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ABSTRACT

Policy gradient methods have enjoyed great success in deep reinforcement learn-
ing but suffer from high variance of gradient estimates. The high variance problem
is particularly exasperated in problems with long horizons or high-dimensional
action spaces. To mitigate this issue, we derive a bias-free action-dependent base-
line for variance reduction which fully exploits the structural form of the stochas-
tic policy itself and does not make any additional assumptions about the MDP.
We demonstrate and quantify the benefit of the action-dependent baseline through
both theoretical analysis as well as numerical results, including an analysis of
the suboptimality of the optimal state-dependent baseline. The result is a com-
putationally efficient policy gradient algorithm, which scales to high-dimensional
control problems, as demonstrated by a synthetic 2000-dimensional target match-
ing task. Our experimental results indicate that action-dependent baselines al-
low for faster learning on standard reinforcement learning benchmarks and high-
dimensional hand manipulation and synthetic tasks. Finally, we show that the
general idea of including additional information in baselines for improved vari-
ance reduction can be extended to partially observed and multi-agent tasks.

1 INTRODUCTION

Deep reinforcement learning has achieved impressive results in recent years in domains such as
video games from raw visual inputs (Mnih et al., 2015), board games (Silver et al., 2016), sim-
ulated control tasks (Schulman et al., 2016; Lillicrap et al., 2016; Rajeswaran et al., 2017a), and
robotics (Levine et al., 2016). An important class of methods behind many of these success stories
are policy gradient methods (Williams, 1992; Sutton et al., 2000; Kakade, 2002; Schulman et al.,
2015; Mnih et al., 2016), which directly optimize parameters of a stochastic policy through local
gradient information obtained by interacting with the environment using the current policy. Policy
gradient methods operate by increasing the log probability of actions proportional to the future re-
wards influenced by these actions. On average, actions which perform better will acquire higher
probability, and the policy’s expected performance improves.

A critical challenge of policy gradient methods is the high variance of the gradient estimator. This
high variance is caused in part due to difficulty in credit assignment to the actions which affected the
future rewards. Such issues are further exacerbated in long horizon problems, where assigning cred-
its properly becomes even more challenging. To reduce variance, a “baseline” is often employed,
which allows us to increase or decrease the log probability of actions based on whether they perform
better or worse than the average performance when starting from the same state. This is particu-
larly useful in long horizon problems, since the baseline helps with temporal credit assignment by
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removing the influence of future actions from the total reward. A better baseline, which predicts the
average performance more accurately, will lead to lower variance of the gradient estimator.

The key insight of this paper is that when the individual actions produced by the policy can be
decomposed into multiple factors, we can incorporate this additional information into the baseline
to further reduce variance. In particular, when these factors are conditionally independent given the
current state, we can compute a separate baseline for each factor, whose value can depend on all
quantities of interest except that factor. This serves to further help credit assignment by removing
the influence of other factors on the rewards, thereby reducing variance. In other words, information
about the other factors can provide a better evaluation of how well a specific factor performs. Such
factorized policies are very common, with some examples listed below.

• In continuous control and robotics tasks, multivariate Gaussian policies with a diagonal covari-
ance matrix are often used. In such cases, each action coordinate can be considered a factor.
Similarly, factorized categorical policies are used in game domains like board games and Atari.
• In multi-agent and distributed systems, each agent deploys its own policy, and thus the actions of

each agent can be considered a factor of the union of all actions (by all agents). This is particu-
larly useful in the recent emerging paradigm of centralized learning and decentralized execution
(Foerster et al., 2017; Lowe et al., 2017). In contrast to the previous example, where factorized
policies are a common design choice, in these problems they are dictated by the problem setting.

We demonstrate that action-dependent baselines consistently improve the performance compared
to baselines that use only state information. The relative performance gain is task-specific, but in
certain tasks, we observe significant speed-up in the learning process. We evaluate our proposed
method on standard benchmark continuous control tasks, as well as on a high-dimensional door
opening task with a five-fingered hand, a synthetic high-dimensional target matching task, on a blind
peg insertion POMDP task, and a multi-agent communication task. We believe that our method will
facilitate further applications of reinforcement learning methods in domains with extremely high-
dimensional actions, including multi-agent systems. Videos and additional results of the paper are
available at https://sites.google.com/view/ad-baselines.

2 RELATED WORKS

Three main classes of methods for reinforcement learning include value-based methods (Watkins &
Dayan, 1992), policy-based methods (Williams, 1992; Kakade, 2002; Schulman et al., 2015), and
actor-critic methods (Konda & Tsitsiklis, 2000; Peters & Schaal, 2008; Mnih et al., 2016). Value-
based and actor-critic methods usually compute a gradient of the objective through the use of critics,
which are often biased, unless strict compatibility conditions are met (Sutton et al., 2000; Konda &
Tsitsiklis, 2000). Such conditions are rarely satisfied in practice due to the use of stochastic gradient
methods and powerful function approximators. In comparison, policy gradient methods are able to
compute an unbiased gradient, but suffer from high variance. Policy gradient methods are therefore
usually less sample efficient, but can be more stable than critic-based methods (Duan et al., 2016).

