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Abstract

We study adversarial attacks on stochastic bandits when, differently from previous
works, the attack of the malicious attacker is delayed and starts after the learning
process begins. In particular, we focus on strong attacks and capture the setting
where the malicious attacker does not have information about the beginning of
the learning process. Interestingly, the lack of such information can dramatically
affect the effectiveness of the attack. We analyze this scenario in the case of the
UCB algorithm facing an omniscient attacker, providing a more general framework
to study adversarial attacks on stochastic bandit algorithms. We characterize the
success and profitability of the attack depending on the round in which the attack
starts. In particular, we derive an upper and a lower bound on the number of target
arm pulls, showing that our bound is tight up to a sublinear factor. Moreover, we
provide a condition that identifies when an attack can be successful. Finally, we
empirically evaluate the tightness of our theoretical bounds on synthetic instances.

1 Introduction

In recent years, the adoption of machine learning applications accelerates at an unprecedented pace,
increasing the impact of this technology in industry and in many aspects of humanity. Evaluating
how these systems can be harmed is crucial. Many works address this issue in deep learning and
reinforcement learning, trying to understand how a malicious entity could “attack” machine learning
systems to alter their behaviour Goodfellow et al. [2014], Sun et al. [2020], Inkawhich et al. [2019].
Other works instead investigate defence strategies, designing robust techniques Chen et al. [2019],
Zhang et al. [2020], Pattanaik et al. [2017]. However, the problem of security remains open and
is still immature. In optimal decision-making scenarios, the concept of “attack” can be translated
as a way to alter the learner’s behaviour, fooling the algorithm into selecting specific actions or
dramatically reducing the performance. Multi-Armed Bandits (MAB) Auer et al. [2002] are popular
and appealing online decision-making algorithms as they provide important theoretical guarantees.
Being a balanced framework concerning usability and training, they are used in several real-world
scenarios Bouneffouf et al. [2020] such as medical trials [Durand et al., 2018], recommender systems
[Zhou et al., 2017], advertising [Castiglioni et al., 2022], and finance [Shen et al., 2015, Huo and Fu,
2017].

In the adversarial attack framework on multi-armed bandits (MAB) there are three entities: a
learner, an environment, and an attacker. The learner aims to optimize its policy interacting with
the environment. The attacker tries to alter the behaviour of the learner its by corrupting the reward
feedback. The attacker aims to fool the learner into selecting a specific target arm which is sub-optimal.
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In previous works, the attack starts at the beginning of the learning process and it is considered
successful if the learner, upon receiving corrupted observations, selects the target arm T − o(T )
times. In this works, the attacker decides the amount of corruption observing the arm played by the
learner and the reward generated by the environment. Such framework is denoted as strong attack
model and was originally proposed by Jun et al. [2018], becoming a standard in adversarial attacks
literature on MAB. The strong attack framework has been proved to be unrecoverable for most of
the classical bandit algorithms Jun et al. [2018], Liu and Shroff [2019] meaning that a learner under
attack will always experience linear regret. However, all previous works designed unrecoverable
attacks under the strong assumption that the attack starts synchronously with the start of the bandit
learning dynamics. This assumption implicitly requires that the attacker has perfect information
about the start of the learning process. This is not always possible in practice. Indeed, in real-world
applications, when an attacker decides to attack it does not know the current step t of the learning
process. Motivated by this observation, it is natural to investigate the theoretical guarantees of an
attack starting at time tA of the learning process. We call this new framework delayed attack model.
To the best of our knowledge, this problem is completely unexplored in bandits with adversarial
attacks.

1.1 Original Contributions

We define the delayed attack model, a generalization of the classic adversarial attack framework,
where an attack can start at a generic time tA, providing renewed definition of a successful attack.
Intuitively, as tA increases, it becomes hard to match the definition of success of previous works, i.e.,
force the learner to selects the target arm T − o(T ) times. This requires a more fine-grained analysis
of what it is possible to achieve in this setting. In particular, we identify an attack as successful
if the learner selects the target arm a linear number of times. Moreover, we define the concept of
profitability that is related to how effective is the attack in forcing the learner to select the target arms.

We focus on an UCB learner and an omniscient attacker (i.e., that knows the problem instance) and
we derive an upper and lower bound on the number of pulls of the target arm as a function of the
beginning of the attack tA. In particular, we show that under an optimal attack the number of pull of
the target arm is approximately

(T − tA)− ∆o,τ

ϵ
tA,

where ∆o,τ is the difference between the mean reward of the optimal arm and the target arm, and the
corruption is ∆o,τ + ϵ. Intuitively, as it is customary in the literature, ϵ is a parameter that identify
how prone is the attacker to corrupt the rewards more than the minimum requirement ∆o,τ . Our
bounds are tight up to a sublinear factor. This provides a tight characterization of the pulls of the
target arm induced by an optimal attack depending on the starting time tA. Furthermore, we provide
a condition to characterize whether an attack can be successful depending on the starting time tA. In
particular, we identify the threshold value

α∗(∆o,τ , ϵ) =
ϵ

ϵ+∆o,τ

that depends on the gap ∆o,τ , and the parameter ϵ. We show that if the attack starts at time tA = αT
with α < α∗, then under our attack the learner plays the target arm a linear number of times. On
the other hand, if the attack starts at time tA = αT with α > α∗, then under under any attack the
learner plays the target arm a sublinear number of times. Finally, we empirically evaluate our attack
via numerical experiments.

