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ABSTRACT

The field of medical diagnostics contains a wealth of challenges which closely re-
semble classical machine learning problems; practical constraints, however, com-
plicate the translation of these endpoints naively into classical architectures. Many
tasks in radiology, for example, are largely problems of multi-label classification
wherein medical images are interpreted to indicate multiple present or suspected
pathologies. Clinical settings drive the necessity for high accuracy simultaneously
across a multitude of pathological outcomes and greatly limit the utility of tools
which consider only a subset. This issue is exacerbated by a general scarcity of
training data and maximizes the need to extract clinically relevant features from
available samples – ideally without the use of pre-trained models which may carry
forward undesirable biases from tangentially related tasks. We present and evalu-
ate a partial solution to these constraints in using LSTMs to leverage interdepen-
dencies among target labels in predicting 14 pathologic patterns from chest x-rays
and establish state of the art results on the largest publicly available chest x-ray
dataset from the NIH without pre-training. Furthermore, we propose and discuss
alternative evaluation metrics and their relevance in clinical practice.

1 INTRODUCTION

Medical diagnostics have increasingly become a more interesting and viable endpoint for machine
learning. A general scarcity of publicly available medical data, however, inhibits its rapid develop-
ment. Pre-training on tangentially related datasets such as ImageNet (Deng et al., 2009) has been
shown to help in circumstances where training data is limited, but may introduce unintended biases
which are undesirable in a clinical setting. Furthermore, most clinical settings will drive a need for
models which can accurately predict a large number of diagnostic outcomes. This essentially turns
many medical problems into multi-label classification with a large number of targets, many of which
may be subtle or poorly defined and are likely to be inconsistently labeled. In addition, unlike the
traditional multi-label setting, predicting the absence of each label is as important as predicting its
presence in order to minimize the possibility of misdiagnosis. Each of these challenges drive a need
for architectures which consider clinical context to make the most of the data available.

Chest x-rays are the most common type of radiology exam in the world and a particularly chal-
lenging example of multi-label classification in medical diagnostics. Making up nearly 45% of all
radiological studies, the chest x-ray has achieved global ubiquity as a low-cost screening tool for
a wealth of pathologies including lung cancer, tuberculosis, and pneumonia. Each scan can con-
tain dozens of patterns corresponding to hundreds of potential pathologies and can thus be difficult
to interpret, suffering from high disagreement rates between radiologists and often resulting in un-
necessary follow-up procedures. Complex interactions between abnormal patterns frequently have
significant clinical meaning that provides radiologists with additional context. For example, a study
labeled to indicate the presence of cardiomegaly (enlargement of the cardiac silhouette) is more
likely to additionally have pulmonary edema (abnormal fluid in the extravascular tissue of the lung)
as the former may suggest left ventricular failure which often causes the latter. The presence of
edema further predicates the possible presence of both consolidation (air space opacification) and a
pleural effusion (abnormal fluid in the pleural space). Training a model to recognize the potential for
these interdependencies could enable better prediction of pathologic outcomes across all categories
while maximizing the data utilization and its statistical efficiency.
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Among the aforementioned challenges, this work firstly addresses the problem of predicting multi-
ple labels simultaneously while taking into account their conditional dependencies during both the
training and the inference. Similar problems have been raised and analyzed in the work of Wang
et al. (2016); Chen et al. (2017) with the application of image tagging, both outside the medical
context. The work of Shin et al. (2016); Wang et al. (2017) for chest x-ray annotations are closest
to ours. All of them utilize out-of-the-box decoders based on recurrent neural networks (RNNs)
to sequentially predict the labels. Such a naive adoption of RNNs is problematic and often fails to
attend to peculiarities of the medical problem in their design, which we elaborate on in Section 2.3
and Section 3.3.1.

In addition, we hypothesize that the need for pre-training may be safely removed when there are suf-
ficient medical data available. To verify this, all our models are trained from scratch, without using
any extra data from other domains. We directly compare our results with those of Wang et al. (2017)
that are pre-trained on ImageNet. Furthermore, to address the issue of clinical interpretability, we
juxtapose a collection of alternative metrics along with those traditionally used in machine learning,
all of which are reported in our benchmark.

