poten-
tials to push forward artificial intelligence (AI) development, and to enable AI to serve humanity
better [12]. Reinforcement learning from human feedback (RLHF) [2, 34] has been a widely-used
approach, gaining tremendous successes in aligning LMs [19]. However, the multi-stage pipeline of
RLHF, including reward model training and RL tuning, is sensitive to hyperparameters and costly to
train. DPO [21] directly combines these stages and tunes LMs in an offline way, gaining popularity
due to its stablility and efficiency.

The empirical success of DPO has recently sparked a significant increase in interest for under-
standing its theoretical properties. Through modeling RLHF as a KL-regularized contextual bandit
problem or Markov decision process, many works [13, 15, 24, 28, 29] obtain strong theoretical
results and highlight the role of samplers in DPO. Specifically, they point out drawbacks of the of-
fline sampler in vanilla DPO, and propose on-policy sampler or other samplers as better choices, as
validated empirically [8, 10, 26].

However, these theoretical explanations are largely built upon traditional RL and analyze the
impact of samplers from the view of data, namely sample complexity, thus involving some im-
practical assumptions, such as the access to an oracle for maximum likelihood estimation (MLE).
Meanwhile, from the optimization perspective, the convergence rates of gradient descent in DPO
within different sampling regimes remain an underexplored question. A particular setting of our
interest is to give provable guarantees for an online sampler depending on the current policy.

˚ Equal contribution
: IIIS, Tsinghua University. Email: srz21@mails.tsinghua.edu.cn. Part of the work was done while Ruizhe

Shi was visiting the University of Washington.
; University of Washington. Email: vectorzh@cs.washington.edu
§ University of Washington. Email: ssdu@cs.washington.edu

© .



THE CRUCIAL ROLE OF SAMPLERS IN ONLINE DPO

1.1. Contributions

To fill this research gap, we focus on analyzing the crucial role of samplers in DPO, from the view
of optimization. Based on our theoretical findings, we can further derive a new effective approach,
demonstrating advantages in empirical experiments over previous approaches. We summarize our
contributions as follows:

• Theoretical separations. We analyze the convergence rates of DPO with various samplers
under tabular softmax parametrization, and demonstrate theoretical advantages brought by
specific samplers. Specifically, we show a separation that our proposed samplers, DPO-Mix-R
and DPO-Mix-P, achieve quadratic convergence rates, while the commonly used one, DPO-Unif,
can only achieve a linear convergence rate. Numerical simulations support our results.

• Practical improvements. We design a new sampler for practical DPO. LM alignment exper-
iments show that under the same computation budget, our method demonstrates significant
advantages over baselines. Deferred to Appendix C.

• Explainability and generalizability. We show that our theoretical framework can explain
many existing DPO variants and thus provides a new perspective on their theoretical advan-
tages. Deferred to Appendix C.

2. Preliminaries

We provide a thorough review of related literature in Appendix A, and some basic preliminar-
ies of RLHF in Appendix B. In this paper, we look into the role of samplers in the performance of
DPO. Now we formally define DPO with samplers, from the perspective of bandit algorithms. We
first consider the scenario where we know the exact loss function and its gradient with respect to the
model parameter θ.

Definition 1 (Exact DPO) Given an action set Y , two samplers πs1, πs2 P Π for sampling the
first and second action respectively, a human preference oracle p‹ : Y ˆ Y Ñ ∆pt0, 1uq, and
hyperparameters β, η P R`, the sampling probability and DPO loss function are defined as

πspy, y1q :“ sg
`

πs1pyqπs2py1q ` πs1py1qπs2pyq
˘

,

LDPOpθq :“ ´
ÿ

y,y1PY
πspy, y1qp‹py ą y1q log σ

ˆ

β log
πθpyqπrefpy

1q

πrefpyqπθpy1q

˙

, (1)

and the parameter is updated by

θpt`1q “ θptq ´ ηαpπs1, πs2q∇θLDPOpθptqq , (2)

where αpπs1, πs2q is a sampling coefficient determined by the samplers.

Remark 1 If the sampling regime is a mixture of ①: loss function L1 with sampling coefficient α1

and ②: loss function L2 with sampling coefficient α2, the gradient update rule follows

θpt`1q “ θptq ´ η∇θ

´

α1L1pθptqq ` α2L2pθptqq

¯

.

Note that ① and ② can have different sets of πs1 and πs2.
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In empirical studies, we do not have access to the exact gradients. Thus, we define the scenario
of empirical DPO and make mild assumptions on the gradient estimation.

Definition 2 (Empirical DPO) Given noise scale σ P R`, DPO pσq is defined as DPO with the
gradient update in Equation (2) as

θpt`1q “ θptq ´ ηGptq ,

where Gptq
y is a random variable s.t. for @y P Y ,

1

βA

´

Gptq
y ´ αpπs1, πs2q∇θyLpθptqq

¯

„ sub-Gaussianpσ2q .

Remark 2 If the samplers are mixed, e.g., ① and ② in Remark 1, then we assume

1

βA

´

Gptq
y ´ ∇θy

´

α1L1pθptqq ` α2L2pθptqq

¯¯

„ sub-Gaussianpσ2q .

The closed form solution π‹ in Equation (6) satisfies rpyq´rpy1q´β log π‹pyqπrefpy
1q

πrefpyqπ‹py1q
“ 0, which

thus motivates us to study the convergence rate. With the update rule formally defined, now we ask:

How fast can rpyq ´ rpy1q ´ β log
π
θptq pyqπrefpy

1q

πrefpyqπ
θptq py1q

converge to 0, for @y, y1 P Y?

We will study the convergence rates for three sampling regimes: one sampling uniformly on the
action space Y and two with mixtures of samplers. They are defined in Definitions 3 to 5.

Definition 3 (Uniform sampler) DPO-Unif is defined as DPO with πs1, πs2 as

πs1p¨q “ πs2p¨q “ UniformpYq ,

and αpπs1, πs2q “ 2|Y|2.

Definition 4 (Reward-guided mixed sampler) DPO-Mix-R is defined as DPO with πs1, πs2 as

①

"

πs1p¨q “ UniformpYq ,
πs2p¨q “ UniformpYq ,

②

"

πs1p¨q 9 UniformpYq ¨ expprp¨qq ,
πs2p¨q 9 UniformpYq ¨ expp´rp¨qq ,

and α1 “ |Y|2, α2 “
ř

y,y1PY exp prpyq ´ rpy1qq .

Definition 5 (Policy-difference-guided mixed sampler) DPO-Mix-P is defined as DPO with πs1,
πs2 as

①

"

πs1p¨q “ UniformpYq ,
πs2p¨q “ UniformpYq ,

②

"

πs1p¨q 9 UniformpYq ¨ pπp¨q{πrefp¨qqβ ,
πs2p¨q 9 UniformpYq ¨ pπrefp¨q{πp¨qqβ ,

and α1 “ |Y|2, α2 “
ř

y,y1PY

´

πpyqπrefpy
1q

πrefpyqπpy1q

¯β
.

Remark 3 Definition 4 does not define a practical sampler as r is unknown, but it is important to
display our idea of using a mixture of sampling policies. In Definition 5, ② can also be written as
πs19 exppβpθ´θrefqq, πs29 exppβpθref ´θqq . UniformpYq in Definitions 4 and 5 is for consistency
with Appendix C, where we use a posterior distribution over Y .
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3. Main Results

We show our main results on convergence rates in this section. In summary, our proposed mixed
samplers can provably achieve: 1) exponentially faster convergence rates (quadratic v.s. linear)
compared with the uniform sampler in the exact gradient setting, and 2) linear convergence rates
to the noise scale when we have only unbiased estimations of the gradient. Numerical simulations
corroborate these theories.

3.1. Theoretical Findings

We present theories regarding convergence rates of different sampling regimes for exact DPO and
empirical DPO in this subsection, along with their proof sketches. We first define important nota-
tions:

∆py, y1; θq :“ σprpyq ´ rpy1qq ´ σ

ˆ

β log
πθpyqπrefpy

1q

πrefpyqπθpy1q

˙

,

δpy, y1; θq :“ rpyq ´ rpy1q ´ β log
πθpyqπrefpy

1q

πrefpyqπθpy1q
.

Then we can obtain

∇θLpθq “ ´β
ÿ

y,y1

πspy, y1q∆py, y1; θq1y

by plugging p‹py, y1q “ σprpyq ´ rpy1qq and σp´xq “ 1´σpxq into the derivative of Equation (1).
Hence, we can derive the iteration equation for δ:

δpy, y1; θpt`1qq “ δpy, y1; θptqq

´ ηβαpπs1, πs2q
ÿ

y2

´

πspy, y2q∆py, y2; θptqq ´ πspy1, y2q∆py1, y2; θptqq

¯

. (3)

We state the common condition for the upper bounds for simplicity:

Condition 1 Given an action set Y , it satisfies rpyq P r0, 1s, @y P Y . πθp0q is initialized as πref ,
and the regularization coefficient is β P R`. Use the learning rate η “ 1

β2|Y|
.

3.1.1. FOR EXACT DPO

For DPO-Unif, we have that πspy, y1q “ 2{ |Y|
2, making the coefficients of each ∆ on the RHS of

Equation (3) identical by absolute values. To proceed, we claim a lower bound as σ1
´

log πθpyqπrefpy
1q

πrefpyqπθpy1q

¯

ě

σ1
min, and use Lagrange interpolation, namely σ1

min ď pσpxq ´ σpyqq{px ´ yq ď 1{4, to transform
∆ into δ. By carefully computing the coefficients of each δ and picking learning rate, we arrive at a
linear convergence. Using this linear convergence, we can turn back to bound σ1

min, completing the
proof. See detailed proof in Appendix D.1.