1.2 Related Works

The literature on adversarial attack on stochastic bandits can be divided into techniques to craft
attacks and design of robust algorithms. Jun et al. [2018] introduce adversarial attacks on stochastic
bandits, define the general framework, and propose several attack techniques. In particular, Jun
et al. [2018] introduce the oracle attack where the attacker is omniscient, i.e., knows the problem
instance, and the first two strong attack algorithms specific for ϵ-greedy and UCB. Liu and Shroff
[2019] propose the Adaptive attack by Constant Estimation (ACE), an attack strategy agnostic to
the learner’s algorithm. Such works operate in the strong attack scenario where the attacker can
observe both the played action and the corresponding reward. In contrast to this attack model, in the

2



weak attack setting, the attacker can only observe the reward vector generated by the environment.
In the weak attack setting, Xu et al. [2021] propose an attack technique where the attacker does
not need observations and provides a criterion to characterize families of bandits that are naturally
vulnerable to adversarial attacks. The weak setting is clearly worse for the attacker and is mainly
used in works regarding defence techniques. Concerning robust algorithms against adversarial attacks
on stochastic bandits, Lykouris et al. [2018] propose a robust variation of the Active Arm Elimination
(AAE) algorithm in the weak attack setting agnostic to the amount of corruption injected. In the
same setting, Gupta et al. [2019] propose a corruption agnostic robust algorithm. Rangi et al. [2022]
study a defence mechanism against a weak attacker in the stochastic setting when the learner can
access limited corruption-free samples. Guan et al. [2020] propose a robust algorithm for a different
attack model where the attacker can deal with an unbounded attack with a certain probability. Zhong
et al. [2021] proposes Probabilistic Sequential Shrinking (PSS), a robust technique for the best arm
identification problem under adversarial corruption. Aside from the stochastic bandit setting, several
works analyse the adversarial attack framework also for adversarial bandits [Ma and Zhou, 2023,
Yang et al., 2021], for gaussian process bandits [Bogunovic et al., 2020a, Han and Scarlett, 2022],
continuous Markov decision processes [Maran et al., 2024], contextual bandits [Garcelon et al., 2020,
Bogunovic et al., 2020b, Wang et al., 2022] and combinatorial bandits [Balasubramanian et al., 2024,
Dong et al., 2022].

2 Preliminaries

In a MAB Auer et al. [2002] a learner interacts with an environment for T rounds. The learner
has K available arms or actions. Each arm i ∈ [K] 1 is associated with a σ2-sub-Gaussian reward
distribution γi with mean µi unknown to the learner. At each time t ∈ [T ], the learner selects an arm
i ∈ [K] and observes the corresponding reward ri(t) ∼ γit generated by the environment. We denote
the optimal arm as o = argmaxi∈[K] µi. Let I {·} be the indicator function. Then, we denote with

Nj(t) =

t∑
k=1

I {ik = j}

the number of times an arm j ∈ [K] has been pulled until time t ∈ [T ], and with

Nj(t1 → t2) =

t2∑
k=t1

I {ik = j}

the number of times an arm j ∈ [K] has been pulled in the interval [t1, t2] with t1 < t2 and
t1, t2 ∈ [T ]. Moreover, we denote with ∆i,j := µi − µj the gap between the means of two different
arms i, j ∈ [K]. Finally, we define as ni(t) = {t′ ≤ t : it = i} the set of rounds where arm i is
selected up to round t, and with µ̂i(t) =

∑
t′∈ni(t)

r(t′)/Ni(t) the average reward of arm i up to
round t.

The learner’s objective is to minimize the regret over the time horizon, where the regret is defined as:

R(T ) = µoT −
T∑

t=1

µit . (1)

2.1 Recap on Classical Adversarial Attacks

In the classical adversarial attack framework, an additional entity, called the attacker, sits between the
learner and the environment. The attacker, at each round t ∈ [T ], upon observing the arm i played by
learner and the reward generated ri(t) may craft a corruption ct to alter the reward observed by the
learner in the following way:

r̃i(t) = ri(t)− ct. (2)

The attacker aims to fool the learner into selecting a target sub-optimal arm τ . We assume that the
target arm τ is such that µτ < µo, otherwise, the learner converges to play the target arm even without

1In this work, we refer as [A], A ∈ N, to the set {1, . . . , A}.
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the attack. 2 The aim of the attacker is to craft the minimal amount of corruption ct such that the
learner, receiving corrupted observations, believes the target arm τ optimal. The attacker is evaluated
in terms of successfulness and cost of the attack. An attack is successful if the learner selects the
target arm τ for Nτ (T ) = T − o(T ) rounds in expectation or high-probablity while the attacker pays
a sublinear cost [Jun et al., 2018, Liu and Shroff, 2019]. The cost is defined as the total corruption
injected in the time horizon C(T ) =

∑T
t=1 |ct|. In general, there is not a fixed budget for the attack.

However, in designing attack techniques we prefer to be stealth, i.e., we aim for attacks that minimize
the cost ct inflicted at each round as dealing too much corruption at once can be suspicious in a
realistic scenario.

2.2 Oracle Attack

An attack strategy is an online algorithm that, upon observing the arm i played by the learner and
the generated reward ri(t), returns a corruption ct. The oracle attack model proposed by Jun et al.
[2018] is an ideal attack model where the attacker is omniscient, i.e., knows the true means µi for all
i ∈ [K]. While an omniscient attacker might be unrealistic in practice, this attack model is useful to
provide a cleaner attack and analysis. In the following, we introduce the main components of the
attack in [Jun et al., 2018]. Suppose the attacker knows the true mean of each arm. When the learner
selects an arm i different than the target τ the attacker crafts an attack ct such that:

ct = I{i ̸= τ} [∆τ,i + ϵ]+ (3)

Where, [k]+ = max(0, k) and ϵ is an arbitrary constant strictly greater than 0. Several attack
strategies provide attacks that do not assume an omniscient attacker, such as the attack to UCB in
[Jun et al., 2018] or the more generic Adaptive attack by Constant Estimation (ACE) [Liu and Shroff,
2019].

The standard framework of adversarial attacks on stochastic bandits that we described assumes the
attacker injects corruption from tA = 1, i.e., when the bandit algorithm is instantiated and has no
prior observations. This attack model have been proven undefendable against an attack. However,
such negative result is heavily base on the tA = 1 assumption. In the following section, we present a
generalized model in which we relax this assumption analysing attacks that starts at an arbitrary time
tA ≥ 1.

3 Delayed-Attack Framework

L

A

E

i

ri(t)

t ≤ tA

i, ri(t)

t > tA

ri(t)− ct

Figure 1: Delayed adversarial attack framework.
L represent the learner, E the Environment, and A
the attacker.