1.1 MAIN CONTRIBUTIONS

This work brings state-of-the-art machine learning models to bear on the problem of medical diag-
nosis with the hope that this will lead to better patient outcomes. We have advanced the existing
research in three orthogonal directions:

• This work experimentally verifies that without pre-training, a carefully designed baseline
model that ignores the label dependencies is able to outperform the pre-trained state-of-
the-art by a large margin.
• A collection of metrics is investigated for the purpose of establishing clinically relevant and

interpretable benchmarks for automatic chest x-ray diagnosis.
• We propose to explicitly exploit the conditional dependencies among abnormality labels for

better diagnostic results. Existing RNNs are purposely modified to accomplish such a goal.
The results on the proposed metrics consistently indicate their superiority over models that
do not consider interdependencies.

2 RELATED WORK

2.1 NEURAL NETWORKS IN MEDICAL IMAGING

The present work is part of a recent effort to harness advances in Artificial Intelligence and machine
learning to improve computer-assisted diagnosis in medicine. Over the past decades, the volume of
clinical data in machine-readable form has grown, particularly in medical imaging. While previous
generations of algorithms struggled to make effective use of this high-dimensional data, modern
neural networks have excelled at such tasks. Having demonstrated their superiority in solving diffi-
cult problems involving natural images and videos, recent surveys from Litjens et al. (2017); Shen
et al. (2017); Qayyum et al. (2017) suggest that they are rapidly becoming the “de facto” standard
for classification, detection, and segmentation tasks with input modalities such as CT, MRI, x-ray,
and ultrasound. As further evidence, models based on neural networks dominate the leaderboard in
most medical imaging challenges 1,2.

Most successful applications of neural networks to medical images rely to a large extent on convo-
lutional neural networks (ConvNets), which were first proposed in LeCun et al. (1998). This comes
as no surprise since ConvNets are the basis of the top performing models for natural image under-
standing. For abnormality detection and segmentation, the most popular variants are UNets from
Ronneberger et al. (2015) and VNets from Milletari et al. (2016), both built on the idea of fully
convolutional neural networks introduced in Long et al. (2015). For classification, representative
examples of neural network-based models from the medical literature include: Esteva et al. (2017)
for skin cancer classification, Gulshan et al. (2016) for diabetic retinopathy, Lakhani & Sundaram

1https://grand-challenge.org
2https://www.kaggle.com/c/data-science-bowl-2017
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(2017) for pulmonary tuberculosis detection in x-rays, and Huang et al. (2017b) for lung cancer
diagnosis with chest CTs. All of the examples above employed 2D or 3D ConvNets and all of them
provably achieved near-human level performance in their particular setup. Our model employs a 2D
ConvNet as an image encoder to process chest x-rays.

2.2 MULTI-LABEL CLASSIFICATION

Given a finite set of possible labels, the multi-label classification problem is to associate each in-
stance with a subset of those labels. Being relevant to applications in many domains, a variety of
models have been proposed in the literature. The simplest approach, known as binary relevance,
is to break the multi-label classification problem into independent binary classification problems,
one for each label. A recent example from the medical literature is Wang et al. (2017). The ap-
peal of binary relevance is its simplicity and the fact that it allows one to take advantage of a rich
body of work on binary classification. However, it suffers from a potentially serious drawback: the
assumption that the labels are independent. For many applications, such as the medical diagnos-
tic application motivating this work, there are significant dependencies between labels that must be
modeled appropriately in order to maximize the performance of the classifier.

Researchers have sought to model inter-label dependencies by making predictions over the label
power set (e.g. Tsoumakas & Vlahavas (2007) and Read et al. (2008)), by training classifiers with
loss functions that implicitly represent dependencies (e.g. Li et al. (2017)), and by using a sequence
of single-label classifiers, each of which receives a subset of the previous predictions along with
the instance to be classified (e.g. Dembczyński et al. (2012)). The later approach is equivalent to
factoring the joint distribution of labels using a product of conditional distributions. Recent research
has favored recurrent neural networks (RNNs), which rely on their state variables to encode the
relevant information from the previous predictions (e.g. Wang et al. (2016) and Chen et al. (2017)).
The present work falls into this category.