Theorem 1 (Upper bound of DPO-Unif) Under Condition 1, DPO-Unif satisfies
ˇ

ˇ

ˇ
δpy, y1; θpT qq

ˇ

ˇ

ˇ
ď 0.588T , @y, y1 P Y ,

where T P N is the number of iterations.
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The construction of the lower bound is based on a simple 3-armed bandit setting. We use Taylor
expansion to transform ∆ into δ, and note that the quadratic remainders can be negligible when θ is
close to the optimal point. And thus the linear transformation can only achieve linear convergence.
See detailed proof in Appendix D.1.

Theorem 2 (Lower bound of DPO-Unif) Let |Y| “ 3, rpy1q “ 0, rpy2q “ 1{3, rpy3q “ 1,
and πref “ UniformpYq. For any β P R` and learning rate η P p0, 2

β2|Y|
s, there always ex-

ists small enough ϵ P R`, for any initialization πθp0q satisfying maxy,y1PY
ˇ

ˇδpy, y1; θp0qq
ˇ

ˇ ď ϵ and
miny,y1PY

ˇ

ˇδpy, y1; θp0qq
ˇ

ˇ ą 0, DPO-Unif satisfies

max
y,y1PY

ˇ

ˇ

ˇ
δpy, y1; θpT qq

ˇ

ˇ

ˇ
ě γT ,

where T P N is the number of iterations and γ is a constant depending on θp0q.

Next we elaborate the idea of transforming ∆ into δ using Taylor expansion, and show how to
eliminate the linear term using appropriate samplers and learning rate. For Theorem 3, we can apply

Taylor expansion at rpy1q ´ rpy2q (while for Theorem 4 we apply at β log
π
θptq py1qπrefpy2q

πrefpy1qπ
θptq py2q

), and get

∆py1, y2; θ
ptqq “ σ1prpy1q ´ rpy2qqδpy1, y2; θ

ptqq `
σ2pξRq

2
δpy1, y2; θ

ptqq2 .

If we let πspy1, y2q91{σ1prpy1q ´ rpy2qq as in Definition 4, then

πspy, y2q∆py, y2; θptqq ´ πspy1, y2q∆py1, y2; θptqq “ constant ¨ δpy, y1; θptqq ` quadratic term .

Finally we pick an appropriate η to eliminate the initial linear term in Equation (3) and thus estab-
lish a quadratic convergence. This observation motivates our design of samplers and proofs. The
detailed proofs of Theorems 3 and 4 can be found in Appendices D.2 and D.3.

Theorem 3 (Upper bound of DPO-Mix-R) Under Condition 1, DPO-Mix-R satisfies
ˇ

ˇ

ˇ
δpy, y1; θpT qq

ˇ

ˇ

ˇ
ď 0.52

T´1 , @y, y1 P Y ,

where T P N is the number of iterations.

Theorem 4 (Upper bound of DPO-Mix-P) Under Condition 1, DPO-Mix-P satisfies
ˇ

ˇ

ˇ
δpy, y1; θpT qq

ˇ

ˇ

ˇ
ď 0.6112

T´1 , @y, y1 P Y ,

where T P N is the number of iterations.

3.1.2. FOR EMPIRICAL DPO

As in Definition 2, exact gradients are inaccessible in practice. Here we show the guarantees of
DPO-Mix-R and DPO-Mix-P with only unbiased estimation of gradients, that they can achieve
linear convergence rates to the noise scale. The proofs of Theorems 5 and 6 can be found in Ap-
pendix E.
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Theorem 5 Under Condition 1 with the noise scale σ P p0, 1{576q, DPO-Mix-R pσq satisfies
b

E
“

δpy, y1; θpT qq2
‰

ď 14σ , @y, y1 P Y ,

where T “
X

log 1
σ

\

is the number of iterations.

Theorem 6 Under Condition 1 with the noise scale σ P p0, 1{576q, DPO-Mix-P˚ pσq satisfies
b

E
“

δpy, y1; θpT qq2
‰

ď 14σ , @y, y1 P Y ,

where T “
X

log 1
σ

\

is the number of iterations, and DPO-Mix-P˚ pσq is DPO-Mix-P pσq with
a rejection sampling process: each time we get y, y1 P Y sampled from ②, if ψpy, y1; θptqq :“
ˇ

ˇ

ˇ
β log

π
θptq pyqπrefpy

1q

πrefpyqπ
θptq py1q

ˇ

ˇ

ˇ
ą 1, then reject this data pair with probability 1 ´ e`e´1

eψ`e´ψ ; and α2 needs to

be changed to 1
2

ř

y,y1PY minteψpy,y1;θptqq ` e´ψpy,y1;θptqq, e ` e´1u .

3.2. Numerical Simulations

We verify our theoretical findings with numerical simulations in contextual bandits. As shown in
Figure 1, the two proposed samplers DPO-Mix-P and DPO-Mix-R show great improvements over
DPO-Unif. The detailed configurations and more results can be found in Appendix G.1.
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Figure 1: Contextual bandit experiments for exact DPO and empirical DPO. The x-axis
is the number of gradient updates, and the y-axis is the total parameter difference
ř

y,y1 δpy, y1; θptqq2. The left figure illustrates exact DPO, and the right figure illustrates
empirical DPO. The separation is clear in exact DPO, and still exists in empirical DPO.

4. Conclusion

This paper studies the convergence rates of DPO with different samplers. We demonstrate that
DPO-Mix-R and DPO-Mix-P offer quadratic convergence rates, outperforming the linear rate of
DPO-Unif. Our theoretical findings are supported by numerical simulations and LM alignment
experiments.

It is also important to acknowledge our limitations. 1) The selection of the posterior distribution
is not unique, and thus many useful samplers have yet to be developed from our framework and need
further experiments. 2) The convergence analysis is based on tabular softmax parametrization, and
a future direction would be exploring more practical settings such as log-linear parametrization and
function approximation.
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Michal Valko, and Rémi Munos. A general theoretical paradigm to understand learning from
human preferences. ArXiv, abs/2310.12036, 2023.

[2] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova Dassarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, John
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Her-
nandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine
Olsson, Dario Amodei, Tom B. Brown, Jack Clark, Sam McCandlish, Christopher Olah, Ben-
jamin Mann, and Jared Kaplan. Training a helpful and harmless assistant with reinforcement
learning from human feedback. ArXiv, abs/2204.05862, 2022.

[3] Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952. ISSN 00063444.

[4] Angelica Chen, Sadhika Malladi, Lily H. Zhang, Xinyi Chen, Qiuyi Zhang, Rajesh Ranganath,
and Kyunghyun Cho. Preference learning algorithms do not learn preference rankings. ArXiv,
abs/2405.19534, 2024.

[5] Paul Francis Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario
Amodei. Deep reinforcement learning from human preferences. ArXiv, abs/1706.03741, 2017.

[6] Mucong Ding, Souradip Chakraborty, Vibhu Agrawal, Zora Che, Alec Koppel, Mengdi Wang,
A. S. Bedi, and Furong Huang. Sail: Self-improving efficient online alignment of large lan-
guage models. ArXiv, abs/2406.15567, 2024.

[7] Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan, Shizhe Diao, Jipeng Zhang, Kashun
Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative foundation model
alignment. arXiv preprint arXiv:2304.06767, 2023.

[8] Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang,
Doyen Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to
online rlhf, 2024.

[9] Yann Dubois, Bal’azs Galambosi, Percy Liang, and Tatsunori Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. ArXiv, abs/2404.04475, 2024.

[10] Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexan-
dre Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment
from online ai feedback. arXiv preprint arXiv:2402.04792, 2024.

[11] Jiaming Ji, Mickel Liu, Juntao Dai, Xuehai Pan, Chi Zhang, Ce Bian, Ruiyang Sun, Yizhou
Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of llm via a
human-preference dataset. ArXiv, abs/2307.04657, 2023.

[12] Jiaming Ji, Tianyi Qiu, Boyuan Chen, Borong Zhang, Hantao Lou, Kaile Wang, Yawen Duan,
Zhonghao He, Jiayi Zhou, Zhaowei Zhang, Fanzhi Zeng, Kwan Yee Ng, Juntao Dai, Xuehai
Pan, Aidan O’Gara, Yingshan Lei, Hua Xu, Brian Tse, Jie Fu, Stephen Marcus McAleer,

7



THE CRUCIAL ROLE OF SAMPLERS IN ONLINE DPO

Yaodong Yang, Yizhou Wang, Song-Chun Zhu, Yike Guo, and Wen Gao. Ai alignment: A
comprehensive survey. ArXiv, abs/2310.19852, 2023.

[13] Saeed Khaki, JinJin Li, Lan Ma, Liu Yang, and Prathap Ramachandra. Rs-dpo: A hybrid
rejection sampling and direct preference optimization method for alignment of large language
models. ArXiv, abs/2402.10038, 2024.

[14] Tianlin Liu, Shangmin Guo, Leonardo Bianco, Daniele Calandriello, Quentin Berthet, Fe-
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Appendix
Appendix A. Related Work

Theoretical study of RLHF/DPO. Zhu et al. [33] formulate RLHF as contextual bandits, and
prove the convergence of the maximum likelihood estimator. Xiong et al. [29] further consider
KL-regularization and show the benefits in sample complexity of online exploration in DPO. Xie
et al. [28] study the online exploration problem from the perspective of KL-regularized Markov
decision processes, and show provable guarantees in sample complexity of a exploration bonus.
Liu et al. [16] investigate the overoptimization issue, and prove a finite-sample suboptimality gap.
Song et al. [24] show a separation of coverage conditions for offline DPO and online RLHF. These
works primarily focus on the perspective of data, which is widely adopted in RL literature. For
Xie et al. [28], Xiong et al. [29], their policy update iteration is to directly solve MLE instead
of doing gradient descent as ours. Song et al. [24] focus on data coverage, and have not studied
the convergence rates. In contrast, this paper analyzes DPO from the perspective of optimization,
offering a complementary while more practical viewpoint.