The delayed adversarial attack framework ex-
tends the classical attack model proposed by Jun
et al. [2018] removing the assumption that the
attack starts at tA = 1. In particular, we assume
a starting time tA ≥ 1 and analisy as the start-
ing time affects the performance of an optimal
attack. Clearly, the classical attack framework
represents a special case where tA = 1. For each
time t ≤ tA, the learner acts in a corruption-free
scenario, as if the attacker is absent. For t > tA

the attacker starts to inject corruption ct at each
round until the end of the horizon T to fool the
learner into selecting the target arm τ instead of
the optimal arm. Figure 1 provides a graphical
representation of the setting.

Formally, we divide the horizon T into two phases. A pre-corruption phase with T1 = tA rounds
and a post-corruption phase with T2 rounds such that T = T1 + T2. Thus in T1 the learner acts as
in a classic bandit problem, i.e., with no corruption. In T2 the problem shifts toward an adversarial
attack model. However, at this point the learner has already good estimates of the environment and
this makes the task of performing an attack much more challenging.

2We assume that τ is the arm with the lowest average reward i.e., µτ = mini∈[K] µi. This is w.l.o.g. because
all the arms with mean reward lower than the target arm can be eliminated since they are played a sub-linear
number of times even without the attack.
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3.1 Learner and attacker models

In our theoretical analysis, we focus on the specific case of a learner that employs an UCB algorithm.
In particular, we use the same implementation for σ2-sub-Gaussian rewards proposed by Jun et al.
[2018] where the selection rule is:

It =

{
t, if t ≤ K

argmaxi

{
µ̂i(t− 1) + 3σ

√
log T

Ni(t−1)

}
, otherwise.

(4)

As the attack model, we consider the oracle attack defined in Eq. (3). To simplify the exposition, we
work under the assumption that the attacker knows the true means. This assumption can be easily
removed replacing the true mean with the empirical one (see, e.g., [Jun et al., 2018]).

Under these assumptions, we propose a theoretical analysis on (i) the successfulness and (ii) profitabil-
ity of the attack. In this scenario, it is necessary to redefine the meaning of successfulness. First of all,
it is too strict to assume that the attack is successful only if the target is selected Nτ (T ) = T − o(T )
times. Indeed, the target arm is played a sublinear number of times in the rounds preceding the attack.
Profitability, instead, is a new more fine-grained metric to measure the effectiveness of an attack.

3.2 Successfulness Analysis

Previous literature defined successfulness as the guarantee that the non-target arms are played a
sublinear number of times while the attacker pays a logarithmic cost. As we discussed earlier, this
condition is too restrictive for our setting. Hence, we need a weaker notion of successfulness. In
particular, with the term successfulness we refer to a condition that establishes when the attack force
the learner to pull the target arm a linear number of times. Formally:
Definition 3.1 (Successfulness). An Adversarial Attack starting at time tA to a UCB learner with
σ2-sub-Gaussian rewards acting over a horizon of T rounds is successful if the target arm τ is selected
at least:

Nτ (T ) = Ω(T ) (5)
times in high probability or expectation.

Intuitively, this condition is intimately related to fool the learner into “believe” that the target arm is
optimal. Similarly, if the attack is unsuccessful, the UCB learner will not “believe” the target arm is
optimal and injecting corruption may be useless. Starting to attack at time tA = 1, the feasibility of
the attack is almost always possible since, from the very first rounds, the learner receives corrupted
observations. However, in our scenario, every non-corrupted sample fortifies the learner’s estimates,
increasing the corruption required to convince the learner to bet on the target arm. Depending on the
starting time tA, we can have situations where the attack is impossible, i.e., the learner will never
believe the target arm τ optimal.

3.3 Profitability

Successfulness is a binary condition that distinguishes between successful and non-successful attacks
depending on the number of times the target arm is selected. However, this condition is verified in
very different situations as it only requires a linear number of pulls of the target arm. For this reason,
we will also use a more fine-grained metric of successfulness called profitability.

The rationale behind this metric is quantifying how many times the attacker makes the learner pulls
the target arm τ given that the attack is successful. Profitability responds to the question: "Given that
the attack is successful, how many times the learner will select the target arm?" The profitability
corresponds to the quantification of how many times the target arm has been pulled. Formally, it is
defined as:
Definition 3.2 (Profitability). The profitability of a successful attack is defined as the number of
times the target arm Nτ (T ) is pulled.

In other words, when an attack is successful, the attacker succeeded in making the learner believing
that the target arm τ is optimal, fooling the learner into selecting τ a linear number of times Ω(T ).
Instead, profitability is the actual measure of the number of times the target arm has been pulled.
These two definitions provide a more fine-grained way to quantify an adversarial attack in the
proposed setting.
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4 Theoretical Analysis

In this section, we provide theoretical guarantees on the successfulness and profitability of the
attack considering a UCB learner and an oracle attacker defined in Section 2. In particular, our core
contribution is the derivation of a bound on the number of pulls of the target arm Nτ (T ), given that
the attack starts at time tA ≥ 1. Such result follows from Lemma 4.2, which provides an upper bound
on the number of pulls of the optimal arm, and Lemma 4.3, which instead defines an upper bound on
the number of pulls of a sub-optimal arm i /∈ {o, τ}. In the delayed scenario, we must distinguish
between the optimal o and a generic arm i. Since the learner experience O(log(T )) regret and has
acted free of corruption for T1 rounds, it may already have a robust estimate of the optimal arm.
Indeed, the optimal arm has been played a linear number of times in T1 before the attack. This is
not the case for sub-optimal arms that have been played a logarithmic number of times and have less
consolidated estimates. Before moving into the main theorems, similar to Jun et al. [2018] and Liu
and Shroff [2019], we derive a bound for the empirical means for each arm for each round. To this
extent, define the event E = {|µ̂i(t)− µi| ≤ β(Ni(t)) ∀i,∀t} where given a probability δ > 0 the
function β(N) is defined as:

β(Ni(t)) =

√
log( 2KT

δ )2σ2

Ni(t)
. (6)

This is slightly different from the radius proposed by Jun et al. [2018] and Liu and Shroff [2019]
since in our work we fix the horizon T . Then, we prove that event E holds with high-probability:
Lemma 4.1. For any δ ∈ (0, 1),P(E) > 1− δ.