2.3 KEY DIFFERENCES

To detect and classify abnormalities in chest x-ray images, we propose using 2D ConvNets as en-
coders and decoders based on recurrent neural networks (RNNs). Recently, Lipton et al. (2016)
proposed an RNN-based model for abnormality classification that, based on the title of their paper,
bears much resemblance to ours. However, in their work the RNN is used to process the inputs
rather than the outputs, which fails to capture dependencies between labels; something we set out
to explicitly address. They also deal exclusively with time series data rather than high-resolution
images.

The work of Shin et al. (2016) also addresses the problem of chest x-ray annotation. They built a
cascaded three-stage model using 2D ConvNets and RNNs to sequentially annotate both the abnor-
malities and their attributes (such as location and severity). Their RNN decoder resembles ours in its
functionality, but differs in the way the sequence of abnormalities are predicted. In each RNN step,
their model predicts one of T abnormalities with softmax, and stops when reaching a predefined
upper limit of total number of steps (5 is used in theirs). Instead, our model predicts the presence or
absence of t-th abnormality with sigmoid at time step t and the total number of steps is the number
of abnormalities. The choice of such a design is inspired by Neural Autoregressive Density Estima-
tors (NADEs) of Larochelle & Murray (2011). Being able to predict the absence of an abnormality
and feed to the next step, which is not possible with softmax and argmax, is preferable in the clinical
setting to avoid any per-class overcall and false alarm. In addition, the absence of a certain abnor-
mality may be a strong indication of the presence or absence of others. Beyond having a distinct
approach to decoding, their model was trained on the OpenI3 dataset with 7000 images, which is
smaller and less representative than the dataset that we used (see below). In addition, we propose a
different set of metrics to use in place of BLEU (Papineni et al., 2002), commonly used in machine
translation, for better clinical interpretation.

In the non-medical setting, Wang et al. (2016) proposed a similar ConvNet–RNN architecture. Their
choice of using an RNN decoder was also motivated by the desire to model label dependencies.
However, they perform training and inference in the manner of Shin et al. (2016). Another example

3https://openi.nlm.nih.gov
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of this combination of application, architecture, and inference comes from Chen et al. (2017) whose
work focused on eliminating the need to use a pre-defined label order for training. We show in
the experiments that ordering does not seem to impose as a significant constraint when models are
sufficiently trained.

Finally, Wang et al. (2017) proposed a 2D ConvNet for classifying abnormalities in chest x-ray im-
ages. However, they used a simple binary relevance approach to predict the labels. As we mentioned
earlier, there is strong clinical evidence to suggest that labels do in fact exhibit dependencies that we
attempt to model. They also presented the largest public x-ray dataset to date (“ChestX-ray8”). Due
to its careful curation and large volume, such a collection is a more realistic retrospective clinical
study than OpenI and therefore better suited to developing and benchmarking models. Consequently,
we use “ChestX-ray8” to train and evaluate our model. And it should be noted that unlike Wang et al.
(2017), we train our models from scratch to ensure that the image encoding best captures the features
of x-ray images as opposed to natural images.

3 MODELS

The following notations are used throughout the paper. Denote x as an input image, and x ∈
Rw×h×c where w, h and c represent width, height, and channel. Denote y as a binary vector of
dimensionality T , the total number of abnormalities. We used superscripts to indicate a specific
dimensionality. Thus, given a specific abnormality t, yt = 0 indicates its absence and yt = 1 its
presence. We use subscripts to index a particular example, for instance, {xi,yi} is the i-th example.
In addition, θ denotes the union of parameters in a model. We also use m to represent a vector with
each element mt as the mean of a Bernoulli distribution.

3.1 DENSELY CONNECTED IMAGE ENCODER

A recent variant of Convolutional Neural Network (ConvNet) is proposed in Huang et al. (2017a),
dubbed as Densely Connected Networks (DenseNet). As a direct extension of Deep Residual
Networks (He et al., 2016) and Highway Networks (Srivastava et al., 2015), the key idea behind
DenseNet is to establish shortcut connections from all pairs of layers at different depth of a very
deep neural network. It has been argued in Huang et al. (2017a) that, as the result of the extensive
and explicit feature reuse in DenseNets, they are both computationally and statistically more effi-
cient. This property is particularly desirable in dealing with medical imaging problems where the
number of training examples are usually limited and overfitting tends to prevail in models with more
than tens of millions of parameters.