Variants of DPO. There are two line of works exploring the variants of DPO. 1) Objective func-
tion. Ψ-PO [1] changes the reward term to alternate mappings from preference pairs. RPO [16]
adds an imitation loss to mitigate the overoptimization issue. CPO [30] removes the πref term and
adds an imitation loss to ensure that the policy does not deviate too much. SimPO [17] also re-
moves the πref term for efficiency, while using length normalization for better length control. 2)
Sampler. Khaki et al. [13], Liu et al. [15] utilize rejection sampling to adjust the data distribution to
the theoretically-optimal policy before training. On-policy DPO [6, 10, 26] emphasize the impor-
tance of the on-policy sampler. Iterative DPO [8, 29] introduces an iterative training scheme, where
an online policy is used to generate data pairs, annotated by a gold reward model, and the DPO
training is subsequently applied to update the policy. XPO [28] follows the setting of iterative DPO,
and adds an optimistic term to the DPO objective. In this paper, we focus on the latter direction,
and only study the original objective.

Other RLHF approaches. There is also a line of works [18, 22, 25, 31] studying RLHF from a
game-theoretic perspective. Nash-MD-PG in Munos et al. [18] uses a geometric mixture of online
policy and reference policy without specifying the mixing weight. Rosset et al. [22] re-formulates
the DPO pipeline and shows theoretical guarantees for the on-policy sampler with an MLE oracle.

Appendix B. Basic Preliminaries

Notations. Let σ : R Ñ R be the sigmoid function, where σpxq “ 1{p1 ` expp´xqq. For any
set X , ∆pXq represents the set of probability distributions over X . sg pq is the stopping-gradient
operator. Let 1k be a vector with 1 on the dimension corresponding to k and 0 on others (the
dimension of this vector is implicitly defined from the context).

B.1. Standard Bandit Learning

Firstly, we give basic concepts of standard bandit learning, which found the basis for RLHF.

10
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Multi-armed bandits and contextual bandits. A multi-armed bandit has an arm (action) space
Y and a reward function r : Y Ñ r0, 1s. A contextual bandit has a context space X , an arm space Y ,
and a reward function r : X ˆY Ñ r0, 1s. In this work, the user prompt is viewed as a context, and
the agent response is viewed as an arm. To simplify notations, our results are stated in multi-armed
bandits versions. The statements and proofs can be easily extended to contextual bandits. Thus, we
will omit the prompts (contexts) and slightly abuse the notations throughout Sections 2 and 3.

Policies. A policy π : X Ñ ∆pYq maps each context to a probability simplex over the arm
space. For multi-armed bandits, a policy is instead a probability distribution over the arm space. We
denote Π as the set of policies we study. Under tabular softmax parametrization which is common
in previous works [1, 18, 21, 25], the policy π is parameterized by θ P R|Y|: for any y P Y ,

πθpyq “
exppθyq

ř

y1PY exppθy1q
.

The goal is to find the optimal policy maximizing the expected reward (with regularization).

B.2. Reinforcement Learning from Human Feedback (RLHF)

Secondly, we introduce RLHF / preference-based reinforcement learning (PBRL) problem [5, 25,
27] and current approaches.

Bradley-Terry (BT) model. Given an implicit reward oracle r : X ˆY Ñ r0, 1s, [3] assume that
human preference distribution p‹ : X ˆ Y ˆ Y Ñ ∆pt0, 1uq satisfies:

p‹py1 ą y2|xq “ σ prpx, y1q ´ rpx, y2qq .

This means that conditioned on prompt x, response y1 is favored over y2 with probability p‹py1 ą

y2|xq by human annotators.

RLHF [2, 34]. A human preference dataset D “ tpxpiq, y
piq
w , y

piq
l quNi“1 means that in the ith sam-

ple, ypiq
w ą y

piq
l conditioned on xpiq. The reward function r : X ˆ Y Ñ R is learned with parameter

ϕ using a negative log-likelihood loss:

Lrpϕq “ ´
1

N

N
ÿ

i“1

”

log σ
´

rϕpxpiq, ypiq
w q ´ rϕpxpiq, y

piq
l q

¯ı

. (4)

Given π1, π2 P Π, E
xPX

KLpπ1p¨|xq}π2p¨|xqq is abbreviated as KLpπ1}π2q. Based on a reference

policy πref , the goal of RLHF is to maximize the obtained rewards with a KL-divergence penalty:

π‹ “ argmax
πPΠ

E
xPX ,yPπp¨|xq

rϕpx, yq ´ βKL pπ}πrefq , (5)

where β P R` is the regularization coefficient. Additionally, under tabular softmax parametriza-
tion, we can directly write out the closed-form solution (Equation (4) in [21]):

π‹py|xq “
1

Zpxq
πrefpy|xq exp

ˆ

1

β
rϕpx, yq

˙

, @x P X , y P Y , (6)

where Zpxq “
ř

yPY πrefpy|xq exp
´

1
β rϕpx, yq

¯

is the partition function.
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Direct Preference Optimization (DPO, [21]). DPO integrates reward learning with policy learn-
ing. Given the human preference dataset D “ tpxpiq, y

piq
w , y

piq
l quNi“1, the DPO policy π is learned

with parameter θ using a negative log-likelihood loss:

Lπpθq “ ´
1

N

N
ÿ

i“1

log σ

˜

β log
πθpy

piq
w |xpiqq

πrefpy
piq
w |xpiqq

´ β log
πθpy

piq
l |xpiqq

πrefpy
piq
l |xpiqq

¸

,

which can be directly derived by combining Equations (4) and (6).

Appendix C. Implications for Practical DPO

In this section, we show the implications of theoretical results in Section 3 for practical DPO design.

C.1. Aligning Theory to Practice

Rethinking DPO. We can rewrite a policy π P Π as πpy|xq9πrefpy|xqeφpx,yq{β , where φpx, yq P

R`. Then the training objective of DPO can be rewritten as:

φ‹px, ¨q “ argmin
φpx,¨q

ÿ

y1,y2PY
πspy1, y2|xq ¨ p´σ prpx, y1q ´ rpx, y2qq log σ pφpx, y1q ´ φpx, y2qqq

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

cross entropy loss

,

which is learning a reward model φpx, yq towards rpx, yq ` Cpxq, where Cpxq P R is a constant.
In Section 3, we have discussed the role of samplers in this implicit reward learning stage. Here we
introduce a lemma (for multi-armed bandits) to connect it with the final performance.

Lemma 1 (Performance difference lemma) For any θ, define its value as

V θ :“ E
y„πθ

rpyq ´ βKL pπθ}πrefq ,

and let V ‹ be the value of the optimal policy π‹ in Equation (6), then we have

V ‹ ´ V θ “
ÿ

y,y1PY
π‹pyqπθpy

1q

ˆ

rpyq ´ rpy1q ´ β log
πθpyqπrefpy

1q

πrefpyqπθpy1q

˙

´ βKLpπ‹||πθq

ď
ÿ

y,y1PY
π‹pyqπθpy

1q

ˆ

rpyq ´ rpy1q ´ β log
πθpyqπrefpy

1q

πrefpyqπθpy1q

˙

. (7)

Setting the posterior. Lemma 1 indicates that reward learning should concentrate on responses
with high probabilities for π‹ and πθ, and thus motivates us to change the distribution over Y to
a posterior distribution close to π‹ or πθ in practical implementation. This perspective provides
an alternate explanation for [15], which uses rejection sampling to align the sampling distribution
to π‹. Considering the fact that π‹ is usually inaccessible, we propose to let π2βθ be the posterior
distribution. Setting the sampling temperature as 2β, we can thus derive our new practical algorithm
following Definition 5:

①

"

πs1p¨|xq “ πθp¨|xq ,
πs2p¨|xq “ πθp¨|xq ,

②

#

πs1p¨|xq9π
3{2
θ p¨|xqπ

´1{2
ref p¨|xq ,

πs2p¨|xq9π
1{2
θ p¨|xqπ

1{2
ref p¨|xq ,

and with a reward margin rmax P R` the mixing ratio can be roughly approximated as

① : ② “ 2 : pexpprmaxq ` expp´rmaxqq . (8)
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Logit mixing. The proposed samplers involve a hybridization between two policies, and a com-
mon approach to approximate hybrid distributions is logit mixing [14, 23]. Here we show how to
understand this point in a theoretically sound way. Given π1, π2 P Π, w1, w2 P R, we consider a
new logit as ζ :“ w1ζ1`w2ζ2, where ζ1, ζ2 represent the per-token logits of policies π1, π2, namely
ζkpyt|x, yătq “ log πkpyt|x, yătq. Note that

argmax
yPY

πw1
1 py|xqπw2

2 py|xq “ argmax
yPY

w1 log π1py|xq ` w2 log π2py|xq

“ argmax
yPY

|y|
ÿ

t“0

w1ζ1pyt|x, yătq ` w2ζ2pyt|x, yătq

“ argmax
yPY

|y|
ÿ

t“0

ζpyt|x, yătq .

This indicates that, greedy decoding from π9πw1
1 πw2

2 is equivalent to greedy decoding from w1ζ1`

w2ζ2. Thus, our proposed samplers can be implemented through mixing the logits of πref and πθ.

Understanding existing approaches. Vanilla DPO [21] and its online variant [29] can be incor-
porated into our theoretical framework. As shown in Table 1, vanilla DPO, which assumes that
pair-comparison data are sampled from πref (see Section 4 of Rafailov et al. [21]), can be viewed as
DPO-Unif; On-policy DPO [10, 26] proposes to sample reponse pairs using πθ, and is thus equiv-
alent to DPO-Unif; Hybrid GSHF (Option I in [29]) sets πs1 “ πθ and πs2 “ πref , equivalent
to DPO-Mix-P (②); and Online GSHF (Option II in [29]) adopts the best/worst-of-K response
generated by πθ, which can be approximately viewed as generating from πθp¨q expprp¨q{βq and
πθp¨q expp´rp¨q{βq, i.e. DPO-Mix-R (②). Notably, the ① part is often omitted in DPO variants,
and it can be attributed to the infinitely large reward margin in the implementation [8, 29], making
the mixing ratio Ñ 0 : 1 in Equation (8) (see more details in Section 4 of Rosset et al. [22] and
Appendix F).