A large body of work has investigated variance reduction techniques for policy gradient methods.
One effective method to reduce variance without introducing bias is through using a baseline, which
has been widely studied (Sutton & Barto, 1998; Weaver & Tao, 2001; Greensmith et al., 2004;
Schulman et al., 2016). However, fully exploiting the factorizability of the policy probability dis-
tribution to further reduce variance has not been studied. Recently, methods like Q-Prop (Gu et al.,
2017) make use of an action-dependent control variate, a technique commonly used in Monte Carlo
methods and recently adopted for RL. Since Q-Prop utilizes off-policy data, it has the potential to
be more sample efficient than pure on-policy methods. However, Q-prop is significantly more com-
putationally expensive, since it needs to perform a large number of gradient updates on the critic
using the off-policy data, thus not suitable with fast simulators. In contrast, our formulation of
action-dependent baselines has little computational overhead, and improves the sample efficiency
compared to on-policy methods with state-only baseline.

The idea of using additional information in the baseline or critic has also been studied in other con-
texts. Methods such as Guided Policy Search (Levine et al., 2016; Mordatch et al., 2015) and variants
train policies that act on high-dimensional observations like images, but use a low dimensional en-
coding of the problem like joint positions during the training process. Recent efforts in multi-agent
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systems (Foerster et al., 2017; Lowe et al., 2017) also use additional information in the centralized
training phase to speed-up learning. However, using the structure in the policy parameterization
itself to enhance the learning speed, as we do in this work, has not been explored.

3 PRELIMINARIES

In this section, we establish the notations used throughout this paper, as well as basic results for
policy gradient methods, and variance reduction via baselines.

3.1 NOTATION

This paper assumes a discrete-time Markov decision process (MDP), defined by (S,A,P, r, ρ0, γ),
in which S ⊆ Rn is an n-dimensional state space, A ⊆ Rm an m-dimensional action space,
P : S ×A×S → R+ a transition probability function, r : S ×A → R a bounded reward function,
ρ0 : S → R+ an initial state distribution, and γ ∈ (0, 1] a discount factor. The presented models
are based on the optimization of a stochastic policy πθ : S × A → R+ parameterized by θ. Let
η(πθ) denote its expected return: η(πθ) = Eτ [

∑∞
t=0 γ

tr(st, at)], where τ = (s0, a0, . . .) denotes
the whole trajectory, s0 ∼ ρ0(s0), at ∼ πθ(at|st), and st+1 ∼ P(st+1|st, at) for all t. Our goal is
to find the optimal policy arg maxθ η(πθ). We will use Q̂(st, at) to describe samples of cumulative
discounted return, and Q(at, st) to describe a function approximation of Q̂(st, at). We will use
”Q-function” when describing an abstract action-value function.

For a partially observable Markov decision process (POMDP), two more components are required,
namely Ω, a set of observations, and O : S × Ω → R≥0, the observation probability distribution.
In the fully observable case, Ω ≡ S . Though the analysis in this article is written for policies over
states, the same analysis can be done for policies over observations.

3.2 THE SCORE FUNCTION (SF) ESTIMATOR

An important technique used in the derivation of the policy gradient is known as the score function
(SF) estimator (Williams, 1992), which also comes up in the justification of baselines. Suppose that
we want to estimate∇θEx[f(x)] where x ∼ pθ(x), and the family of distributions {pθ(x) : θ ∈ Θ}
has common support. Further suppose that log pθ(x) is continuous in θ. In this case we have

∇θEx[f(x)] = ∇θ
∫
pθ(x)f(x)dx =

∫
pθ(x)

∇θpθ(x)

pθ(x)
f(x)dx

=

∫
pθ(x)∇θ log pθ(x)f(x)dx = Ex [∇θ log pθ(x)f(x)] . (1)

3.3 POLICY GRADIENT

The Policy Gradient Theorem (Sutton et al., 2000) states that

∇θη(πθ) = Eτ

[ ∞∑
t=0

∇θ log πθ(at|st)
∞∑
t′=t

γt
′−trt′

]
. (2)

For convenience, define ρπ(s) =
∑∞
t=0 γ

tp(st = s) as the state visitation frequency, and
Q̂(st, at) =

∑∞
t′=t γ

t′−trt′ . We can rewrite the above equation (with abuse of notation) as

∇θη(πθ) = Eρπ,π
[
∇θ log πθ(at|st)Q̂(st, at)

]
. (3)

It is further shown that we can reduce the variance of this gradient estimator without introducing
bias by subtracting off a quantity dependent on st from Q̂(st, at) (Williams, 1992; Greensmith
et al., 2004). See Appendix A for a derivation of the optimal state-dependent baseline.

∇θη(πθ) = Eρπ,π
[
∇θ log πθ(at|st)

(
Q̂(st, at)− b(st)

)]
(4)

This is valid because, applying the SF estimator in the opposite direction, we have
Eat [∇θ log πθ(at|st)b(st)] = ∇θEat [b(st)] = 0 (5)
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4 ACTION-DEPENDENT BASELINES

In practice there can be rich internal structure in the policy parameterization. For example, for con-
tinuous control tasks, a very common parameterization is to make πθ(at|st) a multivariate Gaussian
with diagonal variance, in which case each dimension ait of the action at is conditionally independent
of other dimensions, given the current state st. Another example is when the policy outputs a tuple
of discrete actions with factorized categorical distributions. In the following subsections, we show
that such structure can be exploited to further reduce the variance of the gradient estimator without
introducing bias by changing the form of the baseline. Then, we derive the optimal action-dependent
baseline for a class of problems and analyze the suboptimality of non-optimal baselines in terms of
variance reduction. We then propose several practical baselines for implementation purposes. We
conclude the section with the overall policy gradient algorithm with action-dependent baselines for
factorized policies. We provide an exposition for situations when the conditional independence
assumption does not hold, such as for stochastic policies with general covariance structures, in Ap-
pendix E, and for compatibility with other variance reduction techniques in Appendix F.