We therefore propose a model based on the design of DenseNets while taking into account the pecu-
liarity of medical problems at hand. Firstly, the inputs of the model are of much higher resolutions.
Lower resolution, typically with 256 × 256, may be sufficient in dealing with problems related to
natural images, photos and videos, a higher resolution, however, is often necessary to faithfully rep-
resent regions in images that are small and localized. Secondly, the proposed model is much smaller
in network depth. While there is ample evidence suggesting the use of hundreds of layers, such
models typically require hundreds of thousands to millions of examples to train. Large models are
prone to overfitting with one tenth the training data. Figure 1 highlights such a design.

3.2 INDEPENDENT PREDICTION OF LABELS

Ignoring the nature of conditional dependencies among the indicators, yt, one could establish the
following probabilistic model:

P (y|x) =
T∏
t=1

P (yt|x). (1)

Equ (1) assumes that knowing one label does not provide any additional information about any
other label. Therefore, in principle, one could build a separate model for each yt which do not share
any parameters. However, it is common in the majority of multi-class settings to permit a certain
degree of parameter sharing among individual classifiers, which encourages the learned features to
be reused among them. Furthermore, sharing alleviates the effect of overfitting as the example-
parameter ratio is much higher.
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Figure 1: The input image is encoded by a densely connected convolutional neural network (top).
Similar to DenseNets from Huang et al. (2017a), our variant consists of DenseBlocks and Transi-
tionBlocks. Within each DenseBlock, there are several ConvBlocks. The resulting encoded rep-
resentation of the input is a vector that captures the higher-order semantics that are useful for the
decoding task. K is the growth rate in Huang et al. (2017a), S is the stride. We also include the
filter and pooling dimensionality when applicable. Unlike a DenseNet that has 16 to 32 ConvBlock
within a DenseBlock, our model uses 4 in order to keep the total number of parameters small. Our
proposed RNN decoder is illustrated on the bottom right.

3.2.1 TRAINING

During training, the model optimizes the following Maximum Log-likelihood Estimate (MLE) cri-
teria:

Lα = argmax
θ

T∑
t=1

logP (yt|x, θ) (2)

where P (yt|x, θ) is a Bernoulli distribution with its mean mt parameterized by the model. In
particular, mt = sigmoid(f(x, θ)).

3.2.2 INFERENCE

As labels are considered independent and during the inference, a binary label is generated for each
factor independently with yt

∗
= argmaxP (yt|x, θ). This is equivalent to setting the classification

threshold to 0.5.

3.3 EXPLOITING HIGHER-ORDER DEPENDENCIES AMONG LABELS

As discussed in length in Section 1, it is hardly true that abnormalities are independent from each
other. Hence the assumption made by Equ (1) is undoubtably too restrictive. In order to treat the
multi-label problem in its full generality, we can begin with the following factorization, which makes
no assumption of independence:

P (y|x) = P (y0|x)P (y1|y0,x) . . . P (yT |y0, . . . ,yT−1,x). (3)

Here, the statistical dependencies among the indicators, yt, are explicitly modeled within each factor
so the absence or the presence of a particular abnormality may suggest the absence or presence of
others.

The factorization in Equ (3) has been the central study of many recent models. Bengio & Bengio
(2000) proposed the first neural network based model, refined by Larochelle & Murray (2011) and
Gregor et al. (2014), all of which used the model in the context of unsupervised learning in small
discrete data or small image patches. Recently Sutskever et al. (2014); Cho et al. (2014) popularized
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the so-called “sequence-to-sequence” model where a Recurrent Neural Network (RNN) decoder
models precisely the same joint distribution while conditioned on the output of an encoder. Com-
pared with the previous work, RNNs provide a more general framework to model Equ (3) and an
unmatched proficiency in capturing long term dependencies when K is large.

We therefore adopt the Long-short Term Memory Networks (LSTM) (Hochreiter & Schmidhuber,
1997) and treat the multi-label classification as sequence prediction with a fixed length. The formu-
lation of our LSTM is particularly similar to those used in image and video captioning (Xu et al.,
2015; Yao et al., 2015), but without the use of an attention mechanism and without the need of
learning when to stop.