Table 1: Comparison with existing approaches. We find that many baselines can be mapped to
components of our proposed samplers, offering an alternative explanation for their advan-
tages.

Algorithm Practical πs1 Practical πs2 Equivalent Sampler Posterior Distribution

Vanilla DPO πref πref DPO-Unif π2βref
On-policy DPO πθ πθ DPO-Unif π2βθ
Hybrid GSHF πθ πref DPO-Mix-P (②) πβθ π

β
ref

Online GSHF πθ (best-of-K) πθ (worst-of-K) DPO-Mix-R (②) π2βθ

Ours
πθ πθ DPO-Mix-P π2βθπ

3{2
θ π

´1{2
ref π

1{2
θ π

1{2
ref
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Table 2: Results on Safe-RLHF. The average reward is scored by the gold reward model on train
set and test set, and win-rate is against the reference model. Each algorithm is trained
for 3 iterations, and in the final iteration, ours shows advantages over baselines across all
metrics.

Algorithm Iters Average reward (train) Win-rate (train) Average reward (test) Win-rate (test)

Vanilla DPO
2 -1.486 67.6% -1.423 68.7%
3 -1.144 72.5% -1.203 71.7%

On-policy DPO
2 -1.478 67.6% -1.510 65.8%
3 -1.082 73.2% -1.094 73.2%

Hybrid GSHF
2 -1.517 68.5% -1.505 66.9%
3 -1.079 74.8% -1.002 75.9%

Ours
2 -1.457 68.1% -1.436 67.6%
3 -0.908 75.6% -0.945 76.2%

Table 3: Results on Iterative-Prompt. The average reward is scored by the gold reward model on
train set and test set, and win-rate is against the reference model. Each algorithm is trained
for 3 iterations, and in the final iteration, ours shows advantages over baselines across all
metrics.

Algorithm Iters Average reward (train) Win-rate (train) Average reward (test) Win-rate (test)

Vanilla DPO
2 1.427 71.4% 1.375 70.0%
3 2.023 78.4% 2.133 78.8%

On-policy DPO
2 2.106 79.2% 2.157 78.7%
3 3.131 82.4% 3.327 82.9%

Hybrid GSHF
2 2.116 79.6% 2.224 80.0%
3 2.386 81.9% 2.500 82.8%

Ours
2 2.026 78.3% 2.068 77.3%
3 4.149 86.6% 4.221 87.1%
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C.2. Alignment Experiments

Experiment setup. We conduct experiments on two datasets, Safe-RLHF [11] and Iterative-
Prompt [8, 29]. Our pipeline is mainly borrowed from Dong et al. [8]. For each iteration, responses
are generated for a fixed set of prompts. Specifically, given prompt x, we generate y1 „ πs1p¨|xq

and y2 „ πs2p¨|xq Each generated pair is annotated by a gold reward model [7] as pr1, r2q, and the
corresponding loss is

Lpy1,y2qpθq “ ´σprmax ¨ pr1 ´ r2qq log σ

ˆ

β log
πθpy1|xqπrefpy2|xq

πrefpy1|xqπθpy2|xq

˙

´ σprmax ¨ pr2 ´ r1qq log σ

ˆ

β log
πθpy2|xqπrefpy1|xq

πrefpy2|xqπθpy1|xq

˙

,

where rmax P R` is the reward margin. See more details in Appendix F.

Results. Experimental results on LM alignment are provided in Tables 2 and 3. On Safe-RLHF
dataset, our method is 4.5% better than vanilla DPO and 3.0% better than on-policy DPO. On
Iterative-Prompt dataset, ours improves by 8.3% compared to vanilla DPO and by 4.2% compared
to on-policy DPO. We also show the reward-KL curves in Figure 2, to indicate that the tuned models
do not deviate much from πref .
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Figure 2: The Reward-KL curves. The left figure illustrates results on Safe-RLHF, and the right
one illustrates results on Iterative-Prompt. Th KL-divergence is measured on a subset of
prompts in the test set. The results indicate that the KL-divergence of trained models does
not deviate much from the reference model, and our method performs best in balancing
reward and KL-divergence.

Clarification on evaluations. It is not enough to only show the results scored by reward mod-
els, since DPO algorithm is not explicitly learning the reward rankings [4, 17]. Due to restricted
resources, we have not evaluated on open-benchmarks [9, 32]. Our work has demonstrated the
potential to train models more effectively with minimal changes to the existing DPO pipeline. We
hope this will inspire the community, especially those with rich computational resources, to conduct
more systematic experiments.
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Appendix D. Proofs of Convergence Rates of Exact DPO

Without loss of generality, we assume πref to be uniform distribution throughout this section. In the
main text, we use Y to represent the action space and y to represent an action for compatibility with
other LM papers. From here, we turn back to A for action space, a for an action, and A for the size
of A since all the proofs are conducted in bandit environments. And for notational ease, we make
the following definitions:

∆pa, a1; θq :“ σprpaq ´ rpa1qq ´ σpβpθa ´ θa1qq ,

δpa, a1; θq :“ rpaq ´ rpa1q ´ βpθa ´ θa1q .

D.1. Theorems 1 and 2: Linear Convergence of Exact DPO-Unif

D.1.1. PROOF OF UPPER BOUND

For DPO with uniform sampler on action pairs, we first claim that for any θ appearing in the opti-
mization process,

max
a,a1

tβpθa ´ θa1qu ď Rmax ,

where Rmax will be bounded later, and let σ1
min :“ σ1pRmaxq “ σpRmaxqσp´Rmaxq . Then we

have

σ1
min ď

σpxq ´ σpyq

x´ y
ď

1

4
when |x| , |y| ď Rmax and x ‰ y , (9)

Lpθq “ ´
2

A2

ÿ

a,a1

p‹pa ą a1q log σ

ˆ

β log
πθpaq

πθpa1q

˙

, (10)

∇θLpθq “ ´
2β

A2

ÿ

a,a1

∆pa, a1; θq1a . (11)

Equation (11) reduces to

∇θaLpθq “ ´
2β

A2

ÿ

a1

∆pa, a1; θq .

Thus for any action pair pa, a1q,

pθa ´ θa1qpt`1q “ pθa ´ θa1qptq `
2ηβαpπs1, πs2q

A2

ÿ

a2

´

∆pa, a2; θptqq ´ ∆pa1, a2; θptqq

¯

“ pθa ´ θa1qptq ` 4ηβ
ÿ

a2

´

∆pa, a2; θptqq ´ ∆pa1, a2; θptqq

¯

.

At time t, sort the actions in the order that rpaiq ´ βθ
ptq
ai ď rpai`1q ´ βθ

ptq
ai`1 . Then we have

∆pai, aj ; θ
ptqq ě 0 if i ą j. Note that it is possible that the order of actions at time t`1 is different,

and in the following proof for any index i, ai is from the order at time t. Let l ă r, then

δpar, al; θ
pt`1qq
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“ δpar, al; θ
ptqq ´ 4ηβ2

A
ÿ

i“1

´

∆par, ai; θ
ptqq ´ ∆pal, ai; θ

ptqq

¯

(i)
ď δpar, al; θ

ptqq ´ 4ηβ2
l´1
ÿ

i“1

ˆ

σ1
minδpar, ai; θ

ptqq ´
1

4
δpal, ai; θ

ptqq

˙

´ 4ηβ2
r

ÿ

i“l

´

σ1
minδpar, ai; θ

ptqq ´ σ1
minδpal, ai; θ

ptqq

¯

´ 4ηβ2
A

ÿ

i“r`1

ˆ

1

4
δpar, ai; θ

ptqq ´ σ1
minδpal, ai; θ

ptqq

˙

“ δpar, al; θ
ptqq ´ 4ηβ2

«

σ1
minpl ´ 1qδpar, al; θ

ptqq ´

ˆ

1

4
´ σ1

min

˙ l´1
ÿ

i“1

δpal, ai; θ
ptqq

ff

´ 4ηβ2σ1
minpr ´ l ` 1qδpar, al; θ

ptqq ´ 4ηβ2

«

σ1
minpA´ rqδpar, al; θ

ptqq ´

ˆ

1

4
´ σ1

min

˙ A
ÿ

i“r`1

δpai, ar; θ
ptqq

ff

“
`

1 ´ 4ηβ2Aσ1
min

˘

δpar, al; θ
ptqq ` 4ηβ2

ˆ

1

4
´ σ1

min

˙

˜

l´1
ÿ

i“1

δpal, ai; θ
ptqq `

A
ÿ

i“r`1

δpai, ar; θ
ptqq

¸

,

where (i) is by using Equation (9) for different cases of x and y and whether x ´ y ą 0. Similarly,
for the lower bound:

´ δpar, al; θ
pt`1qq

“ 4ηβ2
A

ÿ

i“1

´

∆par, ai; θ
ptqq ´ ∆pal, ai; θ

ptqq

¯

´ δpar, al; θ
ptqq

ď 4ηβ2
l´1
ÿ

i“1

ˆ

1

4
δpar, ai; θ

ptqq ´ σ1
minδpal, ai; θ

ptqq

˙

` 4ηβ2
r

ÿ

i“l

ˆ

1

4
δpar, ai; θ

ptqq ´
1

4
δpal, ai; θ

ptqq

˙

` 4ηβ2
A

ÿ

i“r`1

ˆ

σ1
minδpar, ai; θ

ptqq ´
1

4
δpal, ai; θ

ptqq

˙

´ δpar, al; θ
ptqq

“ 4ηβ2

«

1

4
pl ´ 1qδpar, al; θ

ptqq `

ˆ

1

4
´ σ1

min

˙ l´1
ÿ

i“1

δpal, ai; θ
ptqq

ff

` 4ηβ2 ¨
1

4
pr ´ l ` 1qδpar, al; θ

ptqq

` 4ηβ2

«

1

4
pA´ rqδpar, al; θ

ptqq `

ˆ

1

4
´ σ1

min

˙ A
ÿ

i“r`1

δpai, ar; θ
ptqq

ff

´ δpar, al; θ
ptqq

“
`

ηβ2A´ 1
˘

δpar, al; θ
ptqq ` 4ηβ2

ˆ

1

4
´ σ1

min

˙

˜

l´1
ÿ

i“1

δpal, ai; θ
ptqq `

A
ÿ

i“r`1

δpai, ar; θ
ptqq

¸

.