Although the proof is standard, it is reported in Appendix A for completeness. Thanks to
Lemma 4.1, with probability at least 1 − δ, we can bound the mean µi of arm i in the interval
[µ̂i(t)− β(Ni(t)), µ̂i(t) + β(Ni(t))] . If the attack starts at time tA = 1, the target arm is immedi-
ately recognized as optimal since the corruption will fake the observation from the beginning. In
our scenario, the learner constructs a corruption-free estimate of each arm for t < tA rounds, and
upon reaching round tA the UCB learner will select the optimal arm o approximately No(t

A) ≈ tA

times, while every other arm i will be selected Ni(t
A) ≈ log(tA). After tA the corruption starts. In

the following, we provide an upper bound on how many times the learner will select any non-target
arm before believing the target arm is optimal. This is equivalent to finding an upper bound on the
quantities No(t

A → t) and Ni(t
A → t). The following inequality determines a sufficient condition

to guarantee that an arm i is not pulled at a given time t:
µ̂c
i (t) + βUCB(Ni(t)) ≤ µ̂τ (t) + βUCB(Nτ (t)), (7)

where µ̂c
i (t) represents the partial corrupted estimator for arm i (corrupted after tA) formally defined

as:

µ̂c
i (t) = µ̂i(t)−

∑t
k=tA ck

Ni(tA → t)
, (8)

with tA < t and with ck being the corruption crafted by the attacker during the corruption interval.
Now, let

η :=

√
ϵσ2

(
2 log

(
2KT
δ

)
+ 9 log T

)
∆o,τT1

. (9)

For the ease of presentation, we use the term η in Eq. (9) that incorporates the confidence radius
β defined in Eq. (6), and the confidence radius of UCB. Analyzing Inequality (7), we obtain the
following lemma, which formally states the bound for the optimal arm pulls in the corruption phase:
Lemma 4.2. Suppose a UCB learner acts in a non-corrupted scenario for T1 rounds. Suppose
a strong attacker, knowing the true means, injects corruption via oracle attack with ϵ > 0 for the
remaining T2 rounds. Then, with high probability, the learner will select the optimal arm in the
corruption phase at most:

No(t
A → T ) ≤ (η +∆o,τ )T1

ϵ− η
. (10)

Similarly, we can bound the number of pulls for a sub-optimal (and not-target) arm i. Let

ψi :=

√
ϵσ2

(
2 log

(
2KT
δ

)
+ 9 log T

)
∆i,τ log (T1)

. (11)
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Intuitively, the term ψi incorporates the confidence radius β and the confidence radius of UCB for
the specific arm i. Formally, we obtain the following lemma:
Lemma 4.3. Suppose a UCB learner acts in a non-corrupted scenario for T1 rounds. Suppose a
strong attacker, knowing the true means, injects corruption via oracle attack, with ϵ > 0 for the
remaining T2 rounds. Then, with high probability, the learner will select a generic non-optimal arm i
in the corruption phase at most:

Ni(t
A → T ) ≤ (ψi +∆i,τ ) log T1

ϵ− ψi
. (12)

Then, we can state the core theorem to lower bound the number of target arm pulls in the corruption
horizon.
Theorem 4.4. Suppose a UCB learner acts in a non-corrupted scenario for T1 rounds. Suppose
a strong attacker, knowing the true means, injects corruption via oracle attack with ϵ > 0 for the
remaining T2 rounds. Then, with high probability, the learner will select the target arm τ in the
corruption phase at least:

Nτ (t
A → T ) ≥ T2 −

η +∆o,τ

ϵ− η
T1 −

∑
i∈[K]\{τ,o}

ψi +∆i,τ

ϵ− ψi
log T1.

The proof of Theorem 4.4 follows from Lemma 4.2 and Lemma 4.3. The following Corollary 4.5
shows the asymptotic definition of Theorem 4.4:
Corollary 4.5. Suppose a UCB learner acts in a non-corrupted scenario for T1 rounds. Suppose
a strong attacker, knowing the true means, injects corruption via oracle attack with ϵ > 0 for the
remaining T2 rounds. Then, with high probability, the learner will select the target arm τ in the
corruption phase at least:

Nτ (t
A → T ) ≥ T2 −

∆o,τ

ϵ
T1 − o(T ). (13)
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Figure 2: Each figure compares three identical UCB learners, each attacked at a different start time
tA. In particular, we show a comparison of the cumulative regrets in Figure 2a, cumulative rewards
in Figure 2b and the attack cost in Figure 2c with a 95% confidence interval over 10 experiments.
Each learner is attacked at a different time: from the start (tA = 1) and respectively before and after
the successfulness threshold α∗T (the two dotted vertical lines), to show the magnitude of changes in
the correspondent metric.

4.1 Successfulness threshold

In this section, we show how the results in the previous section directly imply results on the success-
fulness of an attack. To this extent, notice that Lemma 4.2 provides the minimum number of rounds
No(t

A → T ), in the corruption phase, required to change the belief of a UCB learner subject to an
oracle attack, for selecting the target arm. In other words, before the learner believes that τ is optimal,
there still will be many No(t

A → T ) rounds in which the learner will select the optimal arm o. With
this in mind, we can have situations where, for some start attack time tA, even introducing corruption,
the learner may never believe the target arm to be optimal, resulting in an unsuccessful attack. As
a trivial example, if the attack starts near the horizon’s end, the attack cannot select the target arm
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a linear number of times. A natural question that arises reasoning about the fact above is whether
exists a threshold α∗ that identifies the break-even point in the horizon α∗T where any attack starting
after tA > α∗T cannot make the learner pull the target arm τ a linear number of times. Intuitively,
the threshold α∗, given ∆o,τ and fixed a value for ϵ can discriminate for any starting time tA if the
attack will be successful. Such condition can be derived from Theorem 4.4 and can be expressed in
closed form as a parameter α∗(∆o,τ , ϵ) that depends on the optimal gap ∆o,τ and the parameter ϵ.
Formally:

Corollary 4.6. Fixed a constant corruption ϵ > 0. If the attack starts at αT with α < α∗(∆o,τ , ϵ), a
UCB learner will select the target arm τ at least Ω(T ) times with high probability.

The proof follows from the derivation of the lower bound on Nτ (t
A → T ). Finally, we prove that

our bounds are tight. In particular, with the following theorem, we provide a tight upper bound on the
number of target arm pulls.