Given an input x, the same DenseNet-based encoder of Section 3.2 is applied to produce a lower
dimensional vector representation of it with

xenc = fenc(x) (4)
For the decoder, xenc is used to initialize both the states and memory of an LSTM with

h0 = fh0
(xenc) c0 = fc0(xenc) (5)

where fh0
and fc0 are standard feedforward neural networks with one hidden layer. With h0 and c0,

the LSTM decoder is parameterized as
gti = sigmoid(xencWi + ht−1Ui + yt−1Vi + bi) (6)

gto = sigmoid(xencWo + ht−1Uo + yt−1Vo + bo) (7)

gtf = sigmoid(xencWf + ht−1Uf + yt−1Vf + bf ) (8)

gtg = xencWg + ht−1Ug + yt−1Vg + bg (9)

ct = gtf � ct−1 + gti � tanh(gtg) (10)

ht = gto � tanh(ct) (11)

mt = sigmoid(htqT + bl) (12)
where model parameters consist of three matrices Ws, Us, Vs, vectors bs and a scalar bl. y is a
vector code of the ground truth labels that respects a fixed ordering, with each element being either
0 or 1. All the vectors, including hs, gs, cs, bs, q and y are row vectors such that the vector-matrix
multiplication makes sense. � denotes the element-wise multiplication. Both sigmoid and tanh are
element-wise nonlinearities. For brevity, we summarize one step of decoder computation as

mt = fdec(xenc,yt−1,ht−1) (13)
where the decoder LSTM computes sequentially the mean of a Bernoulli distribution. With Equ (3),
each of its factor may be rewritten as

P (yt|y0, . . . ,yt−1,x) = P (yt = 1)m
t

P (yt = 0)(1−mt) (14)

3.3.1 THE DESIGN CHOICE OF SIGMOID

The choice of using sigmoid to predict yt is by design. Standard sequence-to-sequence models
often use softmax to predict one out of T classes and thus need to learn explicitly an “end-of-
sequence” class. This is not desirable in our context due to the sparseness of the labels, resulting
in the learned decoder being strongly biased towards predicting “end-of-sequence” while missing
infrequently appearing abnormalities. Secondly, during the inference of the softmax based RNN
decoder, the prediction at the current step is largely based on the presence of abnormalities at all
previous steps due to the use of argmax. However, in the medical setting, the absence of previously
predicted abnormalities may also be important. Sigmoid conveniently addresses these issues by
explicitly predicting 0 or 1 at each step and it does not require the model to learn when to stop; the
decoder always runs for the same number of steps as the total number of classes. Figure 1 contains
the overall architecture of the decoder.

3.3.2 TRAINING

During training, the model optimizes

Lβ = argmax
θ

T∑
t=1

logP (yk|y0, . . . ,yt−1,x, θ) (15)
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Compared with Equ (1), the difference is the explicit dependencies among yts. One may also
notice that such a factorization is not unique – in fact, there exist T ! different orderings. Although
mathematically equivalent, in practice, some of the orderings may result in a model that is easier to
train. We investigate in Section 4 the impact of such decisions with two distinct orderings.

3.3.3 INFERENCE

The inference of such a model is unfortunately intractable as y∗ = argmaxy P (y
0, . . . ,yT |x).

Beam search (Sutskever et al., 2014) is often used as an approximation. We have found in practice
that greedy search, which is equivalent to beam search with size 1, results in similar performance
due to the binary sampling nature of each yt, and use it throughout the experiments. It is equivalent
to setting 0.5 as the discretization threshold on each of the factors.

4 EXPERIMENTS

4.1 DATASET

To verify the efficacy of the proposed models in medical diagnosis, we conduct experiments on the
dataset introduced in Wang et al. (2017). It is to-date the largest collection of chest x-rays that is
publicly available. It contains in total 112,120 frontal-view chest x-rays each of which is associated
with the absence or presence of 14 abnormalities. The dataset is originally released in PNG format,
with each image rescaled to 1024 × 1024.

As there is no standard split for this dataset, we follow the guideline in Wang et al. (2017) to ran-
domly split the entire dataset into 70% for training, 10% for validation and 20% for training. The
authors of Wang et al. (2017) noticed insignificant performance difference with different random
splits, as confirmed in our experiments by the observation that the performance on validation and
test sets are consistent with each other.