Now taking η “ 1
β2A

, then we have

δpar, al; θ
pt`1qq ď p2 ´ 8σ1

minqmax
a,a1

δpa, a1; θptqq ,

´δpar, al; θ
pt`1qq ď p1 ´ 4σ1

minqmax
a,a1

δpa, a1; θptqq .

Define

γ :“ 2 ´ 8σ1
min
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as the contraction factor, then
ˇ

ˇ

ˇ
δpar, al; θ

pt`1qq

ˇ

ˇ

ˇ
ď γmax

a,a1

ˇ

ˇ

ˇ
δpa, a1; θptqq

ˇ

ˇ

ˇ
. (12)

Recall that we initialize θp0q “ 0⃗. Next we use induction to verify that throughout the process
(t ě 0),

ˇ

ˇ

ˇ
δpar, al; θ

pt`1qq

ˇ

ˇ

ˇ
ď 0.214γt , and

ˇ

ˇ

ˇ
βpθa ´ θa1qpt`1q

ˇ

ˇ

ˇ
ă 1.214 . (13)

For time t “ 0, we have special versions: rpa1q ď rpa2q ď ¨ ¨ ¨ ď rpaAq.

δpar, al; θ
p1qq “ rparq ´ rpalq ´ 4ηβ2

A
ÿ

i“1

p∆par, ai; θ
p0qq ´ ∆pal, ai; θ

p0qqq

(i)
“ rparq ´ rpalq ´ 4ηβ2

A
ÿ

i“1

pσprparq ´ rpaiqq ´ σprpalq ´ rpaiqqq

(ii)
ď rparq ´ rpalq ´ 4ηβ2

A
ÿ

i“1

σ1p1qrrparq ´ rpaiq ´ prpalq ´ rpaiqqs

“
`

1 ´ 4ηβ2Aσ1p1q
˘

prparq ´ rpalqq

(iii)
ď 0.214 ;

´δpar, al; θ
p1qq “ 4ηβ2

A
ÿ

i“1

p∆par, ai; θ
p0qq ´ ∆pal, ai; θ

p0qqq ´ prparq ´ rpalqq

“ 4ηβ2
A

ÿ

i“1

pσprparq ´ rpaiqq ´ σprpalq ´ rpaiqqq ´ prparq ´ rpalqq

ď 4ηβ2
A

ÿ

i“1

1

4
rrparq ´ rpaiq ´ prpalq ´ rpaiqqs ´ prparq ´ rpalqq

“
`

ηβ2A´ 1
˘

prparq ´ rpalqq

“ 0 ,

where (i) is by θp0q “ 0⃗; (ii) is by Equation (9) and rparq ´rpaiq ě rpalq ´rpaiq; (iii) is by rparq ´

rpalq ď 1. So
ˇ

ˇδpar, al; θ
p1qq

ˇ

ˇ ď 0.214, and |βpθa ´ θa1q1| ď |rpaq ´ rpa1q| `
ˇ

ˇδpar, al; θ
p1qq

ˇ

ˇ ď

1.214. Suppose for time t´ 1, Equation (13) holds, then Equation (12) holds. So for time t,
ˇ

ˇ

ˇ
δpar, al; θ

pt`1qq

ˇ

ˇ

ˇ
ď γmax

a,a1

ˇ

ˇ

ˇ
δpar, al; θ

ptqq

ˇ

ˇ

ˇ
ď 0.214γt ď 0.214 ,

and
ˇ

ˇ

ˇ
βpθa ´ θa1qpt`1q

ˇ

ˇ

ˇ
ď

ˇ

ˇrpaq ´ rpa1q
ˇ

ˇ `

ˇ

ˇ

ˇ
δpar, al; θ

pt`1qq

ˇ

ˇ

ˇ
ď 1.214 .

Thus we have

γ “ 2 ´ 8σ1
min ď 2 ´ 8σ1p1.214q ă 0.588 ,

ˇ

ˇ

ˇ
δpar, al; θ

pT qq

ˇ

ˇ

ˇ
ď 0.588T .
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D.1.2. CONSTRUCTION OF LOWER BOUND

Consider a three-armed bandit setting with rewards rpa1q “ 0, rpa2q “ 1{3, rpa3q “ 1 and any
regularization parameter β P R`. The update rule satisfies:

δpa2, a1; θ
pt`1qq “ δpa2, a1; θ

ptqq ´ 4ηβ2
´

2∆pa2, a1; θ
ptqq ` ∆pa3, a1; θ

ptqq ´ ∆pa3, a2; θ
ptqq

¯

,

(14)

δpa3, a2; θ
pt`1qq “ δpa3, a2; θ

ptqq ´ 4ηβ2
´

2∆pa3, a2; θ
ptqq ` ∆pa3, a1; θ

ptqq ´ ∆pa2, a1; θ
ptqq

¯

,

(15)

δpa3, a1; θ
pt`1qq “ δpa3, a1; θ

ptqq ´ 4ηβ2
´

2∆pa3, a1; θ
ptqq ` ∆pa3, a2; θ

ptqq ` ∆pa2, a1; θ
ptqq

¯

.

Define xt :“ δpa2, a1; θ
ptqq , and yt :“ δpa3, a2; θ

ptqq . Clearly we have δpa3, a1; θ
ptqq “ xt ` yt .

We can perform Taylor expansion on Equations (14) and (15) and get
ˆ

xt`1

yt`1

˙

“

ˆ

1 ´ 4ηβ2p2σ1p1{3q ` σ1p1qq 4ηpσ1p2{3q ´ σ1p1qq

4ηβ2pσ1p1{3q ´ σ1p1qq 1 ´ 4ηβ2p2σ1p2{3q ` σ1p1qq

˙

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

:“B

ˆ

xt
yt

˙

` ηβ2
ˆ

ut
vt

˙

,

(16)

where

|ut| ď
4x2t ` 3y2t

3
?
3

ď x2t ` y2t , |vt| ď
3x2t ` 4y2t

3
?
3

ď x2t ` y2t . (17)

Now we analyze the eigenvalues of B under three scenarios.

1. If

0 ă ηβ2 ă
1

4p2σ1p1{3q ` σ1p1qq
« 0.366 ,

then we have

detpλI ´Bq “ λ2 ´ pB11 `B22qλ` B11B22
loomoon

ďpB11`B22q2{4

´B12B21
loomoon

ą0

.

2. If

1

4p2σ1p1{3q ` σ1p1qq
ď ηβ2 ď

1

4p2σ1p2{3q ` σ1p1qq
« 0.388 ,

then we have

detpλI ´Bq “ λ2 ´ pB11 `B22qλ`B11B22
loomoon

ď0

´B12B21
loomoon

ą0

.
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3. If

1

4p2σ1p2{3q ` σ1p1qq
ă ηβ2 ă

1

2p2σ1p1{3q ` σ1p2{3qq
« 0.704 ,

then we have

detpλI ´Bq “ λ2 ´ pB11 `B22qλ` B11B22
loomoon

ďpB11`B22q2{4

´B12B21
loomoon

ą0

.

Therefore B has two different eigenvalues λ1, λ2 P p´1, 0q Y p0, 1q, with normalized eigenvectors
w1,w2. Clearly wij P p´1, 0q Y p0, 1q, @i, j P t1, 2u. Then we define λmax :“ maxp|λ1|, |λ2|q,
λmin :“ minp|λ1|, |λ2|q, Now perform basis transformation with new basis pw1,w2q. Thus Equa-
tion (16) can be rewritten as

ˆ

pt`1

qt`1

˙

“

ˆ

λ1 0
0 λ2

˙ ˆ

pt
qt

˙

`

ˆ

u1
t

v1
t

˙

,

Let w1
1,w

1
2 be the inverse basis, and defineα :“ max

i,jPt1,2u
|w1
ij |, and ϵ :“ min pλmin, 1 ´ λmaxq {p64α2q.

Now initialize |x0|, |y0| P p0, ϵq. Then we have max
i,jPt1,2,3u

|δpai, aj ; θ
p0qq| ď 2ϵ. Therefore

|p0|, |q0|
(i)
ď 2αϵ ,

and

|u1
t|, |v

1
t|

(ii)
ď 2αpx2t ` y2t q

(iii)
ď 4αpp2t ` q2t q .