Theorem 4.7. Suppose a UCB learner acts in a non-corrupted scenario for T1 rounds. Suppose a
strong attacker, knowing the true means, injects corruption from time αT with α < α∗ via oracle
attack with ϵ > 0. Then, with high probability, the learner will select the target arm τ in the
corruption phase at most:

Nτ (t
A → T ) ≤ T2 −

∆o,τ

ϵ
T1 + o(T ).

Similarly, as a corollary, we can show that if the attack starts from αT with α > α∗(∆o,τ , ϵ), it is not
successful in high probability.

Corollary 4.8. Fixed a constant corruption ϵ > 0, if the attack starts at αT with α > α∗(∆o,τ , ϵ), a
UCB learner will select the target arm τ at most o(T ) times with high probability.

5 Numerical Experiments

In this section, we provide numerical experiments to support our theoretical claims. In all the
experiments, we use the UCB algorithm defined in Equation (4) for the learner and the oracle attack
model as attacker defined in Equation (3). We conduct two experiments, one comparing three
specific attack times tA before and after the successfulness threshold defined in Corollary 4.6 and
Corollary 4.8. In the second experiment, we show the learner’s metrics when the attack can start in
every possible round of the horizon T .
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Figure 3: This figure shows the behaviour of a UCB learner, victim of an oracle attack, for each
possible attack start time, with a 95% confidence interval on 15 experiments. On the left, Figure 3a
shows the value of total regrets, total rewards and total cost of the attack for different times tA. While
on the right, Figure 3b shows the average number of pulls of the target arm τ and the optimal arm o
depending on the starting time tA.

5.1 Comparison between specific starting times

Given the successfulness threshold α∗ = ϵ
ϵ+∆o,τ

, we show how the learner behaves when the attack
starts in three specific times:
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• from time tA = 1, equal to the previous attack framework.

• from time tA < α∗T where we proved the attack is still successful. We set the attack start
time of tA = 1

2α
∗T .

• from time tA > α∗T where the attack is not successful. Where we set a value for the start
time tA = 3

2α
∗T

We evaluate a learner with two arms: the optimal arm o with a mean reward set to µo = ∆ with
∆ > 0 and a target arm τ with mean reward µτ = 0. We choose ∆ = 0.5. Error tolerance δ is set
to 0.05, and σ is set to 0.1. The Oracle attacker has the parameter ϵ set to 0.05. As environment
parameters, the rewards for each arm i are i.i.d. sampled from a Gaussian distribution N (µi, σ

2).
We perform E = 10 trials with a horizon T = 105. For the experiment’s reproducibility, we set the
random seed to 1234. The results of this experiment are reported in Figure 2. The experiment results
show that starting the attack at different times drastically changes the outcome. In particular, focusing
on the cumulative regrets of Figure 2a we notice how the attack at time tA = 1 and tA < α∗T ,
although slightly different, results in a linear regret for the learner, in contrast with the UCB instance
attacked at tA > α∗T which is clearly non-linear. From the perspective of the attacker, starting
the attack after the successfulness threshold implies the highest cost in the horizon T , as shown in
Figure 2c. For this reason, any attack performed after α∗T is not worth it in terms of cost as the
attacker pays the highest price without being capable of fooling the learner into selecting the target
arm τ .

5.2 Comparison between each possible attack times

In the second experiment, we run the attack for any possible starting time tA ∈ [T ]. Thus, for any
time tA ∈ [T ] we run an instance of UCB algorithm attacked by an oracle attack starting at tA. For
each tA we save the sum of the metrics obtained (regrets, rewards and attack cost). Similarly to the
previous experiment, we evaluate a learner with two arms {o, τ}: the optimal arm mean reward set
to µo = ∆ with ∆ > 0. Where we choose ∆ = 0.5, and the target arm τ has a mean reward of
µτ = 0. Error tolerance δ is set to 0.05, and σ is set to 0.1. The Oracle attacker has the parameter ϵ
set to 0.05. Again, the rewards for arm i are i.i.d. sampled from a Gaussian distribution N (µi, σ

2).
We perform E = 15 trials with a horizon T = 103 for each tA ∈ [1, . . . , 103]. For the experiment’s
reproducibility, we set the random seed to 1234. Figure 3 shows the results. Fixed a particular tA,
Figure 3a shows the total regret and the total rewards obtained by the learner, as well as the total
attack of the attacker. Figure 3b shows how the number of pulls for the optimal o and target arm τ
changes depending on the beginning of the corruption. As expected, the target arm pulls degrades
gracefully as the beginning of the corruption is delayed.

6 Conclusions

Current state-of-the-art analysis of adversarial attacks in the multi-armed bandits framework assumes
the attacker starts to inject corruption at time tA = 1. This assumption is unrealistic in a practical
scenario, indeed often leads to unrecoverable results for bandits victims of an attack. We provide a
more fine-grained and general framework, namely the delayed adversarial attack model where an
attack can start at any time tA ≥ 1. We show that results can dramatically change depending on the
starting time tA. In our analysis, we provide a new definition for successfulness that is meaningful
even for a delayed starting time of the attack. We provide an upper and lower bound on the number
of times that the attacker can fool the learner to select the target arm depending on the starting
attack time tA. Thanks to these results, we define a threshold to discriminate when an attack can be
successful depending on tA and we show the effects via numerical experiments. As a future work,
our framework can be further generalized to other algorithms and extended to other classes of bandits.
Our paper aims to offer a framework that can represent a standard model to study delayed attacks
in the bandit setting. Furthermore, our model of delayed attack might provide new insights on the
design of defence strategy. For instance, if the learner experienced a corruption-free phase, employing
existing change detection algorithms could be sufficient to detect an attack and stop the algorithm to
avoid additional damage.
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A Omitted Proofs

Lemma 4.1. For any δ ∈ (0, 1),P(E) > 1− δ.