4.2 PERFORMANCE METRICS

As the dataset is relatively new, the complete set of metrics have yet to be established. In this work,
the following metrics are considered, and their advantage and drawbacks outlined below.

1. Negative log-probability of the test set (NLL). This metric has a direct and intuitive
probabilistic interpretation: The lower the NLL, the more likely the ground truth label.
However, it is difficult to associate it with a clinical interpretation. Indeed, it does not
directly reflect how accurate the model is at diagnosing cases with or without particular
abnormalities.

2. Area under the ROC curves (AUC). This is the reported metric of Wang et al. (2017)
and it is widely used in modern biostatistics to measure collectively the rate of true de-
tections and false alarms. In particular, we define 4 quantities: (1) true positive as TP:
model predicts 1 with ground truth 1. (2) true negative as TN: model predicts 0 with
ground truth 0. (3) false positive as FP: model predicts 1 with ground truth 0. (4) false
negative as FN: model predicts 0 with ground truth 1. Sensitivity (or recall) is computed
as TP/(TP + FN) that measures the success of identifying abnormal cases. Specificity
is TN/(TN + FP) that measures the success of not flagging normal cases as abnormal.
The ROC curve has typically horizontal axis as (1-specificity) and vertical axis as sensi-
tivity. Once P (yi|x) is available, the curve is generated by varying the decision threshold
to discretize the probability into either 0 or 1. Despite of its clinical relevance, P (yi|x) is
intractable to compute with the model of Equ (3) due to the need of marginalizing out other
binary random variables. It is however straightforward to compute with the model of Equ
(1) due the independent factorization.

3. DICE coefficient. As a similarity measure over two sets, DICE coefficient is formulated
as DICE(yα,yβ) = (2yαyβ)/(y

2
α + y2

β) = 2TP/(2TP + FP + FN) with the maxima
at 1 when yα ≡ yβ . Such a metric may be generalized in cases where yα is a predicted
probability with yα = P (y|x) and yβ is the binary-valued ground truth, as is used in image
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segmentation tasks such as in Ronneberger et al. (2015); Milletari et al. (2016). We adopt
such a generalization as our models naturally output probabilities.

4. Per-example sensitivity and specificity (PESS). The following formula is used to compute
PESS

PESS =
1

N

N∑
i=1

sensitivity(ŷi,yi) + specificity(ŷi,yi)
2

(16)

where N is the size of the test set. Notice that the computation of sensitivity and specificity
requires a binary prediction vector. Therefore, without introducing any thresholding bias,
we use

ŷi =

{
1 P (yi|xi) > 0.5

0 otherwise

5. Per-class sensitivity and specificity (PCSS). Unlike PESS, the following formula is used
to compute PCSS

PCSS =
1

T

T∑
t=1

sensitivity(ŷti ,y
t
i) + specificity(ŷti ,y

t
i)

2
(17)

where ŷti follows the same threshold of 0.5 as in PESS. Unlike PCSS where the average is
over examples, PCSS averages over abnormalities instead.

4.3 TRAINING PROCEDURES

Three types of models are tuned on the training set. We have found that data augmentation is
crucial in combatting the overfitting in all of our experiments despite their relatively small size. In
particular, the input image of resolution 512 × 512 is randomly translated in 4 directions by 25
pixels, randomly rotated from -15 to 15 degrees, and randomly scaled between 80% and 120%.
Furthermore, the ADAM optimizer Kingma & Ba (2015) is used with an initial learning rate of
0.001 which is multiplied by 0.9 whenever the performance on the validation set does not improve
during training. Early stop is applied when the performance on the validation set does not improve
for 10,000 parameter updates. All the reported metrics are computed on the test set with models
selected with the metric in question on the validation set.

In order to ensure a fair comparison, we constrain all models to have roughly the same number of
parameters. For modela, where labels are considered independent, a much higher network growth
rate is used for the encoder. For modelb1 and modelb2 where LSTMs are used as decoders, the
encoders are narrower. The exact configuration of three models is shown in Table 1. In addition, we
investigate the effect of ordering in the factorization of Equ (3). In particular, modelb1 sorts labels by
their frequencies in the training set while modelb1 orders them alphabetically. All models are trained
with MLE with the weighted cross-entropy loss introduced in Wang et al. (2017). All models are
trained end-to-end from scratch, without any pre-training on ImageNet data.