4.1 BASELINES FOR POLICIES WITH CONDITIONALLY INDEPENDENT FACTORS

In the following, we analyze action-dependent baselines for policies with conditionally indepen-
dent factors. For example, multivariate Gaussian policies with a diagonal covariance structure are
commonly used in continuous control tasks. Assuming an m-dimensional action space, we have
πθ(at|st) =

∏m
i=1 πθ(a

i
t|st). Hence

∇θη(πθ) = Eρπ,π
[
∇θ log πθ(at|st)Q̂(st, at)

]
= Eρπ,π

[
m∑
i=1

∇θ log πθ(a
i
t|st)Q̂(st, at)

]
(6)

In this case, we can set bi, the baseline for the ith factor, to depend on all other actions in addition to
the state. Let a−it denote all dimensions other than i in at and denote the ith baseline by bi(st, a−it ).
Due to conditional independence and the score function estimator, we have

Eat
[
∇θ log πθ(a

i
t|st)bi(st, a−it )

]
= Ea−it

[
∇θEait

[
bi(st, a

−i
t )
]]

= 0 (7)

Hence we can use the following gradient estimator

∇θη(πθ) = Eρπ,π

[
m∑
i=1

∇θ log πθ(a
i
t|st)

(
Q̂(st, at)− bi(st, a−it )

)]
(8)

This is compatible with advantage function form of the policy gradient (Schulman et al., 2016):

∇θη(πθ) = Eρπ,π

[
m∑
i=1

∇θ log πθ(a
i
t|st)Âi(st, at)

]
(9)

where Âi(st, at) = Q(st, at) − bi(st, a
−i
t ). Note that the policy gradient now comprises of m

component policy gradient terms, each with a different advantage term.

In Appendix E, we show that the methodology also applies to general policy structures (for exam-
ple, a Gaussian policy with a general covariance structure), where the conditional independence
assumption does not hold. The result is bias-free albeit different baselines.

4.2 OPTIMAL ACTION-DEPENDENT BASELINE

In this section, we derive the optimal action-dependent baseline and show that it is better than the
state-only baseline. We seek the optimal baseline to minimize the variance of the policy gradient
estimate. First, we write out the variance of the policy gradient under any action-dependent baseline.
Let us define zi := ∇θ log πθ(a

i
t|st) and the component policy gradient:

∇ηi(πθ) := Eρπ,π
[
∇θ log πθ(a

i
t|st)

(
Q̂(st, at)− bi(st, a−it )

)]
. (10)

For simplicity of exposition, we make the following assumption:

∇θ log πθ(a
i
t|st)T∇θ log πθ(a

j
t |st) ≡ zTi zj = 0, ∀i 6= j (11)
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which translates to meaning that different subsets of parameters strongly influence different ac-
tion dimensions or factors. We note that this assumption is primarily for the theoretical analysis
to be clean, and is not required to run the algorithm in practice. In particular, even without this
assumption, the proposed baseline is bias-free. When the assumption holds, the optimal action-
dependent baseline can be analyzed thoroughly. Some examples where these assumptions do hold
include multi-agent settings where the policies are conditionally independent by construction, cases
where the policy acts based on independent components (Cao et al., 2007) of the observation space,
and cases where different function approximators are used to control different actions or synergies
(Todorov & Ghahramani, 2004; Todorov et al., 2005) without weight sharing.

The optimal action-dependent baseline is then derived to be:

b∗i (st, a
−i
t ) =

Eait
[
∇θ log πθ(a

i
t|st)T∇θ log πθ(a

i
t|st)Q̂(st, at)

]
Eait

[
∇θ log πθ(ait|st)T∇θ log πθ(ait|st)

] . (12)

See Appendix B for the full derivation. Since the optimal action-dependent baseline is different for
different action coordinates, it is outside the family of state-dependent baselines barring pathological
cases.

4.3 SUBOPTIMALITY OF THE OPTIMAL STATE-DEPENDENT BASELINE

How much do we reduce variance over a traditional baseline that only depends on state? We use the
following notation:

Zi := Zi(st, a
−i
t ) = Eait

[
∇θ log πθ(a

i
t|st)T∇θ log πθ(a

i
t|st)

]
(13)

Yi := Yi(st, a
−i
t ) = Eait

[
∇θ log πθ(a

i
t|st)T∇θ log πθ(a

i
t|st)Q̂(st, at)

]
(14)

Then, using Equation (51) (Appendix C), we show the following improvement with the optimal
action-dependent baseline:

Ib=b∗(s) =
∑
i

Eρπ,a−it

 1

Zi

 Zi∑
j Zj

∑
j

Yj − Yi

2
 (15)

See Appendices C and D for the full derivation. We conclude that the optimal action-dependent
baseline does not degenerate into the optimal state-dependent baseline. Equation (15) states that
the variance difference is a weighted sum of the deviation of the per-component score-weighted
marginalized Q (denoted Yi) from the component weight (based on score only, not Q) of the overall
aggregated marginalized Q values (denoted

∑
j Yj). This suggests that the difference is particularly

large when the Q function is highly sensitive to the actions, especially along those directions that
influence the gradient the most. Our empirical results in Section 5 additionally demonstrate the
benefit of action-dependent over state-only baselines.