(i) and (ii) comes from the fact that pt “ w1
11xt`w1

21yt and qt “ w1
12xt`w1

22yt, and Equation (17);
(iii) is from the fact that xt “ w11pt ` w21qt and yt “ w12pt ` w22qt, and Cauchy-Schwarz
inequality. Now we have

|pt`1| ` |qt`1| ď rλmax ` 8α p|pt| ` |qt|qs p|pt| ` |qt|q
(iv)
ď

`

λmax ` 32α2ϵ
˘

p|pt| ` |qt|q

ď
1 ` λmax

2
p|pt| ` |qt|q .

|pt`1| ` |qt`1| ě rλmin ´ 8α p|pt| ` |qt|qs p|pt| ` |qt|q
(v)
ě

`

λmin ´ 32α2ϵ
˘

p|pt| ` |qt|q

ě
λmin

2
p|pt| ` |qt|q ,

where (iv) and (v) are based on simple induction that |pt| ` |qt| will not increase. And it thus
indicates that maxp|xt|, |yt|q can at most be linear convergence when ηβ2 ď 2

A « 0.667.
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D.2. Theorem 3: Quadratic Convergence of Exact DPO-Mix-R

We study DPO with a mixture of fixed samplers: Z`Z´¨πs1ˆπs2`A2¨UniformpAqˆUniformpAq ,
where Z` “

ř

a expprpaqq , πs1paq “ expprpaqq{Z` and Z´ “
ř

a expp´rpaqq , πs2pAq “

expp´rpaqq{Z´ . We have

α1L1pθq ` α2L2pθq

“ ´
ÿ

a,a1

ˆ

A2 ¨
1

A2
` Z`Z´ ¨ πs1paqπs2pa1q

˙ „

p‹pa ą a1q log σ

ˆ

β log
πθpaq

πθpa1q

˙

` p‹pa1 ą aq log σ

ˆ

β log
πθpa

1q

πθpaq

˙ȷ

“ ´
ÿ

a,a1

pexpprpaq ´ rpa1qq ` 1q

„

p‹pa ą a1q log σ

ˆ

β log
πθpaq

πθpa1q

˙

` p‹pa1 ą aq log σ

ˆ

β log
πθpa

1q

πθpaq

˙ȷ

,

∇θ pα1L1pθq ` α2L2pθqq

“ ´β
ÿ

a,a1

pexpprpaq ´ rpa1qq ` 1q∆pa, a1; θqp1a ´ 1a1q

“ ´β
ÿ

a,a1

pexpprpaq ´ rpa1qq ` expprpa1q ´ rpaqq ` 2q∆pa, a1; θq1a

“ ´β
ÿ

a,a1

∆pa, a1; θq

σ1prpaq ´ rpa1qq
1a . (18)

Equation (18) reduces to

∇θa pα1L1pθq ` α2L2pθqq “ ´β
ÿ

a1

∆pa, a1; θq

σ1prpaq ´ rpa1qq
.

Fix parameter θ. For any action pair a, a1, through Taylor expansion we have that

∆pa, a1; θq “ σ1prpaq ´ rpa1qqδpa, a1; θq ´
σ2pξRpa, a1; θqq

2
δpa, a1; θq2 ,

where ξRpa, a1; θq is between rpaq ´ rpa1q and βpθa ´ θa1q. We have that at time step t, for any
action pair pa, a1q,

δpa, a1; θpt`1qq “ δpa, a1; θptqq ´ ηβ2
ÿ

a2

˜

∆pa, a2; θptqq

σ1prpaq ´ rpa2qq
´

∆pa1, a2; θptqq

σ1prpa1q ´ rpa2qq

¸

“ δpa, a1; θptqq ´ ηβ2
ÿ

a2

pδpa, a2; θptqq ´ δpa1, a2; θptqqq

`
ηβ2

2

ÿ

a2

˜

σ2pξRpa, a2; θptqqq

σ1prpaq ´ rpa2qq
δpa, a2; θptqq2 ´

σ2pξRpa1, a2; θptqqq

σ1prpa1q ´ rpa2qq
δpa1, a2; θptqq2

¸

“ p1 ´ ηβ2Aqδpa, a1; θptqq

`
ηβ2

2

ÿ

a2

˜

σ2pξRpa, a2; θptqqq

σ1prpaq ´ rpa2qq
δpa, a2; θptqq2 ´

σ2pξRpa1, a2; θptqqq

σ1prpa1q ´ rpa2qq
δpa1, a2; θptqq2

¸

.
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From the range of r, we know that σ1prpaq´rpa1qq ě σ1p1q ą 0.196. We have
ˇ

ˇσ2pξRpa, a2; θptqqq
ˇ

ˇ ď

σ2
max :“ sup0ďxď1 xp1 ´ xqp1 ´ 2xq “ 1{p6

?
3q ă 0.097. Set

η “
1

β2A
,

then
ˇ

ˇ

ˇ
δpa, a1; θpt`1qq

ˇ

ˇ

ˇ
ď

1

2A

ÿ

a2

ˆ

σ2
max

σ1p1q
δpa, a2; θptqq2 `

σ2
max

σ1p1q
δpa1, a2; θptqq2

˙

ď
σ2
max

σ1p1q
max
a,a1

δpa, a1; θptqq2

ă
1

2
max
a,a1

δpa, a1; θptqq2 .

Since maxa,a1

ˇ

ˇδpa, a1; θp0qq
ˇ

ˇ ď 1, we can show a quadratic convergence for this regime:

ˇ

ˇδpa, a1; θtq
ˇ

ˇ ď 0.52
t´1 .

D.3. Theorem 4: Quadratic Convergence of Exact DPO-Mix-P

We study DPO with a mixture of on-policy samplers (with gradient stopped) and uniform samplers:
Z`Z´ ¨ πs1 ˆ πs2 ` A2 ¨ UniformpAq ˆ UniformpAq , where Z` “

ř

a exppβθaq , πs1paq “

exppβθaq{Z` and Z´ “
ř

a expp´βθaq , πs2paq “ expp´βθaq{Z´. Samely we have

∇θa pα1L1pθq ` α2L2pθqq “ ´β
ÿ

a1

∆pa, a1; θq

σ1pβpθa ´ θa1qq
.

Fix parameter θ. For any action pair a, a1, through Taylor expansion we have that

∆pa, a1; θq “ σ1pβpθa ´ θa1qqδpa, a1; θq `
σ2pξPpa, a1; θqq

2
δpa, a1; θq2 ,

where ξPpa, a1; θq is between rpaq ´ rpa1q and βpθa ´ θa1q. We have that at time step t, for any
action pair pa, a1q,

δpa, a1; θpt`1qq “ δpa, a1; θptqq ´ ηβ2
ÿ

a2

˜

∆pa, a2; θptqq

σ1pβpθa ´ θa2qptqq
´

∆pa1, a2; θptqq

σ1pβpθa1 ´ θa2qptqq

¸

“ δpa, a1; θptqq ´ ηβ2
ÿ

a2

pδpa, a2; θptqq ´ δpa1, a2; θptqqq

´
ηβ2

2

ÿ

a2

˜

σ2pξPpa, a2; θptqqq

σ1pβpθa ´ θa2qptqq
δpa, a2; θptqq2 ´

σ2pξPpa1, a2; θptqqq

σ1pβpθa1 ´ θa2qptqq
δpa1, a2; θptqq2

¸

“ p1 ´ ηβ2Aqδpa, a1; θptqq

´
ηβ2

2

ÿ

a2

˜

σ2pξPpa, a2; θptqqq

σ1pβpθa ´ θa2qptqq
δpa, a2; θptqq2 ´

σ2pξPpa1, a2; θptqqq

σ1pβpθa1 ´ θa2qptqq
δpa1, a2; θptqq2

¸

.
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We still first claim that σ1pβpθa´θa1qtq ě σ1
min, and will bound it later. We have

ˇ

ˇσ2pξPpa, a2; θptqqq
ˇ

ˇ ď

σ2
max ă 0.097. Set

η “
1

β2A
,

then
ˇ

ˇ

ˇ
δpa, a1; θpt`1qq

ˇ

ˇ

ˇ
ď

σ2
max

2Aσ1
min

ÿ

a2

pδpa, a2; θptqq2 ` δpa1, a2; θptqq2q

ď
σ2
max

σ1
min

max
a,a1

δpa, a1; θptqq2 .

At time step t “ 0 we have σ1pβpθa ´ θa1qp0qq “ σ1p0q “ 0.25 and maxa,a1

ˇ

ˇδpa, a1; θp0qq
ˇ

ˇ ď 1 , so

max
a,a1

ˇ

ˇ

ˇ
δpa, a1; θp1qq

ˇ

ˇ

ˇ
ă 0.388 .

By simple induction, we have that

σ1
min ě σ1p1 ` max

a,a1

ˇ

ˇ

ˇ
δpa, a1; θptqq

ˇ

ˇ

ˇ
q ě σ1p1.388q ą 0.159 ,

max
a,a1

ˇ

ˇ

ˇ
δpa, a1; θpt`1qq

ˇ

ˇ

ˇ
ď

0.097

0.159
max
a,a1

δpa, a1; θptqq2 ă 0.611max
a,a1

δpa, a1; θptqq2 .

which is a quadratic convergence:
ˇ

ˇδpa, a1; θtq
ˇ

ˇ ď 0.6112
t´1 .

Appendix E. Proof of Convergence Rates of Empirical DPO

For notational ease, we make the following definitions throughout this section:

∆pa, a1; θq :“ σprpaq ´ rpa1qq ´ σpβpθa ´ θa1qq,

δpa, a1; θq :“ rpaq ´ rpa1q ´ βpθa ´ θa1q.

This section conforms to Definition 2. Denote the filtration Ft as all the samples on and before time
step t.

E.1. Technical Lemma

Lemma 2 (Lemma 1.4 in Philippe Rigollet [20]) Let X be a random variable such that

Pr|X| ą ts ď 2 exp

ˆ

´
t2

2σ2

˙

,

then for any positive integer k ě 2,

Er|X|
k
s ď pσe1{e

?
kqk,

and

Er|X|s ď σ
?
2π.
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E.2. Theorem 5: Convergence of Empirical DPO-Mix-R

Similar to Appendix D.2, at time step t, conditioned on Ft, we have that for any action pair pa, a1q,

ErpGa ´Ga1qptqs “ ´βAδpa, a1; θptqq

´
β

2

ÿ

a2

˜

σ2pξRpa, a2; θptqqq

σ1prpaq ´ rpa2qq
δpa, a2; θptqq2 ´

σ2pξRpa1, a2; θptqqq

σ1prpa1q ´ rpa2qq
δpa1, a2; θptqq2

¸

loooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooon

“:Ntpa,a1q

,

ˇ

ˇNtpa, a
1q

ˇ

ˇ ă
1

2

ÿ

a2

pδpa, a2; θptqq2 ` δpa1, a2; θptqq2q . (19)

From Definition 2 and Lemma 2, we have that

E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

G
ptq
a ´ ErG

ptq
a s

βA

ˇ

ˇ

ˇ

ˇ

ˇ

k
fi

fl ď p3σ
?
kqk.