Table 1: Hyper-parameter configuration of three models. To ensure the fairness of the comparison,
we deliberately reduce the capacity of the encoder for modelb1 and modelb2 to match the total
number of parameters of modela.

# of dense block × # of conv block growth rate LSTM dim. total # of params
modela 4 × 3 38 - 1,007K

modelb1,b2 4 × 3 19 100 1,016K

4.4 QUANTITATIVE RESULTS

The AUC per abnormality is shown in Table 2, computed based on the marginal distribution of
P (y|x). Only modela is included as such marginals are in general intractable for the other two
due to the dependencies among yts. In addition, Table 3 compares all three models based on the
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proposed metrics from Section 4.2. It can be observed that our baseline model significantly outper-
formed the previous state-of-the-art. According to Table 3, considering label dependencies brings
significant benefits in all 4 metrics and the impact of ordering seems to be marginal when the model
is sufficiently trained.

Table 2: Fifteen abnormalities and their AUCs, including the average AUC over all abnormalities.
The model is trained without pre-training or feature extraction from ImageNet. The model corre-
sponds to the one in Section 3.2 where yts are considered independent. This table excludes the
model from Section 3.3 because AUC requires P (yt|x), which is in general intractable.

abnormality Wang et al. (2017) modela
atelectasis 0.716 0.772

cardiomegaly 0.807 0.904
effusion 0.784 0.859

infiltration 0.609 0.695
mass 0.706 0.792

nodule 0.671 0.717
pneumonia 0.633 0.713

pneumothorax 0.806 0.841
consolidation 0.708 0.788

edema 0.835 0.882
emphysema 0.815 0.829

fibrosis 0.769 0.767
PT 0.708 0.765

hernia 0.767 0.914
A.V.G. 0.738 0.798

no finding - 0.762

Table 3: Test set performance on negative log-probability (NLL), DICE, per-example sensitivity
(PESS) at a threshold 0.5 and per-class sensitivity and specificity (PCSS) at a threshold of 0.5.
See Section 4.2 for explanations of the metrics. In addition to modela used in Table 2, modelb1 and
modelb2 corresponds to the model introduced in Section 3.3, with the difference in the ordering of the
factorization in Equ (3). modelb1 sorts labels by their frequency in the training set in ascending order.
As a comparison, modelb2 orders labels alphabetically according to the name of the abnormality.

NLL DICE PESS0.5 PCSS0.5

modela 4.474 0.261 0.752 0.665
modelb1 4.099 0.310 0.765 0.676
modelb2 3.848 0.310 0.767 0.677

5 CONCLUSION

To improve the quality of computer-assisted diagnosis of chest x-rays, we proposed a two-stage
end-to-end neural network model that combines a densely connected image encoder with a re-
current neural network decoder. The first stage was chosen to address the challenges to learning
presented by high-resolution medical images and limited training set sizes. The second stage was
designed to allow the model to exploit statistical dependencies between labels in order to improve
the accuracy of its predictions. Finally, the model was trained from scratch to ensure that the best
application-specific features were captured. Our experiments have demonstrated both the feasibil-
ity and effectiveness of this approach. Indeed, our baseline model significantly outperformed the
current state-of-the-art. The proposed set of metrics provides a meaningful quantification of this
performance and will facilitate comparisons with future work.

While a limited exploration into the value of learning interdependencies among labels yields promis-
ing results, additional experimentation will be required to further explore the potential of this
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methodology both as it applies specifically to chest x-rays and to medical diagnostics as a whole.
One potential concern with this approach is the risk of learning biased interdependencies from a
limited training set which does not accurately represent a realistic distribution of pathologies – if
every example of cardiomegaly is also one of cardiac failure, the model may learn to depend too
much on the presence of other patterns such as edemas which do not always accompany enlarge-
ment of the cardiac silhouette. This risk is heightened when dealing with data labeled with a scheme
which mixes pathologies, such as pneumonia, with patterns symptomatic of those pathologies, such
as consolidation. The best approach to maximizing feature extraction and leveraging interdependen-
cies among target labels likely entails training from data labeled with an ontology that inherently
poses some consistent known relational structure. This will be the endpoint of a future study.
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Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. 2014.
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