4.4 MARGINALIZATION OF THE GLOBAL ACTION-VALUE FUNCTION

Using the previous theory, we now consider various baselines that could be used in practice and their
associated computational cost.

Marginalized Q baseline Even though the optimal state-only baseline is known, it is rarely used
in practice (Duan et al., 2016). Rather, for both computational and conceptual benefit, the choice
of b(st) = Eat [Q̂(st, at)] = V (st) is often used. Similarly, we propose to use bi(st, a−it ) =

Eait
[
Q̂(st, at)

]
which is the action-dependent analogue. In particular, when log probability of each

policy factor is loosely correlated with the action-value function, then the proposed baseline is close
to the optimal baseline.

Ib=E
ait

[Q̂(at,st)]
=
∑
i

Eρπ,a−it

Zi
Eai

[
Q̂(at, st)

]
−

Eait
[
zTi ziQ̂(st, at)

]
Eait

[
zTi zi

]
2
 ≈ 0 (16)
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when Eait
[
zTi ziQ̂(st, at)

]
≈ Eait

[
zTi zi

]
Eait

[
Q̂(st, at)

]
.

This has the added benefit of requiring learning only one function approximator, for estimating
Q(st, at), and implicitly using it to obtain the baselines for each action coordinate. That is,Q(st, at)

is a function approximating samples Q̂(st, at).

Monte Carlo marginalized Q baseline After fitting Qπθ (st, at) we can obtain the baselines
through Monte Carlo estimates:

bi(st, a
−i
t ) =

1

M

M∑
j=0

Qπθ (st, (a
−i
t , αj)) (17)

where αj ∼ πθ(a
i
t|st) are samples of the action coordinate i. In general, any function may be used

to aggregate the samples, so long as it does not depend on the sample value ait. For instance, for
discrete action dimensions, the sample max can be computed instead of the mean.

Mean marginalized Q baseline Though we reduced the computational burden from learning m
functions to one function, the use of Monte Carlo samples can still be computationally expensive.
In particular, when using deep neural networks to approximate the Q-function, forward propaga-
tion through the network can be even more computationally expensive than stepping through a fast
simulator (e.g. MuJoCo). In such settings, we further propose the following more computationally
practical baseline:

bi(st, a
−i
t ) = Qπθ (st, (a

−i
t , āit)) (18)

where āit = Eπθ
[
ait
]

is the average action for coordinate i.

4.5 FINAL ALGORITHM

The final practical algorithm for fully factorized policies is as follows.

Algorithm 1 Policy gradient for factorized policies using action-dependent baselines

Require: number of iterations N , batch size B, initial policy parameters θ
Initialize action-value function estimate Qπθ (st, at) ≡ 0 and policy πθ
for j in {1, . . . , N} do

Collect samples: (st, at)t∈{1,...,B}

Compute baseline: bi(st, a−it ) = Eait
[
Q̂(st, at)

]
for i ∈ {1, . . . ,m} [e.g. Equations (17- 18)]

Compute advantages: Âi(st, at) := Q̂(st, at)− bi(st, a−it ),∀t
Perform a policy update step on θ using Âi(st, at) [Equation (9)]
Update action-value function approximation with current batch: Qπθ (st, at)

end for

Computing the baseline can be done with either proposed technique in Section 4.4. A similar al-
gorithm can be written for general policies (Appendix E), which makes no assumptions on the
conditional independence across action dimensions.

5 EXPERIMENTS AND RESULTS

Continuous control benchmarks Firstly, we present the results of the proposed action-dependent
baselines on popular benchmark tasks. These tasks have been widely studied in the deep reinforce-
ment learning community (Duan et al., 2016; Gu et al., 2017; Lillicrap et al., 2016; Rajeswaran et al.,
2017b). The studied tasks include the hopper, half-cheetah, and ant locomotion tasks simulated in
MuJoCo (Todorov et al., 2012).1 In addition to these tasks, we also consider a door opening task

1We used physics parameters as recommended in Rajeswaran et al. (2017b) and use the MuJoCo 1.5 simu-
lator. Thus the reward numbers may not be consistent with numbers previously reported in literature.
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with a high-dimensional multi-fingered hand, introduced in Rajeswaran et al. (2017a) to study the
effectiveness of the proposed approach in high-dimensional tasks. Figure 1 presents the learning
curves on these tasks. We compare the action-dependent baseline with a baseline that uses only
information about the states, which is the most common approach in the literature. We observe that
the action-dependent baselines perform consistently better.

A popular baseline parameterization choice is a linear function on a small number of non-linear
features of the state (Duan et al., 2016), especially for policy gradient methods. In this work, to
enable a fair comparison, we use a Random Fourier Feature representation for the baseline (Rahimi
& Recht, 2007; Rajeswaran et al., 2017b). The features are constructed as: y(x) = sin( 1

νPx + φ)
where P is a matrix with each element independently drawn from the standard normal distribution, φ
is a random phase shift in [−π, π) and, and ν is a bandwidth parameter. These features approximate
the RKHS features under an RBF kernel. Using these features, the baseline is parameterized as
b = wT y(x) where x are the appropriate inputs to the baseline, and w are trainable parameters. P
and φ are not trained in this parameterization. Such a representation was chosen for two reasons:
(a) we wish to have the same number of trainable parameters for all the baseline architectures, and
not have more parameters in the action-dependent case (which has a larger number of inputs to the
baseline); (b) since the final representation is linear, it is possible to accurately estimate the optimal
parameters with a Newton step, thereby alleviating the results from confounding optimization issues.
For policy optimization, we use a variant of the natural policy gradient method as described in
Rajeswaran et al. (2017b). See Appendix G for further experimental details.
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Figure 1: Comparison between value function baseline and action-conditioned baseline on various
continuous control tasks. Action-dependent baseline performs consistently better across all the tasks.