Proof. Proving that P (E) ≥ 1− δ is equivalent to prove that P (Ec) ≤ δ where Ec is the comple-
mentary event. Now let

Ec
i,t = {|µ̂i(t)− µi| ≤ β(Ni(t))} ,

then we have that:

P (Ec) = P

(
K⋃
i=1

T⋃
t=1

Ec
i,t

)

≤
K∑
i=1

T∑
t=1

P
(
Ec

i,t

)
(14)

≤
K∑
i=1

T∑
t=1

2 exp

{
−Ni(t)β(Ni(t))

2

2σ2

}
(15)

≤ δ, (16)

where in Inequality (14) we applied the Union Bound, in Inequality (15) the Hoeffding Bound and
Inequality (16) follows by substituting β(Ni(t)) defined in Equation (6).

Lemma 4.2. Suppose a UCB learner acts in a non-corrupted scenario for T1 rounds. Suppose
a strong attacker, knowing the true means, injects corruption via oracle attack with ϵ > 0 for the
remaining T2 rounds. Then, with high probability, the learner will select the optimal arm in the
corruption phase at most:

No(t
A → T ) ≤ (η +∆o,τ )T1

ϵ− η
. (10)

Proof. Consider a UCB learner, experiencing O(log(t)) regret. Consider an omniscient attacker,
meaning that at each round, given that the optimal arm has been selected, she corrupts the amount
ct = ∆o,τ + ϵ. Let t > tA any round after the corruption has began. If

µ̂c
o (t) + βUCB (No(t)) ≤ µ̂τ (t) + βUCB (Nτ (t)) , (17)

where µc
o(t) is a partial corrupted estimator where the corruption only happens in the interval (tA, t),

holds for the optimal arm o, the learner believes that target arm τ is optimal after a corruption phase
(we distinguish between optimal arm o and a generic arm i with i ̸= τ ). Now, the left hand side of
Inequality (17) can be upper bounded by:

µ̂c
o (t) + βUCB (No(t)) ≤ µ̂o −

cNo(t
A → t)

No(t)
+ βUCB (No(t)) ,

where we have extracted the corruption from the partial corrupted estimator µ̂c
o(t). The extraction is

possible since in the oracle attack, ∀t ∈ [T ] computes a constant, fixed attack ct = c = ∆o,τ + ϵ.
Then we can further upper bounding using the fact that event E holds:

µ̂o(t)−
cNo(t

A → t)

No(t)
+ βUCB (No(t))

≤ µo + β (No(t))−
cNo(t

A → t)

No(t)
+ βUCB (No(t))

= µτ +∆o,τ + β (No(t))−
cNo(t

A → t)

No(t)
+ βUCB (No(t))

≤ µ̂τ (t) + βUCB(Nτ (t)) + ∆o,τ + β (No(t))−
cNo(t

A → t)

No(t)
+ βUCB (No(t)) .

(18)
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Then, if we plug Equation (18) in the Inequality (17) we obtain:

∆o,τ + β (No(t)) + βUCB (No(t))−
cNo(t

A → t)

No(t)
≤ 0. (19)

Now notice that No(t), with t > tA can be rewritten as No(T1) + No(t
A → t). Moreover, since

β(N) is decreasing in the number of arm pulls we can further upper bound Inequality (19) as:

∆o,τ + β (No(t)) + βUCB (No(t))−
cNo(t

A → t)

No(t)

≤ ∆o,τ + β
(
No(t

A → t)
)
+ βUCB

(
No(t

A → t)
)
− cNo(t

A → t)

No(t)

= ∆o,τ +

√
log( 2KT

δ )2σ2

No(tA → t)
+ 3σ

√
ln (t)

No(tA → t)
− cNo(t

A → t)

No(t)

≤ ∆o,τ +

√
σ2
(
2 log

(
2KT
δ

)
+ 9 log t

)
No(tA → t)

− cNo(t
A → t)

No(t)
.

Now assume that:
No(t

A → t) ≥ ∆o,τ

ϵ
T1 (20)

Exploiting Equation (20), we have that:

∆o,τ +

√
σ2
(
2 log

(
2KT
δ

)
+ 9 log t

)
No(tA → t)

− cNo(t
A → t)

No(t)
≤ 0,

if

∆o,τ +

√
ϵσ2

(
2 log

(
2KT
δ

)
+ 9 log T

)
∆o,τT1

− cNo(t
A → t)

No(t)
≤ 0, (21)

where we use t ≤ T . Recalling that

η :=

√
ϵσ2

(
2 log

(
2KT
δ

)
+ 9 log T

)
∆o,τT1

,

and plugging it in Inequality (21) we obtain:

∆o,τ + η − cNo(t
A → t)

No(t)
= ∆o,τ + η − cNo(t

A → t)

No(T1) +No(tA → t)

≤ ∆o,τ + η − cNo(t
A → t)

T1 +No(tA → t)
(22)

= ∆o,τ + η − (∆o,τ + ϵ)No(t
A → t)

T1 +No(tA → t)
,

where in Inequality (22), we upper bound the number of optimal arm pulls to No(T1) ≈ T1. Finally,
solving for No(t

A → t) the following inequality:

∆o,τ + η − (∆o,τ + ϵ)No(t
A → t)

T1 +No(tA → t)
≤ 0,

we obtain the following result:

No(t
A → t) ≥ (η +∆o,τ )T1

ϵ− η
. (23)

Lemma 4.3. Suppose a UCB learner acts in a non-corrupted scenario for T1 rounds. Suppose a
strong attacker, knowing the true means, injects corruption via oracle attack, with ϵ > 0 for the
remaining T2 rounds. Then, with high probability, the learner will select a generic non-optimal arm i
in the corruption phase at most:

Ni(t
A → T ) ≤ (ψi +∆i,τ ) log T1

ϵ− ψi
. (12)
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Proof. This proof follows similar steps of the proof for the Lemma 4.2. However, there are different
assumptions. Again we consider a UCB learner, experiencing O(log(t)) regret. Consider an
omniscient attacker, meaning that at each round, given that a generic arm i has been pulled, she
corrupts the amount ct = ∆i,τ + ϵ. Let t > tA any round after the corruption has began. If the
following Inequality (24) holds for the generic arm i, the learner believes that target arm τ is better
than generic arm i after a corruption phase (here we distinguish between optimal arm o and a generic
arm i with i /∈ {o, τ}).