Therefore, from Minkowski inequality,

E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

pGa ´Ga1qptq ´ ErpGa ´Ga1qptqs

βA

ˇ

ˇ

ˇ

ˇ

ˇ

k
fi

fl ď p6σ
?
kqk .

Now we take η “ 1{pβ2Aq, then by taking expectation conditioning on Ft we obtain

Erδpa, a1; θpt`1qq2ns “ Erpδpa, a1; θptqq ` ηβpGa ´Ga1qq2ns

“ Errδpa, a1; θptqq ` ηβErGa ´Ga1s ` ηβpGa ´Ga1 ´ ErGa ´Ga1sqs2ns

“

2n
ÿ

k“0

ˆ

2n

k

˙

pδpa, a1; θptqq ` ηβErGa ´Ga1sq2n´k ¨ pηβqkErpGa ´Ga1 ´ ErGa ´Ga1sqks

(i)
“

2n
ÿ

k“0

ˆ

2n

k

˙ ˆ

´
1

2A
Ntpa, a

1q

˙2n´k

¨
1

pβAqk
ErpGa ´Ga1 ´ ErGa ´Ga1sqks

ď

2n
ÿ

k“0

ˆ

2n

k

˙ ˆ

1

2A
|Ntpa, a

1q|

˙2n´k

p6σ
?
kqk ,

where (i) is by substituting η “ 1{pβ2Aq.
Further taking expectation over Ft, we have

Erδpa, a1; θpt`1qq2ns

ď

2n
ÿ

k“0

`

2n
k

˘

p2Aq2n´k
p6σ

?
kqkEr|Nt|

2n´kpa, a1qs

(i)
ď

2n
ÿ

k“0

`

2n
k

˘

p2Aq2n´k
p6σ

?
kqk ¨

1

22n´k
E

»

–

«

ÿ

a2

pδpa, a2; θptqq2 ` δpa1, a2; θptqq2q

ff2n´k
fi

fl
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(ii)
ď

2n
ÿ

k“0

`

2n
k

˘

p2Aq2n´k
p6σ

?
kqk ¨

1

22n´k
¨ p2Aq2n´k´1

ÿ

a2

pErδpa, a2; θptqq4n´2ks ` Erδpa1, a2; θptqq4n´2ksq

ď

2n
ÿ

k“0

ˆ

2n

k

˙

p6σ
?
kqk ¨

1

22n´k
max
a1,a2

Erδpa1, a2; θ
ptqq4n´2ks

ď

2n
ÿ

k“0

ˆ

2n

k

˙

p6σ
?
nqk ¨

1

22n´k
max
a1,a2

Erδpa1, a2; θ
ptqq4n´2ks ,

where (i) is by Equation (19); (ii) is by Hölder inequality.
Take T “ tlogp1{σqu. When σ ď 1{576 ă 0.00174, we will show that @n, t P N such that

n ¨ 2t ď 1{σ,

Erδpa, a1; θptqq2ns ď

ˆ

12
?
nσ `

1

2t

˙2n

.

This can be proved using induction on t. For t ď 1, we have that for any n:

Erδpa, a1; θp0qq2ns ď 1 ,

Erδpa, a1; θp1qq2ns ď

ˆ

6
?
nσ `

1

2

˙2n

.

For t “ 2 and n ď 1{p4σq,

Erδpa, a1; θp2qq2ns ď

2n
ÿ

k“0

ˆ

2n

k

˙

p6σ
?
nqk ¨

1

22n´k

ˆ

6
?
2nσ `

1

2

˙4n´2k

ď

˜

6
?
nσ `

p6
?
2nσ ` 1

2q2

2

¸2n

“

ˆ

36nσ2 ` p6 ` 3
?
2q

?
nσ `

1

8

˙2n

(i)
ď

ˆ

12
?
nσ `

1

22

˙2n

,

where (i) is by plugging in the range of n and σ. Suppose the arguments holds for t ě 2, then

Erδpa, a1; θpt`1qq2ns ď

2n
ÿ

k“0

ˆ

2n

k

˙

p6σ
?
nqk ¨

1

22n´k

ˆ

12
?
2nσ `

1

2t

˙4n´2k

“

«

6
?
nσ `

`

12
?
2nσ ` 1

2t

˘2

2

ff2n

ď

„ˆ

6 `
12

?
2

2t

˙

?
nσ ` 144nσ2 `

1

22t`1

ȷ2n

(i)
ď

«

ˆ

6 `
12

?
2

2t

˙

?
nσ `

288σ ` 1
2t

2t`1

ff2n
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(ii)
ď

ˆ

12
?
nσ `

1

2t`1

˙2n

,

where (i) is by n ď 1{pσ ¨ 2tq; (ii) is by t ě 2 and range of σ.
Therefore, we have for σ ď 1{576 and T “ tlogp1{σqu ą logp1{σq ´ 1,

b

Erδpa, a1; θpT qq2s ď 12σ `
1

2T
ă 14σ .

E.3. Theorem 6: Convergence of Empirical DPO-Mix-P˚

Here we use the joint probability weights ψpa, a1q9 exppzpa, a1qq such that zpa, a1q “ ´zpa1, aq

and let Z :“
ř

a,a1 exppzpa, a1qq:

α1L1pθq ` α2L2pθq

“ ´
ÿ

a,a1

sg

ˆ

A2 ¨
1

A2
` Z ¨ ψpa, a1q

˙ „

p‹pa ą a1q log σ

ˆ

β log
πθpaq

πθpa1q

˙

` p‹pa1 ą aq log σ

ˆ

β log
πθpa

1q

πθpaq

˙ȷ

,

∇θ pα1L1pθq ` α2L2pθqq

“ ´β
ÿ

a,a1

`

exppzpa, a1qq ` 1
˘

∆pa, a1; θqp1a ´ 1a1q

“ ´β
ÿ

a,a1

`

exppzpa, a1qq ` expp´zpa, a1qq ` 2
˘

∆pa, a1; θq1a

“ ´β
ÿ

a,a1

∆pa, a1; θq

σ1pzpa, a1qq
1a . (20)

Equation (20) reduces to

∇θaLpθq “ ´β
ÿ

a1

∆pa, a1; θq

σ1pzpa, a1qq
.

Fix parameter θ. For any action pair a, a1, through Taylor expansion we have that

∆pa, a1; θq “ pσprpaq ´ rpa1qq ´ σpzpa, a1qqq ´ pσpβpθa ´ θa1qq ´ σpzpa, a1qqqq

“ rσ1pzpa, a1qqprpaq ´ rpa1q ´ zpa, a1qq `
σ2pξ1pa, a1; θqq

2
prpaq ´ rpa1q ´ zpa, a1qq2s

´ tσ1pzpa, a1qqrβpθa ´ θa1q ´ zpa, a1qs `
σ2pξ2pa, a1; θqq

2
rβpθa ´ θa1q ´ zpa, a1qs2u

“ σ1pzpa, a1qqδpa, a1; θq `
σ2pξ1pa, a1; θqq

2
prpaq ´ rpa1q ´ zpa, a1qq2

´
σ2pξ2pa, a1; θqq

2
rβpθa ´ θa1q ´ zpa, a1qs2 ,

where ξ1pa, a1; θq is between rpaq ´ rpa1q and zpa, a1q, and ξ2pa, a1; θq is between zpa, a1q and
βpθa ´ θa1q .
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If we set

zpa, a1q “

$

&

%

1, if βpθa ´ θa1q ą 1 ,
´1, if βpθa ´ θa1q ă ´1 ,
βpθa ´ θa1q, otherwise ,

then we can conclude that

rrpaq ´ rpa1q ´ zpa, a1qs2 ` rβpθa ´ θa1q ´ zpa, a1qs2 ď δpa, a1; θq2 .

Note that this construction satisfies zpa, a1q “ ´zpa1, aq . We have that at time step t, conditioning
on Ft, for any action pair pa, a1q ,

Erδpa, a1; θpt`1qqs

“ δpa, a1; θptqq ´ ηβ2
ÿ

a2

˜

∆pa, a2; θptqq

σ1pzpa, a2qq
´

∆pa1, a2; θptqq

σ1pzpa1, a2qq

¸

“ δpa, a1; θptqq ´ ηβ2
ÿ

a2

pδpa, a2; θptqq ´ δpa1, a2; θptqqq

´
ηβ2

2

ÿ

a2

#

σ2pξ1pa, a2; θptqqq

σ1pzpa, a2qq
prpaq ´ rpa2q ´ zpa, a2qq2 ´

σ2pξ2pa, a2; θptqqq

σ1pzpa, a2qq
rβpθa ´ θa2qptq ´ zpa, a2qs2

+

`
ηβ2

2

ÿ

a2

#

σ2pξ1pa1, a2; θptqqq

σ1pzpa1, a2qq
prpa1q ´ rpa2q ´ zpa1, a2qq2 ´

σ2pξ2pa1, a2; θptqqq

σ1pzpa1, a2qq
rβpθa1 ´ θa2qptq ´ zpa1, a2qs2

+

“ p1 ´ ηβ2Aqδpa, a1; θptqq

´
ηβ2

2

ÿ

a2

#

σ2pξ1pa, a2; θptqqq

σ1pzpa, a2qq
prpaq ´ rpa2q ´ zpa, a2qq2 ´

σ2pξ2pa, a2; θptqqq

σ1pzpa, a2qq
rβpθa ´ θa2qptq ´ zpa, a2qs2

+

`
ηβ2

2

ÿ

a2

#

σ2pξ1pa1, a2; θptqqq

σ1pzpa1, a2qq
prpa1q ´ rpa2q ´ zpa1, a2qq2 ´

σ2pξ2pa1, a2; θptqqq

σ1pzpa1, a2qq
rβpθa1 ´ θa2qptq ´ zpa1, a2qs2

+

.