Choice of action-dependent baseline form Next, we study the influence of computing the base-
line by using empirical averages sampled from the Q-function versus using the mean-action of the
action-coordinate for computing the baseline (both described in 4.4). In our experiments, as shown
in Figure 2 we find that the two variants perform comparably, with the latter performing slightly bet-
ter towards the end of the learning process. This suggests that though sampling from the Q-function
might provide a better estimate of the conditional expectation in theory, function approximation from
finite samples injects errors that may degrade the quality of estimates. In particular, sub-sampling
from the Q-function is likely to produce better results if the learned Q-function is accurate for a large
fraction of the action space, but getting such high quality approximations might be hard in practice.

High-dimensional action spaces Intuitively, the benefit of the action-dependent baseline can be
greater for higher dimensional problems. We show this effect on a simple synthetic example called
m-DimTargetMatching. The example is a one-step MDP comprising of a single state, S = {0}, an
m-dimensional action space, A = Rm, and a fixed vector c ∈ Rm. The reward is given as the nega-
tive squared `2 loss of the action vector, r(s, a) = −‖a − c‖22. The optimal action is thus to match
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Figure 2: Variants of the action-dependent baseline that use: (i) sampling from the Q-function to
estimate the conditional expectation; (ii) Using the mean action to form a linear approximation to
the conditional expectation. We find that both variants perform comparably, with the latter being
more computationally efficient.

the given vector by selecting a = c. The results for the demonstrative example are shown in Table 1,
which shows that the action-dependent baseline successfully improves convergence more for higher
dimensional problems than lower dimensional problems. Due to the lack of state information, the
linear baseline reduces to whitening the returns. The action-dependent baseline, on the other hand,
allows the learning algorithm to assess the advantage of each individual action dimension by utiliz-
ing information from all other action dimensions. Additionally, this experiment demonstrates that
our algorithm scales well computationally to high-dimensional problems.

Action Solve time (iterations) % speed Solution
dimensions Action-dependent State-dependent Delta improvement threshold

12 45.6 45.6 0 0.0% -0.01
100 136 150 14 9.3% -0.25
400 268.2 304 35.8 11.8% -0.99

2000 595.5 671.5 76 11.3% -4.96

Table 1: Shown are the results for the synthetic high-dimensional target matching task (5 seeds),
for 12 to 2000 dimensional action spaces. At high dimensions, the linear feature action-dependent
baseline provides notable and consistent variance reduction, as compared to a linear feature baseline,
resulting in around 10% faster convergence. For the corresponding learning curves, see Appendix G.

Partially observable and multi-agent tasks Finally, we also consider the extension of the core
idea of using global information, by studying a POMDP task and a multi-agent task. We use the
blind peg-insertion task which is widely studied in the robot learning literature (Montgomery &
Levine, 2016). The task requires the robot to insert the peg into the hole (slot), but the robot is blind
to the location of the hole. Thus, we expect a searching behavior to emerge from the robot, where
it learns that the hole is present on the table and performs appropriate sweeping motions till it is
able to find the hole. In this case, we consider a baseline that is given access to the location of the
hole. We observe that a baseline with this additional information enables faster learning. For the
multi-agent setting, we analyze a two-agent particle environment task in which the goal is for each
agent to reach their goal, where their goal is known by the other agent and they have a continuous
communication channel. Similar training procedures have been employed in recent related works
Lowe et al. (2017); Levine et al. (2016). Figure 3 shows that including the inclusion of information
from other agents into the action-dependent baseline improves the training performance, indicating
that variance reduction may be key for multi-agent reinforcement learning.

6 CONCLUSION

An action-dependent baseline enables using additional signals beyond the state to achieve bias-free
variance reduction. In this work, we consider both conditionally independent policies and gen-
eral policies, and derive an optimal action-dependent baseline. We provide analysis of the variance
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Figure 3: Experiments with additional information in the baseline.

reduction improvement over non-optimal baselines, including the traditional optimal baseline that
only depends on state. We additionally propose several practical action-dependent baselines which
perform well on a variety of continuous control tasks and synthetic high-dimensional action prob-
lems. The use of additional signals beyond the local state generalizes to other problem settings,
for instance in POMDP and multi-agent tasks. In future work, we propose to investigate related
methods in such settings on large-scale problems.
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A DERIVATION OF THE OPTIMAL STATE-DEPENDENT BASELINE

We provide a derivation of the optimal state-dependent baseline, which minimizes the variance of
the policy gradient estimate, and is based in (Greensmith et al., 2004, Theorem 8). More precisely,
we minimize the trace of the covariance of the policy gradient; that is, the sum of the variance of the
components of the vectors. Recall the policy gradient expression with a state-dependent baseline:

∇θη(πθ) := Eρπ,π
[
∇θ log πθ(at|st)

(
Q̂(st, at)− b(st)

)]
(19)

Denote g to be the associated random variable, that is,∇θη(πθ) = Eρπ,π[g]:

g := ∇θ log πθ(at|st)
(
Q̂(st, at)− b(st)

)
, at ∼ πθ(at|st), st ∼ ρπ(st) (20)

The variance of the policy gradient is:

Var(g) = Eρπ,π
[
(g − Eρπ,π [g])T (g − Eρπ,π [g])

]
(21)

= Eρπ,π
[
∇θ log πθ(at|st)T∇θ log πθ(at|st)

]
b(st)

2 (22)

− 2Eρπ,π
[
∇θ log πθ(at|st)T∇θ log πθ(at|st)Q̂(st, at)

]
b(st) (23)

Note that E [η(πθ)]) contains a bias-free term, by the score function argument, which then does not
affect the minimizer. Terms which do not depend on b(st) also do not affect the minimizer.