µ̂c
i (t) + βUCB (Ni(t)) ≤ µ̂τ (t) + βUCB (Nτ (t)) , (24)

where µc
i (t) is a partial corrupted estimator where the corruption only happens in the interval (tA, t).

Now, the left hand side of Inequality (24) can be upper bounded by:

µ̂c
i (t) + βUCB (Ni(t)) ≤ µ̂i −

cNi(t
A → t)

Ni(t)
+ βUCB (Ni(t)) ,

where we have extracted the corruption from the partial corrupted estimator µ̂c
i (t). The extraction

is possible since in the oracle attack, ∀t ∈ [T ] computes a constant, fixed attack ct = c = ∆i,τ + ϵ.
Then we can further upper bounding using the fact that event E holds:

µ̂i(t)−
cNi(t

A → t)

Ni(t)
+ βUCB (Ni(t))

≤ µi + β (Ni(t))−
cNi(t

A → t)

Ni(t)
+ βUCB (Ni(t))

= µτ +∆i,τ + β (Ni(t))−
cNi(t

A → t)

Ni(t)
+ βUCB (Ni(t))

≤ µ̂τ (t) + βUCB(Nτ (t)) + ∆i,τ + β (Ni(t))−
cNi(t

A → t)

Ni(t)
+ βUCB (Ni(t)) .

(25)

Then, if we plug back Equation (25) in the Inequality (24) we obtain:

∆i,τ + β (Ni(t)) + βUCB (Ni(t))−
cNi(t

A → t)

Ni(t)
≤ 0 (26)

Now notice that Ni(t), with t > tA can be rewritten as Ni(T1)+Ni(t
A → t). Moreover, since β(N)

is decreasing in the number of arm pulls we can further upper bound Inequality (26) as:

∆i,τ + β (Ni(t)) + βUCB (Ni(t))−
cNi(t

A → t)

Ni(t)

≤ ∆i,τ + β
(
Ni(t

A → t)
)
+ βUCB

(
Ni(t

A → t)
)
− cNi(t

A → t)

Ni(t)

= ∆i,τ +

√
log( 2KT

δ )2σ2

Ni(tA → t)
+ 3σ

√
ln (t)

Ni(tA → t)
− cNi(t

A → t)

Ni(t)

≤ ∆i,τ +

√
σ2
(
2 log

(
2KT
δ

)
+ 9 log t

)
Ni(tA → t)

− cNi(t
A → t)

Ni(t)
,

Now assume that:
Ni(t

A → t) ≥ ∆i,τ

ϵ
log (T1) (27)

Exploiting Equation (27), we have that

∆i,τ +

√
σ2
(
2 log

(
2KT
δ

)
+ 9 log t

)
Ni(tA → t)

− cNi(t
A → t)

Ni(t)
≤ 0

if

∆i,τ +

√
ϵσ2

(
2 log

(
2KT
δ

)
+ 9 log T

)
∆i,τ log (T1)

− cNi(t
A → t)

Ni(t)
≤ 0, (28)
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where we use t ≤ T . Recalling that

ψi :=

√
ϵσ2

(
2 log

(
2KT
δ

)
+ 9 log T

)
∆i,τ log (T1)

,

and plug it in Inequality (28) we obtain

∆i,τ + ψi −
cNi(t

A → t)

Ni(t)
= ∆i,τ + ψi −

cNi(t
A → t)

Ni(T1) +Ni(tA → t)

≤ ∆i,τ + ψi −
cNi(t

A → t)

log T1 +Ni(tA → t)
(29)

= ∆i,τ + ψi −
(∆i,τ + ϵ)Ni(t

A → t)

log T1 +Ni(tA → t)
,

where in Inequality (29), we upper bound the number of a generic arm pulls to Ni(T1) ≈ log (T1).
Finally, solving the following Inequality for Ni(t

A → t)

∆i,τ + ψ − (∆i,τ + ϵ)Ni(t
A → t)

log T1 +Ni(tA → t)
≤ 0,

we obtain the following result

Ni(t
A → t) ≥ (ψi +∆i,τ )

ϵ− ψi
log T1. (30)

Theorem 4.4. Suppose a UCB learner acts in a non-corrupted scenario for T1 rounds. Suppose
a strong attacker, knowing the true means, injects corruption via oracle attack with ϵ > 0 for the
remaining T2 rounds. Then, with high probability, the learner will select the target arm τ in the
corruption phase at least:

Nτ (t
A → T ) ≥ T2 −

η +∆o,τ

ϵ− η
T1 −

∑
i∈[K]\{τ,o}

ψi +∆i,τ

ϵ− ψi
log T1.

Proof. The proof follows from the application of Lemma 4.2 and Lemma 4.3. The number of pulls
of the target arm τ in the corruption phase can be defined as:

Nτ (t
A → T ) = T2 −

∑
i∈[K]\{τ}

Ni(t
A → T )

= T2 −No(t
A → T )−

∑
i∈[K]\{τ,o}

Ni(t
A → T )

≥ T2 −
η +∆o,τ

ϵ− η
T1 −

∑
i∈[K]\{τ,o}

ψi +∆i,τ

ϵ− ψi
log T1 (31)

Corollary 4.5. Suppose a UCB learner acts in a non-corrupted scenario for T1 rounds. Suppose
a strong attacker, knowing the true means, injects corruption via oracle attack with ϵ > 0 for the
remaining T2 rounds. Then, with high probability, the learner will select the target arm τ in the
corruption phase at least:

Nτ (t
A → T ) ≥ T2 −

∆o,τ

ϵ
T1 − o(T ). (13)

Proof. Consider the result from Theorem 4.4

Nτ (t
A → T ) ≥ T2 −

η +∆o,τ

ϵ− η
T1 −

∑
i∈[K]\{τ,o}

ψi +∆i,τ

ϵ− ψi
log T1

≥ T2 −
η +∆o,τ

ϵ− η
T1 − o(T ). (32)
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Inequality (32) follows from the fact that the term regarding a generic arm i ∈ [K] \ {o, τ}, will be
selected at most a sub-linear number of times both in pre-corruption and in the corruption phase.
This is due to the UCB learner experiencing O(log T ) regret. Furthermore, the term η+∆o,τ

ϵ−η in

Inequality (32) can be divided in ∆o,τ

ϵ +
η(ϵ−∆o,τ )
ϵ(ϵ+η) to obtain:

T2 −
η +∆o,τ

ϵ− η
T1 − o(T ) = T2 −

(
∆o,τ

ϵ
+
η(ϵ−∆o,τ )

ϵ(ϵ+ η)

)
T1 − o(T )

= T2 −
∆o,τ

ϵ
T1 −

η(ϵ−∆o,τ )

ϵ(ϵ+ η)
T1 − o(T )

≥ T2 −
∆o,τ

ϵ
T1 − o(T ) (33)

Corollary 4.6. Fixed a constant corruption ϵ > 0. If the attack starts at αT with α < α∗(∆o,τ , ϵ), a
UCB learner will select the target arm τ at least Ω(T ) times with high probability.