Set

η “
1

β2A
,

then

E
ˇ

ˇ

ˇ
δpa, a1; θpt`1qq

ˇ

ˇ

ˇ
ď

σ2
max

2Aσ1p1q

ÿ

a2

tprpaq ´ rpa2q ´ zpa, a2qq2 ` rβpθa ´ θa2qptq ´ zpa, a2qs2

` prpa1q ´ rpa2q ´ zpa1, a2qq2 ` rβpθa1 ´ θa2qptq ´ zpa1, a2qs2u

ă
1

2A
¨
1

2

ÿ

a2

pδpa, a2; θptqq2 ` δpa1, a2; θptqq2q

loooooooooooooooooooooomoooooooooooooooooooooon

“: rNtpa,a1q

.

Here σ2
max “ 1{p6

?
3q ă 0.097 as before and σ1p1q ą 0.196.

Follow the same steps as in Appendix E.2, we have that for σ ď 1{576 and T “ tlogp1{σqu,
b

Erδpa, a1; θpT qq2s ă 14σ .
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Appendix F. Implementation Details

Codebases & Datasets. Our codebase is mainly based on the pipeline of [8, 29] (https://
github.com/RLHFlow/Online-RLHF), and has referred to [23] (https://github.com/
srzer/MOD) for the implementation of logit mixing. For Safe-RLHF, we adopt a 10k subset of
[11] (https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF) for train-
ing, and a 2k subset as test set; For Iterative-Prompt, we adopt a 10k subset of [8, 29] (RLHFlow/
iterative-prompt-v1-iter1-20K) for training, and a 2k subset as test set.

Policy models & Reward model. For Safe-RLHF, we use a reproduced ALPACA-7B model as
the reference model (https://huggingface.co/PKU-Alignment/alpaca-7b-reproduced).
For Iterative-Prompt, we use a LLAMA-3B model as the reference model (https://huggingface.
co/openlm-research/open_llama_3b_v2). We use the reward model of [7] (https:
//huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1) for two tasks.

Implementation of mixed samplers and reward margin. In all experiments of LM alignment,
we set the mixing ratio as ① : ② “ 3 : 7. To control the same computation budget, for each prompt,
we add a generated pair from ① with probability 0.3, and from ② with probability 0.7. As for the
reward margin rmax, unlike common practice as [8, 29] setting rmax “ `8, we set rmax “ 4
for Safe-RLHF and rmax “ 1 for Iterative-Prompt, to better align with the assumed BT-model
setting. We did not extensively tune these hyperparameters, as our focus has been on verification of
theoretical claims.

Hyperparameters. The hyperparameters are borrowed from Dong et al. [8] with minimal modifi-
cations. We train 3 iterations, and 2 epochs for each iteration, with GRADIENT ACCUMULATION STEPS“

2 and LEARNING RATE“ 5e-7. For Safe-RLHF, we use MAX LENGTH“ 256, MAX PROMPT LENGTH“

128, PER DEVICE BATCH SIZE“ 1, and NUM WORKERS“ 8. For Iterative-Prompt, we use
MAX LENGTH“ 384, MAX PROMPT LENGTH“ 256, PER DEVICE BATCH SIZE“ 2, and NUM WORKERS“

8. During generation for training, we set temperature τ “ 0.7, while during evaluation we set
τ “ 0.1.

Appendix G. Supplementary Results

G.1. More Numerical Simulations

Configurations. The numerical simulations are conducted on 20-arm bandits. The rewards are
sampled from a normal distribution N p0, 1q, and the hyperparameter is set as β “ 3. For ex-
act DPO setting, NUM ITER“ 100, and LEARNING RATE“ 10; and for empirical DPO setting,
NUM ITER“ 3000, LEARNING RATE“ 0.05.

More Results We provide more bandit experiments in Figures 3 and 4, demonstrating consis-
tent advantages of our proposed samplers, DPO-Mix-P and DPO-Mix-R, over DPO-Unif. Be-
sides, we conduct ablation experiments on the mixed components, ① and ②, in DPO-Mix-P and
DPO-Mix-R, and results shown in Figures 5 and 6 indicate that the ② component plays a more
crucial role compared with ①, but cannot solely obtain stable advantages without mixing.
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Figure 3: More bandit experiments for exact DPO.
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Figure 4: More bandit experiments for empirical DPO.
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Figure 5: Ablation on components of mixed samplers for DPO-Mix-R.

31



THE CRUCIAL ROLE OF SAMPLERS IN ONLINE DPO

0 20 40 60 80 100
# Updates: t

10 6

10 5

10 4

10 3

10 2

10 1

100

Pa
ra

m
 D

iff
DPO-Mix-P( ) (exact)
DPO-Mix-P( ) (exact)
DPO-Mix-P (exact)

0 20 40 60 80 100
# Updates: t

10 6

10 5

10 4

10 3

10 2

10 1

100

Pa
ra

m
 D

iff

DPO-Mix-P( ) (exact)
DPO-Mix-P( ) (exact)
DPO-Mix-P (exact)

0 20 40 60 80 100
# Updates: t

10 6

10 5

10 4

10 3

10 2

10 1

100

Pa
ra

m
 D

iff

DPO-Mix-P( ) (exact)
DPO-Mix-P( ) (exact)
DPO-Mix-P (exact)

0 20 40 60 80 100
# Updates: t

10 6

10 5

10 4

10 3

10 2

10 1

100

Pa
ra

m
 D

iff

DPO-Mix-P( ) (exact)
DPO-Mix-P( ) (exact)
DPO-Mix-P (exact)

0 20 40 60 80 100
# Updates: t

10 6

10 5

10 4

10 3

10 2

10 1

100

Pa
ra

m
 D

iff

DPO-Mix-P( ) (exact)
DPO-Mix-P( ) (exact)
DPO-Mix-P (exact)

0 20 40 60 80 100
# Updates: t

10 6

10 5

10 4

10 3

10 2

10 1

100

Pa
ra

m
 D

iff

DPO-Mix-P( ) (exact)
DPO-Mix-P( ) (exact)
DPO-Mix-P (exact)

0 20 40 60 80 100
# Updates: t

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Pa
ra

m
 D

iff

DPO-Mix-P( ) (exact)
DPO-Mix-P( ) (exact)
DPO-Mix-P (exact)

0 20 40 60 80 100
# Updates: t

10 6

10 5

10 4

10 3

10 2

10 1

100

Pa
ra

m
 D

iff

DPO-Mix-P( ) (exact)
DPO-Mix-P( ) (exact)
DPO-Mix-P (exact)

Figure 6: Ablation on components of mixed samplers for DPO-Mix-P.
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G.2. Example Generations

Example generations for each dataset are shown in Tables 4 and 5. For each dataset, we show a
representative prompt in the down-sampled dataset, and one generated response for each algorithm.

Table 4: Examples of Safe-RLHF.

Prompt:
BEGINNING OF CONVERSATION:
USER: How do I stop being so sensitive to criticism?
ASSISTANT:

LM response Warning: Contents below contain examples of harmful language.

Vanilla DPO: It can be difficult to not take criticism personally, but there are steps you can take to help
you become more resilient. Firstly, try to recognize that criticism is a part of life and that
everyone experiences it. Acknowledge that the criticism is not a personal attack, but rather
an opinion or observation. Additionally, take time to reflect on the criticism and consider if
there is any truth to it. Finally, focus on the positive aspects of the criticism and use it as an
opportunity to grow

On-policy DPO: The best way to stop being so sensitive to criticism is to first recognize when you are feeling
sensitive. Take a few moments to pause and breathe, and remind yourself that you are capable
and deserving of success. Then, try to look at the criticism from a different perspective. Ask
yourself if there is any truth to the criticism, and if so, how can you use it to grow and
improve. Finally, remember that criticism is not a judgement of your worth as a person,

Hybrid GSHF: It can be difficult to not take criticism personally, but there are steps you can take to help
you become more resilient. Firstly, recognize that criticism is a part of life and that everyone
experiences it. Acknowledge that the criticism is not a personal attack, but rather an opinion
or observation. Next, try to take a step back and consider the criticism in the context of the
bigger picture. Ask yourself if the criticism is valid and if there is any truth to it. Finally,
focus

Ours: It is important to remember that criticism is not a personal attack. Everyone is different and
has different opinions, so it is important to not take criticism too personally. Try to take a
step back and think about the criticism objectively. Ask yourself if there is any truth to the
criticism and if it can be used to help you grow and improve. Additionally, it can be helpful
to have a supportive network of people who can provide encouragement and understanding.
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Table 5: Examples of Iterative-Prompt.

Prompt:
Below is an instruction that describes a task. Write a response that appropriately completes the request.
Instruction:
Generate a short movie review that has “1.” sentiment (Select from the following. 1. negative. 2. positive.).

LM response Warning: Contents below contain examples of harmful language.

Vanilla DPO: I watched the movie “The Fate of the Furious” and I thought it was a great movie. I liked
how the movie was action packed and how it was a great story. I thought that the movie was
a great movie and I would recommend it to anyone who likes action movies.

On-policy DPO: I watched the movie “The Fate of the Furious” and I think it was a great movie. I liked the
plot and the action scenes. I think the movie was a little bit too long, but it was still a good
movie. I would recommend this movie to anyone who likes action movies.

Hybrid GSHF: I watched the movie “The Fate of the Furious” and I thought it was a great movie. I liked
how the movie was action packed and had a lot of car chases. I also liked how the movie had
a lot of humor in it. I thought that the movie was a little bit too long, but overall I thought it
was a great movie.

Ours: I watched the movie “The Fate of the Furious” and I have to say that I was not impressed.
I thought that the movie was very boring and the plot was very predictable. I think that the
movie was very overrated and I would not recommend it to anyone.
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