∂

∂b
[Var(g)] = 0 (24)

= 2Eρπ,π
[
∇θ log πθ(at|st)T∇θ log πθ(at|st)

]
b(st) (25)

− 2Eρπ,π
[
∇θ log πθ(at|st)T∇θ log πθ(at|st)Q̂(st, at)

]
(26)

=⇒ b∗(st) =
Eρπ,π

[
∇θ log πθ(at|st)T∇θ log πθ(at|st)Q̂(st, at)

]
Eρπ,π [∇θ log πθ(at|st)T∇θ log πθ(at|st)]

(27)

B DERIVATION OF THE OPTIMAL ACTION-DEPENDENT BASELINE

We derive the optimal action-dependent baseline, which minimizes the variance of the policy gra-
dient estimate. First, we write out the variance of the policy gradient under any action-dependent
baseline. Recall the following notations: we define zi := ∇θ log πθ(a

i
t|st) and the component

policy gradient:

∇ηi(πθ) := Eρπ,π
[
∇θ log πθ(a

i
t|st)

(
Q̂(st, at)− bi(st, a−it )

)]
. (28)

Denote gi to be the associated random variables:

gi := ∇θ log πθ(a
i
t|st)

(
Q̂(st, at)− bi(st, a−it )

)
, at ∼ πθ(at|st), st ∼ ρπ(st), (29)

such that

∇θη(πθ) = ∇θ

[
m∑
i=1

ηi(πθ)

]
= Eρπ,π

[
m∑
i=1

gi

]
. (30)

Recall the following assumption:

∇θ log πθ(a
i
t|st)T∇θ log πθ(a

j
t |st) ≡ zTi zj ≈ 0, ∀i 6= j, (31)

which translates to meaning that different subsets of parameters strongly influence different action
dimensions or factors. This is true in case of distributed systems by construction, and also true
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in a single agent system if different action coordinates are strongly influenced by different policy
network channels. Under this assumption, we have:

Var(
m∑
i=1

gi) =
∑
i

Var(gi) +
∑
i

∑
j 6=i

Cov(gi, gj) (32)

=
∑
i

Var(gi) +
∑
i

∑
j 6=i

Eρπ,π
[
gTi gj

]
− Eρπ,π [gi]

T Eρπ,π [gj ] (33)

=
∑
i

Var(gi) + 0−
∑
i

∑
j 6=i

Eρπ,π [gi]
T Eρπ,π [gj ] (by Equation (31)) (34)

=
∑
i

Var(gi)−
∑
i

∑
j 6=i

Mij (by score function estimator) (35)

where we denote the mean correction term Mij := Eρπ,π
[
ziQ̂(st, at)

]T
Eρπ,π

[
zjQ̂(st, at)

]
. Also

let M =
∑
i

∑
jMij . Note that M does not depend on bi(·), and thus does not affect the optimal

value.

The overall variance is minimized when each component variance is minimized. We now derive the
optimal baselines b∗i (st, a

−i
t ) which minimize each respective component.

Var(gi) = Eρπ,π
[
zTi zi

(
Q̂(st, at)− bi(st, a−it )

)2]
(36)

− Eρπ,π
[
zi

(
Q̂(st, at)− bi(st, a−it )

)]T
Eρπ,π

[
zi

(
Q̂(st, at)− bi(st, a−it )

)]
= Eρπ,π

[
zTi zi

(
Q̂(st, at)

2 − 2bi(st, a
−i
t )Q̂(st, at) + bi(st, a

−i
t )
)2]

(37)

− Eρπ,π
[
zi

(
Q̂(st, at)

)]T
Eρπ,π

[
zi

(
Q̂(st, at)

)]
= Eρπ,π

[
zTi ziQ̂(st, at)

2
]

(38)

+ Eρπ,a−it
[
−2bi(st, a

−i
t )Eait

[
zTi ziQ̂(st, at)

]
+ bi(st, a

−i
t )2Eait

[
zTi zi

]]
−Mii

Having written down the expression for variance under any action-dependent baseline, we seek the
optimal baseline that would minimize this variance.

∂

∂bi

[
Var(

∑
i

gi)

]
=

∂

∂bi
[Var(gi)] = 0 (39)

=⇒ b∗i (st, a
−i
t ) =

Eait
[
zTi ziQ̂(st, at)

]
Eait

[
zTi zi

] (40)

The optimal action-dependent baseline is:

b∗i (st, a
−i
t ) =

Eait
[
∇θ log πθ(a

i
t|st)T∇θ log πθ(a

i
t|st)Q̂(st, at)

]
Eait

[
∇θ log πθ(ait|st)T∇θ log πθ(ait|st)

] (41)

C DERIVATION OF VARIANCE REDUCTION IMPROVEMENT

We now turn to quantifying the reduction in variance of the policy gradient estimate under the
optimal baseline derived above. Let Var∗(

∑
i gi) denote the variance resulting from the optimal

action-dependent baseline, and let Var(
∑
i gi) denote the variance resulting from another baseline
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b = (bi(st, a
−i
t ))i∈[m], which may be suboptimal or action-independent. Recall the notation:

Zi := Zi(st, a
−i
t ) = Eait

[
∇θ log πθ(a

i
t|st)T∇θ log πθ(a

i
t|st)

]
(42)

Yi := Yi(st, a
−i
t ) = Eait

[
∇θ log πθ(a

i
t|st)T∇θ log πθ(a

i
t|st)Q̂(st, at)

]
(43)

Xi := Xi(st, a
−i
t ) = Eait

[
∇θ log πθ(a

i
t|st)T∇θ log πθ(a

i
t|st)Q̂(st, at)

2
]

(44)

Finally, define the variance improvement Ib := Var(
∑
i gi)−Var∗(

∑
i gi). Using these definitions,

the variance can be re-written as:

Var(
∑
i

gi) =
∑
i

Eρπ,a−it
[
Xi − 2bi(st, a

−i
t )Yi + bi(st, a

−i
t )2Zi

]
−M (45)

Furthermore, the variance of the gradient with the optimal baseline can be written as

Var∗(
∑
i

gi) =
∑
i

Eρπ,a−it

[
Xi −

Y 2
i

Zi

]
−M (46)

The difference in variance can be calculated as:

Ib :=
∑
i

(
Eρπ,a−it

[
Xi − 2bi(st, a

−i
t )Yi + bi(st, a

−i
t )2Zi

]
− (Eρπ,a−it

[
Xi −

Y 2
i

Zi

]
)

)
(47)

=
∑
i

Eρπ,a−it

[
−2bi(st, a

−i
t )Yi + bi(st, a

−i
t )2Zi +

Y 2
i

Zi

]
(48)

=
∑
i

Eρπ,a−it

[(
bi(st, a

−i
t )
√
Zi −

Yi√
Zi

)2
]

(49)

=
∑
i

Eρπ,a−it

[
Zi

(
bi(st, a

−i
t )− Yi

Zi

)2
]

(50)

=
∑
i

Eρπ,a−it
[
Zi
(
bi(st, a

−i
t )− b∗i (st, a−it )

)2]
(51)

=
∑
i

Eρπ,a−it
[
Eait

[
∇θ log πθ(a

i
t|st)T∇θ log πθ(a

i
t|st)

] (
bi(st, a

−i
t )− b∗i (st, a−it )

)2]
(52)

D DERIVATION OF SUBOPTIMALITY OF THE OPTIMAL STATE-DEPENDENT
BASELINE

Using the notation from Appendix C and working off of Equation (51), we have:

Ib=b∗(s) :=
∑
i

Eρπ,a−it
[
Zi
(
b∗(st)− b∗i (st, a−it )

)2]
(53)

=
∑
i

Eρπ,a−it

Zi(∑j Yj∑
j Zj

− Yi
Zi

)2
 (54)

=
∑
i

Eρπ,a−it

 1

Zi

 Zi∑
j Zj

∑
j

Yj − Yi

2
 (55)

E BASELINES FOR GENERAL ACTIONS

In the preceding derivations, we have assumed policy actions are conditionally independent across
dimensions. In the more general case, we only assume that there are m factors a1t through amt
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which altogether forms the action at. Conditioned on st, the different factors form a certain directed
acyclic graphical model (including the fully dependent case). Without loss of generality, we assume
that the following factorization holds:

πθ(at|st) =

m∏
i=1

πθ(a
i
t|st, a

f(i)
t ) (56)

where f(i) denotes the indices of the parents of the ith factor. Let D(i) denote the indices of
descendants of i in the graphical model (including i itself). In this case, we can set the ith baseline
to be bi(st, a

[m]\D(i)
t ), where [m] = {1, 2, . . . ,m}. In other words, the ith baseline can depend on

all other factors which the ith factor does not influence. The overall gradient estimator is given by

∇θη(πθ) = Eρπ,π

[
m∑
i=1

∇θ log πθ(a
i
t|st, a

f(i)
t )

(
Q̂(st, at)− bi(st, a[m]\D(i)

t )
)]

(57)

In the most general case without any conditional independence assumptions, we have f(i) =
{1, 2, . . . , i− 1}, and D(i) = {i, i+ 1, . . . ,m}. The above equation reduces to

∇θη(πθ) = Eρπ,π

[
m∑
i=1

∇θ log πθ(a
i
t|st, a1t , . . . , ai−1t )

(
Q̂(st, at)− bi(st, a1t , . . . , ai−1t )

)]
(58)

The above analysis for optimal baselines and variance suboptimality transfers also to the case of
general actions.

The applicability of our techniques to general action spaces may be of crucial importance for many
application domains where the conditional independence assumption does not hold up, such as lan-
guage tasks and other compositional domains. Even in continuous control tasks, such as hand ma-
nipulation, and many other tasks where it is common practice to use conditionally independent
factorized policies, it is reasonable to expect training improvement from policies without a full con-
ditionally independence structure.

Computing action-dependent baselines for general actions The marginalization presented in
Section 4.4 does not apply for the general action setting. Instead, m individual baselines can be
trained according to the factorization, and each of them can be fitted from data collected from the
previous iteration. In the general case, this means fitting m functions bi(st, a1t , . . . , a

i−1
t ), for i ∈

{1, . . . ,m}. The resulting method is described in Algorithm 2.