Proof. From results obtained by Theorem 4.4 and Corollary 4.5 we know that:

Nτ (t
A → T ) ≥ T2 −

∆o,τ

ϵ
T1 − o(T )

= (1− α)T − ∆o,τ

ϵ
αT − o(T ), (34)

where Equation (34) derives from T1 + T2 = αT + (1 − α)T = T . Now let α = α∗ − δ where
α∗ = ϵ

ϵ+∆o,τ
we can rewrite Equation (34) in:

(1− α)T − ∆o,τ

ϵ
αT + o(T ) = (1− α∗ + δ)T − ∆o,τ

ϵ
(α∗ − δ)T − o(T )

= δT + (1− α∗)T − ∆o,τ

ϵ
(α∗ − δ)T − o(T )

= δT + (1− α∗ − ∆o,τ

ϵ
α∗)T +

∆o,τ

ϵ
δT − o(T ) (35)

= δT +
∆o,τ

ϵ
δT − o(T )

=
ϵ+∆o,τ

ϵ
δT − o(T ) (36)

The middle term in Equation (35) is exactly 0 thus we obtain Equation (36) as final result. Finally:

Nτ (t
A → T ) ≥ C

ϵ
δT − o(T )

≥ Ω(T ),

which concludes the proof.

Theorem 4.7. Suppose a UCB learner acts in a non-corrupted scenario for T1 rounds. Suppose a
strong attacker, knowing the true means, injects corruption from time αT with α < α∗ via oracle
attack with ϵ > 0. Then, with high probability, the learner will select the target arm τ in the
corruption phase at most:

Nτ (t
A → T ) ≤ T2 −

∆o,τ

ϵ
T1 + o(T ).

Proof. Consider a bandit instance in which we have only two arms, an optimal arm o and the target
arm τ , with true means µo = 1 and µτ = 1 −∆ respectively. Let t > tA a generic round t after
corruption has began. We want to prove that:

Nτ (t
A → T ) ≤ T2 −

∆o,τT1
ϵ

+ γ, (37)
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where γ is a sub-linear term. To prove Inequality (37), we proceed by contradiction. Consider
Inequality (37) false, that is

Nτ (t
A → T ) > T2 −

∆o,τT1
ϵ

+ γ. (38)

If Inequality (38) is true, it means that exist a round tA < t′ < t where

Nτ (t
A → t′) ≥ T2 −

∆o,τT1
ϵ

+ γ − 1, (39)

and the learner selected the arm τ , formally:

µc
o + βUCB(No(t

′)) ≤ µτ + βUCB(Nτ (t
′)). (40)

Now, to prove that Inequality (38) is a contradiction we need to prove that Inequality (40) is false.
Proving Inequality (40) false is equivalent to prove true its contrary, formally:

µc
o + βUCB(No(t

′)) ≥ µτ + βUCB(Nτ (t
′)). (41)

Finally, to prove Inequality (37) we now reduced to prove Inequality (41) true. Since the instance is
defined with only two arms:

No(t
A → t′) = T2 −Nτ (t

A → t′)

≤ ∆o,τT1
ϵ

− γ + 1.

Then, we proceed by lower bounding the left hand side of Inequality (41) obtaining:

µc
o + βUCB(No(t)) ≥ µc

o

= µo −
(ϵ+∆o,τ )No(t

A → t′)

No(t′)

= µo −
(ϵ+∆o,τ )

(
∆o,τT1

ϵ − γ + 1
)

T1 +
∆o,τT1

ϵ − γ + 1

≥ µo −
(ϵ+∆o,τ )

(
∆o,τT1

ϵ + 1
)

T1 +
∆o,τT1

ϵ − γ
(42)

Now the right most term in Inequality (42) can be rewritten as:

(ϵ+∆o,τ )
(

∆o,τT1

ϵ + 1
)

T1 +
∆o,τT1

ϵ − γ
= ∆o,τ +

ϵ+∆o,τ +∆o,τγ

T1 +
∆o,τT1

ϵ

,

from which we obtain:

µo −∆o,τ +
ϵ+∆o,τ +∆o,τγ

T1 +
∆o,τT1

ϵ

. (43)

Then we upper bounding the right hand side of Inequality (38) obtaining:

µτ + βUCB(Nτ (t)) ≤ µτ + 3σ

√
log T

Nτ (T1) +Nτ (tA → t′)

≤ µτ + 3σ

√
log T

Nτ (tA → t′)

≤ µτ + 3σ

√
log T

T2 − ∆o,τT1

ϵ + γ − 1

≤ µτ + 3σ

√
log T

T2 − ∆o,τT1

ϵ − 1
,

17



Finally, we obtain:

µo −∆o,τ +
ϵ+∆o,τ +∆o,τγ

T1 +
∆o,τT1

ϵ

≥ µτ + 3σ

√
log T

T2 − ∆o,τT1

ϵ − 1
(44)

Thus, Inequality (41) is true for γ ≥ T1

∆o,τ

(
1− ∆

ϵ

)
3σ
√

log T

T2−
∆o,τT1

ϵ −1
− ϵ

∆o,τ
resulting in a contrad-

diction.

B Experiments

In this section, we provide minor details about the experiments omitted in the main paper.

Experiments details

• Experiment were conducted using python 3.11.6
• CPU: Apple M1
• RAM: 16 GB
• Operating System: macOS 14.2.1
• System Type: 64 bit
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