There may also exist special cases like conditional independent actions, for which more efficient
baseline constructions exist. A closely related example to the conditionally independent case is the
case of block diagonal covariance structures (e.g. in multi-agent settings), where we may wish to
instead learn an overall Q function and marginalize over block factors. Another interesting example
to explore is sparse covariance structures.

Algorithm 2 Policy gradient for general factorization policies using action-dependent baselines

Require: number of iterations N , batch size B, initial policy parameters θ
Initialize baselines bi(st, a

[m]\D(i)
t ) ≡ 0, for i ∈ {1, . . . ,m} and policy πθ

for j in {1, . . . , N} do
Collect samples: (st, at)t∈{1,...,B}

Compute advantages: Âi(st, at) := Q̂(st, at)− bi(st, a[m]\D(i)
t ),∀t

Perform a policy update step on θ using Âi(st, at) [Equation (57)]
Update baseline functions with current batch: bi(st, a

[m]\D(i)
t )

end for

F COMPATIBILITY WITH GAE

Temporal Difference (TD) learning methods such as GAE (Schulman et al., 2016) allow us to
smoothly interpolate between high-bias, low-variance estimates and low-bias, high-variance esti-
mates of the policy gradient. These methods are based on the idea of being able to predict future
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returns, thereby bootstrapping the learning procedure. In particular, when using the value function
as a baseline, we have A(st, at) = E [rt + γV (st+1)− V (st)] = [rt + γb(st+1)− b(st)]] if b(s)
is an unbiased estimator for V (s). GAE uses an exponential averaging of such temporal difference
terms over a trajectory to significantly reduce the variance of the advantage at the cost of a small bias
(it allows us to pick where we want to be on the bias-variance curve). Similarly, if we use bi(st, a−it )

as an unbiased estimator for Eait [Q̂(st, at)], we have:

Eπ,M
[
rt + γbi(st+1, a

−i
t+1)− bi(st, a−it )

]
= Q(st, at)− Eait [Q̂(st, at)] = Ai(st, at) (59)

Thus, the temporal difference error with the action dependent baselines is an unbiased estimator for
the advantage function as well. This allows us to use the GAE procedure to further reduce variance
at the cost of some bias.

The following study shows that action-dependent baselines are consistent with TD procedures with
their temporal differences being estimates of the advantage function. Our results summarized in
Figure 4 suggests that slightly biasing the gradient to reduce variance produces the best results,
while high-bias estimates perform poorly. Prior work with baselines that utilize global information
(Foerster et al., 2017) employ the high-bias variant. The results here suggest that there is potential
to further improve upon those results by carefully studying the bias-variance trade-off.
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Sc
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e

Effect of GAE( )
= 0
= 0.5
= 0.9
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Figure 4: We study the influence of λ in GAE which allows us to trade off bias and variance as
desired. High bias gradient corresponding to smaller values of λ do not make progress after a while.
High variance gradient (λ = 1) has trouble learning initially. Allowing for a small bias to reduce
the variance, corresponding to the intermediate λ = 0.97 produces the best overall result, consistent
with the findings in Schulman et al. (2016).

G HIGH-DIMENSIONAL ACTION SPACES: TRAINING CURVES

Figure 5 shows the resulting training curves for a synthetic high-dimensional target matching task,
as described in Section 5. For higher dimensional action spaces (100 dimensions or greater), the
action-dependent baseline consistently converges to the optimal solution 10% faster than the state-
only baseline.

For reference, Figure 6 shows the result of the original high-dimensional action space experiment.
Due to a discovered issue in the TensorFlow version of rllab, which results in training instability, both
methods (action-dependent and state-dependent baselines) under-performed relative to the revised
experiment (Figure 5), which uses a clean implementation based on the implementation referenced
inRajeswaran et al. (2017b). The regression in training is most evident by the number of iterations
required to solve the task; for instance, the old experiment could take as long as five times more
iterations to solve the same task, even for a 12-dimensional task.

H EXPERIMENT DETAILS

Parameters: Unless otherwise stated, the following parameters are used in the experiments in this
work: γ = 0.995, λGAE = 0.97, kldesired = 0.025.
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Figure 5: Shown is the learning curve for a synthetic high-dimensional target matching task (5
seeds), for 12 to 2000 dimensional action spaces. At high dimensions, the linear feature action-
dependent baseline provides notable and consistent variance reduction, as compared to a linear fea-
ture state baseline. For 100, 400, and 2000 dimensions, our method converges 10% faster to the
optimal solution.
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Figure 6: Reference training curves for an early and invalidated version of the synthetic high-
dimensional target matching task (3 seeds).

Policies: The policies used are 2-layer fully connected networks with hidden sizes=(32, 32).

Initialization: the policy is initialized with Xavier initialization except final layer weights are scaled
down (by a factor of 100x). Note that since the baseline is linear (with RBF features) and estimated
with a Newton step, the initialization is inconsequential.

Per-experiment configuration: The following parameters in Table 2 are for both state-only and
action-dependent versions of the experiments. The m-DimTargetMatching experiments use a linear
feature baseline. Table 3 details the dimensionality of the action space for each task.
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Task Benchmarks Hand task Peg Insertion CommunicateTarget m-DimTargetMatching
Trajectories 10 100 200 300 150
Horizon 1000 200 250 100 1
RBF features 100 250 250 250 N/A

Table 2: Experiment details

Task Action dimensions
Hopper 3
HalfCheetah 6
Ant 8
Hand 30
Peg 7
CommunicateTarget 8 (4 per agent)
m-DimTargetMatching m

Table 3: Action dimensionality of tasks
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